Search results for: support sector machine
11076 Integrating Machine Learning and Rule-Based Decision Models for Enhanced B2B Sales Forecasting and Customer Prioritization
Authors: Wenqi Liu, Reginald Bailey
Abstract:
This study explores an advanced approach to enhancing B2B sales forecasting by integrating machine learning models with a rule-based decision framework. The methodology begins with the development of a machine learning classification model to predict conversion likelihood, aiming to improve accuracy over traditional methods like logistic regression. The classification model's effectiveness is measured using metrics such as accuracy, precision, recall, and F1 score, alongside a feature importance analysis to identify key predictors. Following this, a machine learning regression model is used to forecast sales value, with the objective of reducing mean absolute error (MAE) compared to linear regression techniques. The regression model's performance is assessed using MAE, root mean square error (RMSE), and R-squared metrics, emphasizing feature contribution to the prediction. To bridge the gap between predictive analytics and decision-making, a rule-based decision model is introduced that prioritizes customers based on predefined thresholds for conversion probability and predicted sales value. This approach significantly enhances customer prioritization and improves overall sales performance by increasing conversion rates and optimizing revenue generation. The findings suggest that this combined framework offers a practical, data-driven solution for sales teams, facilitating more strategic decision-making in B2B environments.Keywords: sales forecasting, machine learning, rule-based decision model, customer prioritization, predictive analytics
Procedia PDF Downloads 1411075 Efficiency of Google Translate and Bing Translator in Translating Persian-to-English Texts
Authors: Samad Sajjadi
Abstract:
Machine translation is a new subject increasingly being used by academic writers, especially students and researchers whose native language is not English. There are numerous studies conducted on machine translation, but few investigations have assessed the accuracy of machine translation from Persian to English at lexical, semantic, and syntactic levels. Using Groves and Mundt’s (2015) Model of error taxonomy, the current study evaluated Persian-to-English translations produced by two famous online translators, Google Translate and Bing Translator. A total of 240 texts were randomly selected from different academic fields (law, literature, medicine, and mass media), and 60 texts were considered for each domain. All texts were rendered by the two translation systems and then by four human translators. All statistical analyses were applied using SPSS. The results indicated that Google translations were more accurate than the translations produced by the Bing Translator, especially in the domains of medicine (lexis: 186 vs. 225; semantic: 44 vs. 48; syntactic: 148 vs. 264 errors) and mass media (lexis: 118 vs. 149; semantic: 25 vs. 32; syntactic: 110 vs. 220 errors), respectively. Nonetheless, both machines are reasonably accurate in Persian-to-English translation of lexicons and syntactic structures, particularly from mass media and medical texts.Keywords: machine translations, accuracy, human translation, efficiency
Procedia PDF Downloads 7311074 Potency of Minapolitan Area Development to Enhance Gross Domestic Product and Prosperty in Indonesia
Authors: Shobrina Silmi Qori Tarlita, Fariz Kukuh Harwinda
Abstract:
Indonesia has 81.000 kilometers coastal line and 70% water surface which is known as the country who has a huge potential in fisheries sector and also which is able to support more than 50 % of Gross Domestic Product. But according to Department of Marine and Fisheries data, fisheries sector supported only 20% of Total GDP in 1998. Not only that, the highest decline in fisheries sector income occured in 2009. Those conditions occur, because of some factors contributed to the lack of integrated working platform for the fisheries and marine management in some areas which have a high productivity to increase the economical profit every year for the country, especially Indonesia, besides the labor requirement for every company, whether a big company or smaller one, depends on the natural condition that makes a lot of people become unemployed if the weather condition or any other conditions dealing with the natural condition is bad for creating fisheries and marine management, especially in aquaculture and fish – captured operation. Not only those, a lot of fishermen, especially in Indonesia, mostly make their job profession as an additional job or side job to fulfill their own needs, although they are averagely poor. Another major problem are the lack of the sustainable developmental program to stabilize the productivity of fisheries and marine natural source, like protecting the environment for fish nursery ground and migration channel, that makes the low productivity of fisheries and marine natural resource, even though the growth of the society in Indonesia has increased for years and needs more food resource to comply the high demand nutrition for living. The development of Minapolitan Area is one of the alternative solution to build a better place for aqua-culturist as well as the fishermen which focusing on systemic and business effort for fisheries and marine management. Minapolitan is kind of integration area which gathers and integrates the ones who is focusing their effort and business in fisheries sector, so that Minapolitan is capable of triggering the fishery activity on the area which using Minapolitan management intensively. From those things, finally, Minapolitan is expected to reinforce the sustainable development through increasing the productivity of fish – capturing operation as well as aquaculture, and it is also expected that Minapolitan will be able to increase GDP, the earning for a lot of people and also will be able to bring prosperity around the world. From those backgrounds, this paper will explain more about the Minapolitan Area and the design of reinforcing the Minapolitan Area by zonation in the Fishery and Marine exploitation area with high productivity as well as low productivity. Hopefully, this solution will be able to answer the economical and social issue for declining food resource, especially fishery and marine resource.Keywords: Minapolitan, fisheries, economy, Indonesia
Procedia PDF Downloads 46211073 Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy
Authors: Samira-Sadat JamaliDinan, Haidar Almohri, Mohammad-Reza Nazem-Zadeh
Abstract:
Lateralization of temporal lobe epilepsy (TLE) is very important for positive surgical outcomes. We propose a machine learning framework to ultimately identify the epileptogenic hemisphere for temporal lobe epilepsy (TLE) cases using magnetoencephalography (MEG) coherence source imaging (CSI) and diffusion tensor imaging (DTI). Unlike most studies that use classification algorithms, we propose an effective clustering approach to distinguish between normal and TLE cases. We apply the famous Minkowski weighted K-Means (MWK-Means) technique as the clustering framework. To overcome the problem of poor initialization of K-Means, we use particle swarm optimization (PSO) to effectively select the initial centroids of clusters prior to applying MWK-Means. We demonstrate that compared to K-means and MWK-means independently, this approach is able to improve the result of a benchmark data set.Keywords: temporal lobe epilepsy, machine learning, clustering, magnetoencephalography
Procedia PDF Downloads 15211072 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system
Procedia PDF Downloads 15511071 Port Logistics Integration: Challenges and Approaches: Case Study; Iranian Seaports
Authors: Ali Alavi, Hong-Oanh Nguyen, Jiangang Fei, Jafar Sayareh
Abstract:
The recent competitive market in the port sector highly depend on logistics practices, functions and activities and seaports play a key role in port logistics chains. Despite the well-articulated importance of ports and terminals in integrated logistics, the role of success factors in port logistics integration has been rarely mentioned. The objective of this paper is to fill this gap in the literature and provide an insight into how seaports and terminals may improve their logistics integration. First, a literature review of studies on logistics integration in seaports and terminals is conducted. Second, a new conceptual framework for port logistics integration is proposed to incorporate the role of the new variables emerging from the recent developments in the global business environment. Third, the model tested in Iranian port and maritime sector using self-administered and online survey among logistics chain actors in Iranian seaports such shipping line operators, logistics service providers, port authorities, logistics companies and other related actors. The results have found the logistics process and operations, information integration, value-added services, and logistics practices being influential to logistics integration. A proposed conceptual framework is developed to extend the existing framework and incorporates the variables namely organizational activities, resource sharing, and institutional support. Further examination of the proposed model across multiple contexts is necessary for the validity of the findings. The framework could be more detailed on each factor and consider actors perspective.Keywords: maritime logistics, port integration, logistics integration, supply chain integration
Procedia PDF Downloads 24611070 Enhancing Disaster Response Capabilities in Asia-Pacific: An Explorative Study Applied to Decision Support Tools for Logistics Network Design
Authors: Giuseppe Timperio, Robert de Souza
Abstract:
Logistics operations in the context of disaster response are characterized by a high degree of complexity due to the combined effect of a large number of stakeholders involved, time pressure, uncertainties at various levels, massive deployment of goods and personnel, and gigantic financial flow to be managed. It also involves several autonomous parties such as government agencies, militaries, NGOs, UN agencies, private sector to name few, to have a highly collaborative approach especially in the critical phase of the immediate response. This is particularly true in the context of L3 emergencies that are the most severe, large-scale humanitarian crises. Decision-making processes in disaster management are thus extremely difficult due to the presence of multiple decision-makers involved, and the complexity of the tasks being tackled. Hence, in this paper, we look at applying ICT based solutions to enable a speedy and effective decision making in the golden window of humanitarian operations. A high-level view of ICT based solutions in the context of logistics operations for humanitarian response in Southeast Asia is presented, and their viability in a real-life case about logistics network design is explored.Keywords: decision support, disaster preparedness, humanitarian logistics, network design
Procedia PDF Downloads 16311069 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms
Authors: Sekkal Nawel, Mahammed Nadir
Abstract:
The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network
Procedia PDF Downloads 6611068 Examining the Relationship Between Job Stress And Burnout Among Academic Staff During The Covid-19 Pandemic; The Importance Of Emotional Intelligence
Authors: Parisa Gharibi Khoshkar
Abstract:
The global outbreak of Covid-19 forced a swift shift in the education sector, transitioning from traditional in-person settings to remote online setups in a short period. This abrupt change, coupled with health risks and other stressors such as the lack of social interaction, has had a negative impact on academic staff, leading to increased job-related stress and psychological pressures that can result in burnout. To address this, the current research aims to investigate the relationship between job stress and burnout among academic staff in Hebron, Palestine. Furthermore, this study examines the moderating role of emotional intelligence to gain a deeper understanding of its effects in reducing burnout among academic staff and teachers. This research posits that emotional intelligence plays a vital role in helping individuals manage job-related stress and anxiety, thereby preventing burnout. Using a self-administered questionnaire, the study gathered data from 185 samples comprising teachers and administrative staff from two universities in Hebron. The data was analyzed using moderated regression analysis, ANOVA model, and interaction plots. The findings indicate that work-related stress has a direct and significant influence on burnout. Moreover, the current results highlight that emotional intelligence serves as a key determinant in managing the negative effects of the pandemic-induced stress that can lead to burnout among individuals. Given the high-demand nature of the education sector, this research strongly recommends that school authorities take proactive measures to provide much-needed support to academic staff, enabling them to better cope with job stress and fostering an environment that prioritizes individuals' wellbeing. The results of this study hold practical implications for both scholars and practitioners, as they highlight the importance of emotional intelligence in managing stress and anxiety effectively. Understanding the significance of emotional intelligence can aid in implementing targeted interventions and support systems to promote the well-being and resilience of academic staff amidst challenging circumstances.Keywords: job stress, burnout, employee wellbeing, emotional intelligence, industrial organizational psychology, human resource management, organizational psychology
Procedia PDF Downloads 6911067 On the Efficiency of a Double-Cone Gravitational Motor and Generator
Authors: Barenten Suciu, Akio Miyamura
Abstract:
In this paper, following the study-case of an inclined plane gravitational machine, efficiency of a double-cone gravitational motor and generator is evaluated. Two types of efficiency ratios, called translational efficiency and rotational efficiency, are defined relative to the intended duty of the gravitational machine, which can be either the production of translational kinetic energy, or rotational kinetic energy. One proved that, for pure rolling movement of the double- cone, in the absence of rolling friction, the total mechanical energy is conserved. In such circumstances, as the motion of the double-cone progresses along rails, the translational efficiency decreases and the rotational efficiency increases, in such way that sum of the rotational and translational efficiencies remains unchanged and equal to 1. Results obtained allow a comparison of the gravitational machine with other types of motor-generators, in terms of the achievable efficiency.Keywords: efficiency, friction, gravitational motor and generator, rolling and sliding, truncated double-cone
Procedia PDF Downloads 28711066 The Logistics Equation and Fractal Dimension in Escalators Operations
Authors: Ali Albadri
Abstract:
The logistics equation has never been used or studied in scientific fields outside the field of ecology. It has never been used to understand the behavior of a dynamic system of mechanical machines, like an escalator. We have studied the compatibility of the logistic map against real measurements from an escalator. This study has proven that there is good compatibility between the logistics equation and the experimental measurements. It has discovered the potential of a relationship between the fractal dimension and the non-linearity parameter, R, in the logistics equation. The fractal dimension increases as the R parameter (non-linear parameter) increases. It implies that the fractal dimension increases as the phase of the life span of the machine move from the steady/stable phase to the periodic double phase to a chaotic phase. The fractal dimension and the parameter R can be used as a tool to verify and check the health of machines. We have come up with a theory that there are three areas of behaviors, which they can be classified during the life span of a machine, a steady/stable stage, a periodic double stage, and a chaotic stage. The level of attention to the machine differs depending on the stage that the machine is in. The rate of faults in a machine increases as the machine moves through these three stages. During the double period and the chaotic stages, the number of faults starts to increase and become less predictable. The rate of predictability improves as our monitoring of the changes in the fractal dimension and the parameter R improves. The principles and foundations of our theory in this work have and will have a profound impact on the design of systems, on the way of operation of systems, and on the maintenance schedules of the systems. The systems can be mechanical, electrical, or electronic. The discussed methodology in this paper will give businesses the chance to be more careful at the design stage and planning for maintenance to control costs. The findings in this paper can be implied and used to correlate the three stages of a mechanical system to more in-depth mechanical parameters like wear and fatigue life.Keywords: logistcs map, bifurcation map, fractal dimension, logistics equation
Procedia PDF Downloads 10611065 Transient Stability Improvement in Multi-Machine System Using Power System Stabilizer (PSS) and Static Var Compensator (SVC)
Authors: Khoshnaw Khalid Hama Saleh, Ergun Ercelebi
Abstract:
Increasingly complex modern power systems require stability, especially for transient and small disturbances. Transient stability plays a major role in stability during fault and large disturbance. This paper compares a power system stabilizer (PSS) and static Var compensator (SVC) to improve damping oscillation and enhance transient stability. The effectiveness of a PSS connected to the exciter and/or governor in damping electromechanical oscillations of isolated synchronous generator was tested. The SVC device is a member of the shunt FACTS (flexible alternating current transmission system) family, utilized in power transmission systems. The designed model was tested with a multi-machine system consisting of four machines six bus, using MATLAB/SIMULINK software. The results obtained indicate that SVC solutions are better than PSS.Keywords: FACTS, MATLAB/SIMULINK, multi-machine system, PSS, SVC, transient stability
Procedia PDF Downloads 45011064 Predicting the Frequencies of Tropical Cyclone-Induced Rainfall Events in the US Using a Machine-Learning Model
Authors: Elham Sharifineyestani, Mohammad Farshchin
Abstract:
Tropical cyclones are one of the most expensive and deadliest natural disasters. They cause heavy rainfall and serious flash flooding that result in billions of dollars of damage and considerable mortality each year in the United States. Prediction of the frequency of tropical cyclone-induced rainfall events can be helpful in emergency planning and flood risk management. In this study, we have developed a machine-learning model to predict the exceedance frequencies of tropical cyclone-induced rainfall events in the United States. Model results show a satisfactory agreement with available observations. To examine the effectiveness of our approach, we also have compared the result of our predictions with the exceedance frequencies predicted using a physics-based rainfall model by Feldmann.Keywords: flash flooding, tropical cyclones, frequencies, machine learning, risk management
Procedia PDF Downloads 24511063 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal
Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan
Abstract:
This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal
Procedia PDF Downloads 11011062 Investigation on the Effect of Sugarcane Bagasse/HDPE Composition on the Screw Withdrawal Resistance of Injection Molded Parts
Authors: Seyed Abdol Mohammad Rezavand, Mohammad Nikbakhsh
Abstract:
Withdrawal resistance of screws driven into HDPE/Sugarcane Bagasse injection molded parts was investigated. After chemical treatment and drying, SCB was pre-mixed with HDPE using twin extruder. The resulting granules are used in producing samples in injection molding machine. SCB with the quantity of %10, %20, and %30 was used. By using a suitable fixture, screw heads can take with tensile test machine grips. Parts with screws in the center and edge were fasten together. Then, withdrawal resistance was measured with tensile test machine. Injection gate is at the one edge of the part. The results show that by increasing SCB content in composite, the withdrawal resistance is decreased. Furthermore, the withdrawal resistance at the edges (near injection gate and the end of the filling path of mold cavity) is more than that of the center.Keywords: polyethylene, sugarcane bagasse, wood plastic, screw, withdrawal resistance
Procedia PDF Downloads 58111061 Relationship between Micro-Level Entrepreneurial Resilience with Job Satisfaction and Family Social Support
Authors: Kristiana Haryanti, Theresia Dwi Hastuti, Agustine Eva Maria Soekesi
Abstract:
Entrepreneurship is an important topic today that is widely discussed in the business world. The COVID-19 pandemic has devastated all businesses in the world, especially businesses at the micro-level. This study tries to prove the relationship between job satisfaction of micro-level business owners and family social support for their resilience. The respondents of this study amounted to 58 entrepreneurs. The results of this study indicate that there is a relationship between job satisfaction and social support with entrepreneurial resilience in continuing the family business.Keywords: family business, family social support, job satisfaction, resilience
Procedia PDF Downloads 9211060 Influence of Machine Resistance Training on Selected Strength Variables among Two Categories of Body Composition
Authors: Hassan Almoslim
Abstract:
Background: The machine resistance training is an exercise that uses the equipment as loads to strengthen and condition the musculoskeletal system and improving muscle tone. The machine resistance training is easy to use, allow the individual to train with heavier weights without assistance, useful for beginners and elderly populations and specific muscle groups. Purpose: The purpose of this study was to examine the impact of nine weeks of machine resistance training on maximum strength among lean and normal weight male college students. Method: Thirty-six male college students aged between 19 and 21 years from King Fahd University of petroleum & minerals participated in the study. The subjects were divided into two an equal groups called Lean Group (LG, n = 18) and Normal Weight Group (NWG, n = 18). The subjects whose body mass index (BMI) is less than 18.5 kg / m2 is considered lean and who is between 18.5 to 24.9 kg / m2 is normal weight. Both groups performed machine resistance training nine weeks, twice per week for 40 min per training session. The strength measurements, chest press, leg press and abdomen exercises were performed before and after the training period. 1RM test was used to determine the maximum strength of all subjects. The training program consisted of several resistance machines such as leg press, abdomen, chest press, pulldown, seated row, calf raises, leg extension, leg curls and back extension. The data were analyzed using independent t-test (to compare mean differences) and paired t-test. The level of significance was set at 0.05. Results: No change was (P ˃ 0.05) observed in all body composition variables between groups after training. In chest press, the NWG recorded a significantly greater mean different value than the LG (19.33 ± 7.78 vs. 13.88 ± 5.77 kg, respectively, P ˂ 0.023). In leg press and abdomen exercises, both groups revealed similar mean different values (P ˃ 0.05). When the post-test was compared with the pre-test, the NWG showed significant increases in the chest press by 47% (from 41.16 ± 12.41 to 60.49 ± 11.58 kg, P ˂ 001), abdomen by 34% (from 45.46 ± 6.97 to 61.06 ± 6.45 kg, P ˂ 0.001) and leg press by 23.6% (from 85.27 ± 15.94 to 105.48 ± 21.59 kg, P ˂ 0.001). The LG also illustrated significant increases by 42.6% in the chest press (from 32.58 ± 7.36 to 46.47 ± 8.93 kg, P ˂ 0.001), the abdomen by 28.5% (from 38.50 ± 7.84 to 49.50 ± 7.88 kg, P ˂ 0.001) and the leg press by 30.8% (from 70.2 ± 20.57 to 92.01 ± 22.83 kg, P ˂ 0.001). Conclusion: It was concluded that the lean and the normal weight male college students can benefit from the machine resistance-training program remarkably.Keywords: body composition, lean, machine resistance training, normal weight
Procedia PDF Downloads 35411059 A Case Study on Barriers in Total Productive Maintenance Implementation in the Abu Dhabi Power Industry
Authors: A. Alseiari, P. Farrell
Abstract:
Maintenance has evolved into an imperative function, and contributes significantly to efficient and effective equipment performance. Total Productive Maintenance (TPM) is an ideal approach to support the development and implementation of operation performance improvement. It systematically aims to understand the function of equipment, the service quality relationship with equipment and the probable critical equipment failure conditions. Implementation of TPM programmes need strategic planning and there has been little research applied in this area within Middle-East power plants. In the power sector of Abu Dhabi, technologically and strategically, the power industry is extremely important, and it thus needs effective and efficient equipment management support. The aim of this paper is to investigate barriers to successful TPM implementation in the Abu Dhabi power industry. The study has been conducted in the context of a leading power company in the UAE. Semi-structured interviews were conducted with 16 employees, including maintenance and operation staff, and senior managers. The findings of this research identified seven key barriers, thus: managerial; organisational; cultural; financial; educational; communications; and auditing. With respect to the understanding of these barriers and obstacles in TPM implementation, the findings can contribute towards improved equipment operations and maintenance in power organisations.Keywords: Abu Dhabi Power Industry, TPM implementation, key barriers, organisational culture, critical success factors
Procedia PDF Downloads 24411058 Assets Misappropriation in the Malaysian Public and Private Sectors
Authors: I. K. Norziaton, M. D. Ridhuan, A. N. Nur Adura
Abstract:
Assets misappropriation is becoming a major concern in organizations. Over the years, the Malaysian Auditor General has reported high occurrences of assets misappropriation at the federal, state and even local governments. It is surprising that assets misappropriation is not the only major concern in the public sector but it has also indicates a common sight in private sector. The current situation is rather disconcerting because employees are accountable to perform their jobs at the interest of the organizations. Various researches in the past has found that the incidence of assets misappropriation occurs when employees used the official vehicles, internet connection, computers, stationery and facilities for personal and family benefits. The issue of assets misappropriation has continue to be a major concern for organizations and its impact on the reputation and financial health can be enormous. Even though the issue seems to be trivial, yet, if it is left untreated, the symptoms will become an incurable disease that it will cause major leakages to the organizations. Hence, this paper highlights the common practices of assets misappropriation in public and private sectors. It also discusses why the acts of assets misappropriation occurs. Using the data through questionnaire survey, a total of 250 questionnaires were distributed to the private and public sectors employees. However 173 (69.2%) were returned and usable. This paper concludes that it is vital to promote awareness to the public and private sectors employees on issues of assets misappropriation. Assets misappropriation could have been avoided provided that the officers in charge are more vigilant, competent and practice high level of integrity in discharging their responsibilities towards the organizations.Keywords: assets misappropriation, fraud, public sector, private sector
Procedia PDF Downloads 19611057 Palestine Smart Tourism Augmented Reality Mobile Application
Authors: Murad Al-Rajab, Sherin Hazboun, Azhar Al-Hamamreh, Nirmeen Odeh, Siham Halaseh
Abstract:
Tourism is considered an important sector for most countries, while maintaining good tourism attractions can promote national economic development. The State of Palestine is historically considered a wealthy country full of many archaeological places. In the city of Bethlehem, for example, the Church of the Nativity is the most important touristic site, but it does not have enough technology development to attract tourists. In this paper, we propose a smart mobile application named “Pal-STAR” (Palestine Smart Tourist Augmented Reality) as an innovative solution which targets tourists and assists them to make a visit inside the Church of the Nativity. The application will use augmented reality and feature a virtual tourist guide showing views of the church while providing historical information in a smart, easy, effective and user-friendly way. The proposed application is compatible with multiple mobile platforms and is considered user friendly. The findings show that this application will improve the practice of the tourism sector in the Holy Land, it will also increase the number of tourists visiting the Church of the Nativity and it will facilitate access to historical data that have been difficult to obtain using traditional tourism guidance. The value that tourism adds to a country cannot be denied, and the more technological advances are incorporated in this sector, the better the country’s tourism sector can be served. Palestine’s economy is heavily dependent on tourism in many of its main cities, despite several limitations, and technological development is needed to enable this sector to flourish. The proposed mobile application would definitely have a good impact on the development of the tourism sector by creating an Augmented Reality environment for tourists inside the church, helping them to navigate and learn about holy places in a non-traditional way, using a virtual tourist guide.Keywords: smartphones, tourism, tourists guide, augmented reality, Palestine
Procedia PDF Downloads 16911056 Technique and Use of Machine Readable Dictionary: In Special Reference to Hindi-Marathi Machine Translation
Authors: Milind Patil
Abstract:
Present paper is a discussion on Hindi-Marathi Morphological Analysis and generating rules for Machine Translation on the basis of Machine Readable Dictionary (MRD). This used Transformative Generative Grammar (TGG) rules to design the MRD. As per TGG rules, the suffix of a particular root word is based on its Tense, Aspect, Modality and Voice. That's why the suffix is very important for the word meanings (or root meanings). The Hindi and Marathi Language both have relation with Indo-Aryan language family. Both have been derived from Sanskrit language and their script is 'Devnagari'. But there are lots of differences in terms of semantics and grammatical level too. In Marathi, there are three genders, but in Hindi only two (Masculine and Feminine), the Natural gender is absent in Hindi. Likewise other grammatical categories also differ in their level of use. For MRD the suffixes (or Morpheme) are of particular root word for GNP (Gender, Number and Person) are based on its natural phenomena. A particular Suffix and Morphine change as per the need of person, number and gender. The design of MRD also based on this format. In first, Person, Number, Gender and Tense are key points than root words and suffix of particular Person, Number Gender (PNG). After that the inferences are drawn on the basis of rules that is (V.stem) (Pre.T/Past.T) (x) + (Aux-Pre.T) (x) → (V.Stem.) + (SP.TM) (X).Keywords: MRD, TGG, stem, morph, morpheme, suffix, PNG, TAM&V, root
Procedia PDF Downloads 32311055 Intervention Programs for Children of Divorced Parents: Presentation of the Children’s Support Group Developed in Belgium
Authors: Therese Scali
Abstract:
Couple separations and divorces seem to be commonplace events. However, their frequency does not reduce their impact. Indeed, the adverse effects of parental divorce on children have been well documented. Thus, supporting the children from divorced families is a key concern. Several preventive interventions have been developed for children of divorced parents, such as Children’s Support Group. The present paper aims at presenting the program that has been created in Liege (Belgium). The setting and the tools will be presented. This Children’s Support Group is based on psychoeducational and systemic principles, art-therapy, and aims at acquiring coping skills and seeking social support. Also, the effectiveness of the program will be discussed. Results show that after parental divorce, a group intervention for children can be efficacious in promoting children’s well-being and parent-child communication. This paper contributes to enrich the understanding of children’s needs and to highlight the existence and efficacy of a program that helps them overcome the difficulties of divorce.Keywords: art-therapy, children’s support group, divorce, efficacy, separation
Procedia PDF Downloads 15211054 Operations Training Using Immersive Technologies: A Development Experience
Authors: A. Aman, S. M. Tang, F. H. Alharrassy
Abstract:
Omanisation was established to increase job opportunities for national employment in Sultanate of Oman. With half of the population below 25 years of age, the sultanate is striving to diversify the economy fast enough to meet the burgeoning number of jobseekers annually. On the other hand, training personnel to be competent oil and gas operators and technicians is a difficult task in a complex reservoir structures in Oman using highly advanced and sophisticated extracting processes. Coupled towards Omanisation which encourages nationals into the oil and gas sector so as to create sustainable employment for the local population, the challenge to churn out competent manpower became a daunting task. Immersive technologies provided the impetus to create a new digital media sector which provided job opportunities as well as the learning contents to enhance the competency-based training for the oil and gas sector in the Sultanate. This lead to a win-win-win collaboration amongst the government represented by the Information Technology Authority (ITA), private sector specialised company (represented by ASM Technologies), jobseekers and oil and gas organisations. This is also one of the first private-public partnership model in the Information Communication Technology (ICT) sector in Oman. A pilot phase was conducted for 8 months to develop four virtual applications for training in equipment and process engineering; oil rig familiarisation, Health Safety Environment (HSE) application, turbine application and the mechanical vapour compressor (MVC) water recycling plant in order to enhance the competency level of the trainees. The immersive applications were installed in operational settings which enabled new employees to practice and understand various processes and procedures regarding enhanced oil recovery. Existing employees used the application to review the working principles in order to carry out troubleshooting scenarios. Concurrently, these applications were also developed by local Omani resources within the country. This created job opportunities for job-seekers as well the establishment of a digital media sector. The purpose of this paper is to discuss how immersive technologies can enhance operational competencies, create job and establish a digital media sector in the Sultanate of Oman.Keywords: immersive, virtual reality, operations training, Omanisation
Procedia PDF Downloads 22911053 Integration of Big Data to Predict Transportation for Smart Cities
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system. The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.Keywords: big data, machine learning, smart city, social cost, transportation network
Procedia PDF Downloads 26011052 Comprehensive Lifespan Support for Quality of Life
Authors: Joann Douziech
Abstract:
Individuals with intellectual and developmental disabilities (IDD) possess characteristics that present both challenges and gifts. Individuals with IDD require and are worthy of intentional, strategic, and specialized support throughout their lifespan to ensure optimum quality-of-life outcomes. The current global advocacy movement advancing the rights of individuals with IDD emphasizes a high degree of choice over life decisions. For some individuals, this degree of choice results in a variety of negative health and well-being outcomes. Improving the quality of life outcomes requires the combination of a commitment to the rights of the individual with a responsibility to provide support and choice commensurate with individual capacity. A belief that individuals with IDD are capable of learning and they are worthy of being taught provides the foundation for a holistic model of support throughout their lifespan. This model is based on three pillars of engineering the environment, promoting skill development and maintenance, and staff support. In an ever-changing world, supporting quality of life requires attention to moments, phases, and changes in stages throughout the lifespan. Balancing these complexities with strategic, responsive, and dynamic interventions enhances the quality of life of individuals with ID throughout their lifespan.Keywords: achieving optimum quality of life, comprehensive support, lifespan approach, philosophy and pedagogy
Procedia PDF Downloads 6611051 Investigation of Grid Supply Harmonic Effects in Wound Rotor Induction Machines
Authors: Nur Sarma, Paul M. Tuohy, Siniša Djurović
Abstract:
This paper presents an in-depth investigation of the effects of several grid supply harmonic voltages on the stator currents of an example wound rotor induction machine. The observed effects of higher order grid supply harmonics are identified using a finite element time stepping transient model, as well as a time-stepping electromagnetic model. In addition, a number of analytical equations to calculate the spectral content of the stator currents are presented in the paper. The presented equations are validated through comparison with the obtained spectra predicted using the finite element and electromagnetic models. The presented study provides a better understanding of the origin of supply harmonic effects identified in the stator currents of the example wound rotor induction machine. Furthermore, the study helps to understand the effects of higher order supply harmonics on the harmonic emissions of the wound rotor induction machine.Keywords: wound rotor induction machine, supply harmonics, current spectrum, power spectrum, power quality, harmonic emmisions, finite element analysis
Procedia PDF Downloads 17311050 Techno Commercial Aspects of Using LPG as an Alternative Energy Solution for Transport and Industrial Sector in Bangladesh: Case Studies in Industrial Sector
Authors: Mahadehe Hassan
Abstract:
Transport system and industries which are the main basis of industrial and socio-economic development of any country. It is mainly dependent on fossil fuels. Bangladesh has fossil fuel reserves of 9.51 TCF as of July 2023, and if no new gas fields are discovered in the next 7-9 years and if the existing gas consumption rate continues, the fossil fuel reserves will be exhausted. The demand for petroleum products in Bangladesh is increasing steadily, with 63% imported by BPC and 37% imported by private companies. 61.61% of BPC imported products are used in the transport sector and 5.49% in the industrial sector, which is expensive and harmful to the environment. Liquefied Petroleum Gas (LPG) should be considered as an alternative energy for Bangladesh based on Sustainable Development Goals (SDGs) criteria for sustainable, clean and affordable energy. This will not only lead to the much desired mitigation of energy famine in the country but also contribute favorably to the macroeconomic indicators. Considering the environmental and economic issues, the government has referred to CNG (compressed natural gas) as the fuel carrier since 2000, but currently due to the decline mode of gas reserves, the government of Bangladesh is thinking of new energy sources for transport and industrial sectors which will be sustainable, environmentally friendly and economically viable. Liquefied Petroleum Gas (LPG) is the best choice for fueling transport and industrial sectors in Bangladesh. At present, a total of 1.54 million metric tons of liquefied petroleum gas (LPG) is marketed in Bangladesh by the public and private sectors. 83% of it is used by households, 12% by industry and commerce and 5% by transportation. Industrial and transport sector consumption is negligible compared to household consumption. So the purpose of the research is to find out the challenges of LPG market development in transport and industrial sectors in Bangladesh and make recommendations to reduce the challenges. Secure supply chain, inadequate infrastructure, insufficient investment, lack of government monitoring and consumer awareness in the transport sector and industrial sector are major challenges for LPG market development in Bangladesh. Bangladesh government as well as private owners should come forward in the development of liquefied petroleum gas (LPG) industry to reduce the challenges of secure energy sector for sustainable development. Furthermore, ensuring adequate Liquefied Petroleum Gas (LPG) supply in Bangladesh requires government regulations, infrastructure improvements in port areas, awareness raising and most importantly proper pricing of Liquefied Petroleum Gas (LPG) to address the energy crisis in Bangladesh.Keywords: transportand industries fuel, LPG consumption, challenges, economical sustainability
Procedia PDF Downloads 8311049 Loan Repayment Prediction Using Machine Learning: Model Development, Django Web Integration and Cloud Deployment
Authors: Seun Mayowa Sunday
Abstract:
Loan prediction is one of the most significant and recognised fields of research in the banking, insurance, and the financial security industries. Some prediction systems on the market include the construction of static software. However, due to the fact that static software only operates with strictly regulated rules, they cannot aid customers beyond these limitations. Application of many machine learning (ML) techniques are required for loan prediction. Four separate machine learning models, random forest (RF), decision tree (DT), k-nearest neighbour (KNN), and logistic regression, are used to create the loan prediction model. Using the anaconda navigator and the required machine learning (ML) libraries, models are created and evaluated using the appropriate measuring metrics. From the finding, the random forest performs with the highest accuracy of 80.17% which was later implemented into the Django framework. For real-time testing, the web application is deployed on the Alibabacloud which is among the top 4 biggest cloud computing provider. Hence, to the best of our knowledge, this research will serve as the first academic paper which combines the model development and the Django framework, with the deployment into the Alibaba cloud computing application.Keywords: k-nearest neighbor, random forest, logistic regression, decision tree, django, cloud computing, alibaba cloud
Procedia PDF Downloads 13211048 Energy Self-Sufficiency Through Smart Micro-Grids and Decentralised Sector-Coupling
Authors: C. Trapp, A. Vijay, M. Khorasani
Abstract:
Decentralised micro-grids with sector coupling can combat the spatial and temporal intermittence of renewable energy by combining power, transportation and infrastructure sectors. Intelligent energy conversion concepts such as electrolysers, hydrogen engines and fuel cells combined with energy storage using intelligent batteries and hydrogen storage form the back-bone of such a system. This paper describes a micro-grid based on Photo-Voltaic cells, battery storage, innovative modular and scalable Anion Exchange Membrane (AEM) electrolyzer with an efficiency of up to 73%, high-pressure hydrogen storage as well as cutting-edge combustion-engine based Combined Heat and Power (CHP) plant with more than 85% efficiency at the university campus to address the challenges of decarbonization whilst eliminating the necessity for expensive high-voltage infrastructure.Keywords: sector coupling, micro-grids, energy self-sufficiency, decarbonization, AEM electrolysis, hydrogen CHP
Procedia PDF Downloads 18211047 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach
Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan
Abstract:
Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence
Procedia PDF Downloads 110