Search results for: six strains of Samia ricini
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1039

Search results for: six strains of Samia ricini

199 Internal Stresses and Structural Evolutions in Zr Alloys during Oxidation at High Temperature and Subsequent Cooling

Authors: Raphaelle Guillou, Matthieu Le Saux, Jean-Christophe Brachet, Thomas Guilbert, Elodie Rouesne, Denis Menut, Caroline Toffolon-Masclet, Dominique Thiaudiere

Abstract:

In some hypothetical accidental situations, such as during a Loss Of Coolant Accident (LOCA) in pressurized water reactors, fuel cladding tubes made of zirconium alloys can be exposed for a few minutes to steam at High Temperature (HT up to 1200°C) before being cooled and then quenched in water. Under LOCA-like conditions, the cladding undergoes a number of metallurgical changes (phase transformations, oxygen diffusion and growth of an oxide layer...) and is consequently submitted to internal stresses whose state evolves during the transient. These stresses can have an effect on the oxide structure and the oxidation kinetics of the material. They evolve during cooling, owing to differences between the thermal expansion coefficients of the various phases and phase transformations of the metal and the oxide. These stresses may result in the failure of the cladding during quenching, once the material is embrittled by oxidation. In order to progress in the evaluation of these internal stresses, X-ray diffraction experiments were performed in-situ under synchrotron radiation during HT oxidation and subsequent cooling on Zircaloy-4 sheet samples. First, structural evolutions, such as phase transformations, have been studied as a function of temperature for both the oxide layer and the metallic substrate. Then, internal stresses generated within the material oxidized at temperatures between 700 and 900°C have been evaluated thanks to the 2θ diffraction peak position shift measured during the in-situ experiments. Electron backscatter diffraction (EBSD) analysis was performed on the samples after cooling in order to characterize their crystallographic texture. Furthermore, macroscopic strains induced by oxidation in the conditions investigated during the in-situ X-ray diffraction experiments were measured in-situ in a dilatometer.

Keywords: APRP, stains measurements, synchrotron diffraction, zirconium allows

Procedia PDF Downloads 290
198 Screening of Lactic Acid Bacteria Isolated from Traditional Fermented Products: Potential Probiotic Bacteria with Antimicrobial and Cytotoxic Activities

Authors: Genesis Julyus T. Agcaoili, Esperanza C. Cabrera

Abstract:

Thirty (30) isolates of lactic acid bacteria (LAB) from traditionally-prepared fermented products specifically fermented soy-bean paste, fermented mustard and fermented rice-fish mixture were studied for their in vitro antimicrobial and cytotoxic activities. Seventeen (17) isolates were identified as Lactobacillus plantarum, while 13 isolates were identified as Enterococcus spp using 16s rDNA sequences. Disc diffusion method was used to determine the antibacterial activity of LAB against Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922), while the modified agar overlay method was used to determine the antifungal activity of LAB isolates on the yeast Candida albicans, and the dermatophytes Microsporum gypseum, Trichophyton rubrum and Epidermophyton floccosum. The filter-sterilized LAB supernatants were evaluated for their cytotoxicity to mammalian colon cancer cell lines (HT-29 and HCT116) and normal human dermal fibrolasts (HDFn) using resazurin assay (PrestoBlueTM). Colchicine was the positive control. No antimicrobial activity was observed against the bacterial test organisms and the yeast Candida albicans. On the other hand, all of the tested LAB strains were fungicidal for all the test dermatophytes. Cytotoxicity index profiles of the supernatants of the 15 randomly picked LABs and negative control (brain heart infussion broth) suggest nontoxicity to the cells when compared to colchicine, whereas all LAB supernatants were found to be cytotoxic to HT-29 and HCT116 colon cancer cell lines. Results provide strong support for the role of the lactic acid bacteria studied in antimicrobial treatment and anticancer therapy.

Keywords: antimicrobial, fermented products, fungicidal activity, lactic acid bacteria, probiotics

Procedia PDF Downloads 215
197 Genome-Wide Assessment of Putative Superoxide Dismutases in Unicellular and Filamentous Cyanobacteria

Authors: Shivam Yadav, Neelam Atri

Abstract:

Cyanobacteria are photoautotrophic prokaryotes able to grow in diverse ecological habitats, originated 2.5 - 3.5 billion years ago and brought oxygenic photosynthesis. Since then superoxide dismutases (SODs) acquired great significance due to their ability to catalyze detoxification of byproducts of oxygenic photosynthesis, i.e. superoxide radicals. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of the superoxide dismutases family. In the present study, we extracted information regarding SODs from species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. 144 putative SOD homologues were identified. SODs are present in all cyanobacterial species reflecting their significant role in survival. However, their distribution varies, fewer in unicellular marine strains whereas abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic SODs were conserved well in these proteins. These SODs were classified into three major families according to their domain structures. Interestingly, they lack additional domains as found in proteins of other family. Phylogenetic relationships correspond well with phylogenies based on 16S rRNA and clustering occurs on the basis of structural characteristics such as domain organization. Similar conserved motifs and amino acids indicate that cyanobacterial SODs make use of a similar catalytic mechanism as eukaryotic SODs. Gene gain-and-loss is insignificant during SOD evolution as evidenced by absence of additional domain. This study has not only examined an overall background of sequence-structure-function interactions for the SOD gene family but also revealed variation among SOD distribution based on ecophysiological and morphological characters.

Keywords: comparative genomics, cyanobacteria, phylogeny, superoxide dismutases

Procedia PDF Downloads 112
196 Using Seismic and GPS Data for Hazard Estimation in Some Active Regions in Egypt

Authors: Abdel-Monem Sayed Mohamed

Abstract:

Egypt rapidly growing development is accompanied by increasing levels of standard living particular in its urban areas. However, there is a limited experience in quantifying the sources of risk management in Egypt and in designing efficient strategies to keep away serious impacts of earthquakes. From the historical point of view and recent instrumental records, there are some seismo-active regions in Egypt, where some significant earthquakes had occurred in different places. The special tectonic features in Egypt: Aswan, Greater Cairo, Red Sea and Sinai Peninsula regions are the territories of a high seismic risk, which have to be monitored by up-to date technologies. The investigations of the seismic events and interpretations led to evaluate the seismic hazard for disaster prevention and for the safety of the dense populated regions and the vital national projects as the High Dam. In addition to the monitoring of the recent crustal movements, the most powerful technique of satellite geodesy GPS are used where geodetic networks are covering such seismo-active regions. The results from the data sets are compared and combined in order to determine the main characteristics of the deformation and hazard estimation for specified regions. The final compiled output from the seismological and geodetic analysis threw lights upon the geodynamical regime of these seismo-active regions and put Aswan and Greater Cairo under the lowest class according to horizontal crustal strains classifications. This work will serve a basis for the development of so-called catastrophic models and can be further used for catastrophic risk management. Also, this work is trying to evaluate risk of large catastrophic losses within the important regions including the High Dam, strategic buildings and archeological sites. Studies on possible scenarios of earthquakes and losses are a critical issue for decision making in insurance as a part of mitigation measures.

Keywords: b-value, Gumbel distribution, seismic and GPS data, strain parameters

Procedia PDF Downloads 432
195 Total Synthesis of Natural Cyclic Depsi Peptides by Convergent SPPS and Macrolactonization Strategy for Anti-Tb Activity

Authors: Katharigatta N. Venugopala, Fernando Albericio, Bander E. Al-Dhubiab, T. Govender

Abstract:

Recent years have witnessed a renaissance in the field of peptides that are obtained from various natural sources such as many bacteria, fungi, plants, seaweeds, vertebrates, invertebrates and have been reported for various pharmacological properties such as anti-TB, anticancer, antimalarial, anti-inflammatory, anti-HIV, antibacterial, antifungal, and antidiabetic, activities. In view of the pharmacological significance of natural peptides, serious research efforts of many scientific groups and pharmaceutical companies have consequently focused on them to explore the possibility of developing their potential analogues as therapeutic agents. Solid phase and solution phase peptide synthesis are the two methodologies currently available for the synthesis of natural or synthetic linear or cyclic depsi-peptides. From a synthetic point of view, there is no doubt that the solid-phase methodology gained added advantages over solution phase methodology in terms of simplicity, purity of the compound and the speed with which peptides can be synthesised. In the present study total synthesis, purification and structural elucidation of analogues of natural anti-TB cyclic depsi-peptides such as depsidomycin, massetolides and viscosin has been attempted by solid phase method using standard Fmoc protocols and finally off resin cyclization in solution phase method. In case of depsidomycin, synthesis of linear peptide on solid phase could not be achieved because of two turn inducing amino acids in the peptide sequence, but total synthesis was achieved by convergent solid phase peptide synthesis followed by cyclization in solution phase method. The title compounds obtained were in good yields and characterized by NMR and HRMS. Anti-TB results revealed that the potential title compound exhibited promising activity at 4 µg/mL against H37Rv and 16 µg/mL against MDR strains of tuberculosis.

Keywords: total synthesis, cyclic depsi-peptides, anti-TB activity, tuberculosis

Procedia PDF Downloads 602
194 Phylogenetic Analysis of Klebsiella Species from Clinical Specimens from Nelson Mandela Academic Hospital in Mthatha, South Africa

Authors: Sandeep Vasaikar, Lary Obi

Abstract:

Rapid and discriminative genotyping methods are useful for determining the clonality of the isolates in nosocomial or household outbreaks. Multilocus sequence typing (MLST) is a nucleotide sequence-based approach for characterising bacterial isolates. The genetic diversity and the clinical relevance of the drug-resistant Klebsiella isolates from Mthatha are largely unknown. For this reason, prospective, experimental study of the molecular epidemiology of Klebsiella isolates from patients being treated in Mthatha over a three-year period was analysed. Methodology: PCR amplification and sequencing of the drug-resistance-associated genes, and multilocus sequence typing (MLST) using 7 housekeeping genes mdh, pgi, infB, FusAR, phoE, gapA and rpoB were conducted. A total of 32 isolates were analysed. Results: The percentages of multidrug-resistant (MDR), extensively drug-resistance (XDR) and pandrug-resistant (PDR) isolates were; MDR 65.6 % (21) and XDR and PDR with 0 % each. In this study, K. pneumoniae was 19/32 (59.4 %). MLST results showed 22 sequence types (STs) were identified, which were further separated by Maximum Parsimony into 10 clonal complexes and 12 singletons. The most dominant group was Klebsiella pneumoniae with 23/32 (71.8 %) isolates, Klebsiella oxytoca as a second group with 2/32 (6.25 %) isolates, and a single (3.1 %) K. varricola as a third group while 6 isolates were of unknown sequences. Conclusions/significance: A phylogenetic analysis of the concatenated sequences of the 7 housekeeping genes showed that strains of K. pneumoniae form a distinct lineage within the genus Klebsiella, with K. oxytoca and K. varricola its nearest phylogenetic neighbours. With the analysis of 7 genes were determined 1 K. variicola, which was mistakenly identified as K. pneumoniae by phenotypic methods. Two misidentifications of K. oxytoca were found when phenotypic methods were used. No significant differences were observed between ESBL blaCTX-M, blaTEM and blaSHV groups in the distribution of Sequence types (STs) or Clonal complexes (CCs).

Keywords: phylogenetic analysis, phylogeny, klebsiella phylogenetic, klebsiella

Procedia PDF Downloads 339
193 Prevalence of Clostridium perfringens β2-Toxin in Type a Isolates of Sheep and Goats

Authors: Mudassar Mohiuddin, Zahid Iqbal

Abstract:

Introduction: Clostridium perfringens is an important pathogen responsible for causing enteric diseases in both human and animals. The bacteria produce several toxins. These toxins play vital role in the pathogenesis of various fatal enteric diseases and are classified into five types, on the basis of the differential production of Alpha, Beta, Epsilon and Iota toxins. In addition to the so-called major toxins, there are other toxins like beta2 toxin, produced by some strains of C. perfringens which may play a role in the pathogenesis of disease. Aim of the study: In this study a multiplex PCR assay was developed and used for detection of cpb2 gene to identify the Beta2 harboring isolates among different types of C. perfringens. Objectives: The primary objective of this study was to identify the prevalence of β2-toxin gene in local isolates of Clostridium perfringens. Methodology: This was an experimental study. Random sampling technique was used. A total of 97 sheep and goats were included in this study. All were Pakistani local breeds. The samples were collected during the period from Sep, 2014 to Mar, 2015 from selected districts of Punjab province (Pakistan). Faecal samples were cultured in cooked meat media. The identification of Clostridium perfringens was made on the basis of biochemical tests. Multiplex PCR was performed to identify the toxin genes. Results: A total of 43 C. perfringens isolates were genotyped using multiplex PCR assay. The gene encoding C. perfringens β2-toxin (cpb2) was present in more than 50% of the isolates genotyped. However, the prevalence of this gene varied between sheep and goat isolates. Conclusion: The present study suggests the high occurrence of C. perfringens b2-toxin (cpb2) in the local isolates of Pakistan. As β2-toxin is present in both healthy and diseased animals, so further studies are suggested to establish the role of β2-toxin in pathogenesis of the clostridial enteric diseases.

Keywords: beta 2 toxin gene, clostridium perfringens, enteric diseases, goats, multiplex PCR, sheep

Procedia PDF Downloads 434
192 In vitro Evaluation of Prebiotic Potential of Wheat Germ

Authors: Lígia Pimentel, Miguel Pereira, Manuela Pintado

Abstract:

Wheat germ is a by-product of wheat flour refining. Despite this by-product being a source of proteins, lipids, fibres and complex carbohydrates, and consequently a valuable ingredient to be used in Food Industry, only few applications have been studied. The main goal of this study was to assess the potential prebiotic effect of natural wheat germ. The prebiotic potential was evaluated by in vitro assays with individual microbial strains (Lactobacillus paracasei L26 and Lactobacillus casei L431). A simulated model of the gastrointestinal digestion was also used including the conditions present in the mouth (artificial saliva), oesophagus–stomach (artificial gastric juice), duodenum (artificial intestinal juice) and ileum. The effect of natural wheat germ and wheat germ after digestion on the growth of lactic acid bacteria was studied by growing those microorganisms in de Man, Rogosa and Sharpe (MRS) broth (with 2% wheat germ and 1% wheat germ after digestion) and incubating at 37 ºC for 48 h with stirring. A negative control consisting of MRS broth without glucose was used and the substrate was also compared to a commercial prebiotic fructooligosaccharides (FOS). Samples were taken at 0, 3, 6, 9, 12, 24 and 48 h for bacterial cell counts (CFU/mL) and pH measurement. Results obtained showed that wheat germ has a stimulatory effect on the bacteria tested, presenting similar (or even higher) results to FOS, when comparing to the culture medium without glucose. This was demonstrated by the viable cell counts and also by the decrease on the medium pH. Both L. paracasei L26 and L. casei L431 could use these compounds as a substitute for glucose with an enhancement of growth. In conclusion, we have shown that wheat germ stimulate the growth of probiotic lactic acid bacteria. In order to understand if the composition of gut bacteria is altered and if wheat germ could be used as potential prebiotic, further studies including faecal fermentations should be carried out. Nevertheless, wheat germ seems to have potential to be a valuable compound to be used in Food Industry, mainly in the Bakery Industry.

Keywords: by-products, functional ingredients, prebiotic potential, wheat germ

Procedia PDF Downloads 461
191 Biochemical Characterization of CTX-M-15 from Enterobacter cloacae and Designing a Novel Non-β-Lactam-β-Lactamase Inhibitor

Authors: Mohammad Faheem, M. Tabish Rehman, Mohd Danishuddin, Asad U. Khan

Abstract:

The worldwide dissemination of CTX-M type β-lactamases is a threat to human health. Previously, we have reported the spread of blaCTX-M-15 gene in different clinical strains of Enterobacteriaceae from the hospital settings of Aligarh in north India. In view of the varying resistance pattern against cephalosporins and other β-lactam antibiotics, we intended to understand the correlation between MICs and catalytic activity of CTX-M-15. In this study, steady-state kinetic parameters and MICs were determined on E. coli DH5α transformed with blaCTX-M-15 gene that was cloned from Enterobacter cloacae (EC-15) strain of clinical background. The effect of conventional β-lactamase inhibitors (clavulanic acid, sulbactam and tazobactam) on CTX-M-15 was also studied. We have found that tazobactam is the best among these inhibitors against CTX-M-15. The inhibition characteristic of tazobactam is defined by its very low IC50 value (6 nM), high affinity (Ki = 0.017 µM) and better acylation efficiency (k+2/K9 = 0.44 µM-1s-1). It forms an acyl-enzyme covalent complex, which is quite stable (k+3 = 0.0057 s-1). Since increasing resistance has been reported against conventional b-lactam antibiotic-inhibitor combinations, we aspire to design a non-b-lactam core containing b-lactamase inhibitor. For this, we screened ZINC database and performed molecular docking to identify a potential non-β-lactam based inhibitor (ZINC03787097). The MICs of cephalosporin antibiotics in combination with this inhibitor gave promising results. Steady-state kinetics and molecular docking studies showed that ZINC03787097 is a reversible inhibitor which binds non-covalently to the active site of the enzyme through hydrogen bonds and hydrophobic interactions. Though, it’s IC50 (180 nM) is much higher than tazobactam, it has good affinity for CTX-M-15 (Ki = 0.388 µM). This study concludes that ZINC03787097 compound can be used as seed molecule to design more efficient non-b-lactam containing b-lactamase inhibitor that could evade pre-existing bacterial resistance mechanisms.

Keywords: ESBL, non-b-lactam-b-lactamase inhibitor, bioinformatics, biomedicine

Procedia PDF Downloads 216
190 Effects of Moisture on Fatigue Behavior of Asphalt Concrete Mixtures Using Four-Point Bending Test

Authors: Mohit Chauhan, Atul Narayan

Abstract:

Moisture damage is the continuous deterioration of asphalt concrete mixtures by the loss of adhesive bond between the asphalt binder and aggregates, or loss of cohesive bonds within the asphalt binder in the presence of moisture. Moisture has been known to either cause or exacerbates distresses in asphalt concrete pavements. Since moisture would often retain for a relatively long duration at the bottom of asphalt concrete layer, the movement of traffic loading in this saturated condition would cause excess stresses or strains within the mixture. This would accelerate the degradation of the adhesion and cohesion within the mixture and likely to contribute the development of fatigue cracking in asphalt concrete pavements. In view of this, it is important to investigate the effect of moisture on the fatigue behavior of asphalt concrete mixtures. In this study, changes in fatigue characteristics after moisture conditioning were evaluated by conducting four-point beam fatigue tests on dry and moisture conditioned specimens. For this purpose, mixtures with two different types of binders were prepared and saturated with moisture using 700 mm Hg vacuum. Beam specimens, in this way, were taken to a saturation level of 65-75 percent. After preconditioning specimens in this degree of saturation and 60°C for a period of 24 hours, they were subjected to four point beam fatigue tests in strain-controlled mode with a strain amplitude of 400 microstrain. The results were then compared with the fatigue test results obtained with beam specimens that were not subjected to moisture conditioning. Test results show that the conditioning reduces both fatigue life and initial flexural stiffness of specimen significantly. The moisture conditioning was also found to increase the rate of reduction of flexural stiffness. Moreover, it was observed that the fatigue life ratio (FLR), the ratio of the fatigue life of the moisture conditioned sample to that of the dry sample, is significantly lower than the flexural stiffness ratio (FSR). The study indicates that four-point bending test is an appropriate tool with FLR and FSR as the potential parameters for moisture-sensitivity evaluation.

Keywords: asphalt concrete, fatigue cracking, moisture damage, preconditioning

Procedia PDF Downloads 118
189 Investigation of Enterotoxigenic Staphylococcus aureus in Kitchen of Catering

Authors: Çiğdem Sezer, Aksem Aksoy, Leyla Vatansever

Abstract:

This study has been done for the purpose of evaluation of public health and identifying of enterotoxigenic Staphyloccocus aureus in kitchen of catering. In the kitchen of catering, samples have been taken by swabs from surface of equipments which are in the salad section, meat section and bakery section. Samples have been investigated with classical cultural methods in terms of Staphyloccocus aureus. Therefore, as a 10x10 cm area was identified (salad, cutting and chopping surfaces, knives, meat grinder, meat chopping surface) samples have been taken with sterile swabs with helping FTS from this area. In total, 50 samples were obtained. In aseptic conditions, Baird-Parker agar (with egg yolk tellurite) surface was seeded with swabs. After 24-48 hours of incubation at 37°C, the black colonies with 1-1.5 mm diameter and which are surrounded by a zone indicating lecithinase activity were identified as S. aureus after applying Gram staining, catalase, coagulase, glucose and mannitol fermentation and termonuclease tests. Genotypic characterization (Staphylococcus genus and S.aureus species spesific) of isolates was performed by PCR. The ELISA test was applied to the isolates for the identification of staphylococcal enterotoxins (SET) A, B, C, D, E in bacterial cultures. Measurements were taken at 450 nm in an ELISA reader using an Ridascreen-Total set ELISA test kit (r-biopharm R4105-Enterotoxin A, B, C, D, E). The results were calculated according to the manufacturer’s instructions. A total of 50 samples of 97 S. aureus was isolated. This number has been identified as 60 with PCR analysis. According to ELISA test, only 1 of 60 isolates were found to be enterotoxigenic. Enterotoxigenic strains were identified from the surface of salad chopping and cutting. In the kitchen of catering, S. aureus identification indicates a significant source of contamination. Especially, in raw consumed salad preparation phase of contamination is very important. This food can be a potential source of food-borne poisoning their terms, and they pose a significant risk to consumers have been identified.

Keywords: Staphylococcus aureus, enterotoxin, catering, kitchen, health

Procedia PDF Downloads 372
188 Antimicrobial Activity of Sour Cherry Pomace

Authors: Sonja Djilas, Aleksandra Velićanski, Dragoljub Cvetković, Siniša Markov, Eva Lončar, Vesna Tumbas Šaponjac, Milica Vinčić

Abstract:

Due to high content of bioactive compounds, sour cherry possesses antioxidant and antimicrobial activity. Additionally, waste material from industrial processing of sour cherry is also a good source of bioactive compounds. The aim of this study was to screen the antimicrobial activity and determine the minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC) of sour cherry pomace extract. Tested strains were Gram-negative bacteria (Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 14028 and wild isolates Escherichia coli and Salmonella sp.), Gram-positive bacteria (Staphylococcus aureus ATCC 11632, Bacillus cereus ATCC 10876 and wild isolates Staphylococcus saprophyticus and Bacillus sp.) and yeasts (Saccharomyces cerevisiae 112, Hefebank Weihenstephan and Candida albicans ATCC 10231). Antimicrobial activity was tested by disc-diffusion method and agar-well diffusion method. MIC and MBC were determined by microdilution method. Screening tests showed that Gram-negative bacteria were resistant to tested extract, with exception of Salmonella typhimurium and Salmonella sp. for which only zones of reduced growth appeared. However, Gram-positive bacteria were more sensitive where the highest clear zones appeared with 100 µl of extract applied. There was no activity against tested yeasts. MIC and MBC values were in the range 3.125-37.5 mg/ml and 6.25-100 mg/ml, respectively. The most susceptible strain was Staphylococcus aureus while the most resistant was Bacillus sp. where MBC was not found in tested concentration range. Sour cherry pomace possesses high antibacterial potential, which indicates that this waste material is a promising source of bioactive compounds and could be used as a functional food ingredient.

Keywords: antimicrobial activity, sour cherry, pomace, bioactive compounds

Procedia PDF Downloads 310
187 Identification of the Key Enzyme of Roseoflavin Biosynthesis

Authors: V. Konjik, J. Schwartz, R. Sandhoff, M. Mack

Abstract:

The rising number of multi-resistant pathogens demands the development of new antibiotics in order to reduce the lethal risk of infections. Here, we investigate roseoflavin, a vitamin B2 analogue which is produced by Streptomyces davawensis and Streptomyces cinnabarinus. We consider roseoflavin to be a 'Trojan horse' compound. Its chemical structure is very similar to riboflavin but in fact it is a toxin. Furthermore, it is a clever strategy with regard to the delivery of an antibiotic to its site of action but also with regard to the production of this chemical: The producer cell has only to convert a vitamin (which is already present in the cytoplasm) into a vitamin analog. Roseoflavin inhibits the activity of Flavin depending proteins, which makes up to 3.5 % of predicted proteins in organisms sequenced so far. We sequentially knocked out gene clusters and later on single genes in order to find the ones which are involved in the roseoflavin biosynthesis. Consequently, we identified the gene rosB, coding for the protein carrying out the first step of roseoflavin biosynthesis, starting form Flavin mononucleotide. Here we show, that the protein RosB has so far unknown features. It is per se an oxidoreductase, a decarboxylase and an aminotransferase, all rolled into one enzyme. A screen of cofactors revealed needs of oxygen, NAD+, thiamine and glutamic acid to carry out its function. Surprisingly, thiamine is not only needed for the decaboxylation step, but also for the oxidation of 8-demethyl-8-formyl Flavin mononucleotide. We had managed to isolate three different Flavin intermediates with different oxidation states, which gave us a mechanistic insight of RosB functionality. Our work points to a so far new function of thiamine in Streptomyces davawensis. Additionally, RosB could be extremely useful for chemical synthesis. Careful engineering of RosB may allow the site-specific replacement of methyl groups by amino groups in polyaromatic compounds of commercial interest. Finally, the complete clarification of the roseoflavin biosynthesis opens the possibility of engineering cost-effective roseoflavin producing strains.

Keywords: antibiotic, flavin analogue, roseoflavin biosynthesis, vitamin B2

Procedia PDF Downloads 220
186 Computation and Validation of the Stress Distribution around a Circular Hole in a Slab Undergoing Plastic Deformation

Authors: Sherif D. El Wakil, John Rice

Abstract:

The aim of the current work was to employ the finite element method to model a slab, with a small hole across its width, undergoing plastic plane strain deformation. The computational model had, however, to be validated by comparing its results with those obtained experimentally. Since they were in good agreement, the finite element method can therefore be considered a reliable tool that can help gain better understanding of the mechanism of ductile failure in structural members having stress raisers. The finite element software used was ANSYS, and the PLANE183 element was utilized. It is a higher order 2-D, 8-node or 6-node element with quadratic displacement behavior. A bilinear stress-strain relationship was used to define the material properties, with constants similar to those of the material used in the experimental study. The model was run for several tensile loads in order to observe the progression of the plastic deformation region, and the stress concentration factor was determined in each case. The experimental study involved employing the visioplasticity technique, where a circular mesh (each circle was 0.5 mm in diameter, with 0.05 mm line thickness) was initially printed on the side of an aluminum slab having a small hole across its width. Tensile loading was then applied to produce a small increment of plastic deformation. Circles in the plastic region became ellipses, where the directions of the principal strains and stresses coincided with the major and minor axes of the ellipses. Next, we were able to determine the directions of the maximum and minimum shear stresses at the center of each ellipse, and the slip-line field was then constructed. We were then able to determine the stress at any point in the plastic deformation zone, and hence the stress concentration factor. The experimental results were found to be in good agreement with the analytical ones.

Keywords: finite element method to model a slab, slab undergoing plastic deformation, stress distribution around a circular hole, visioplasticity

Procedia PDF Downloads 300
185 Coupled Exciton - Surface Plasmon Polariton Enhanced Photoresponse of Two-Dimensional Hydrogenated Honeycomb Silicon Boride

Authors: Farzaneh Shayeganfar, Ali Ramazani

Abstract:

Exciton (strong electronic interaction of electron-hole) and hot carriers created by surface plasmon polaritons has been demonstrated in nanoscale optoelectronic devices, enhancing the photoresponse of the system. Herein, we employ a quantum framework to consider coupled exciton- hot carriers effects on photovoltaiv energy distribution, scattering process, polarizability and light emission of 2D-semicnductor. We use density functional theory (DFT) to design computationally a semi-functionalized 2D honeycomb silicon boride (SiB) monolayer with H atoms, suitable for photovoltaics. The dynamical stability, electronic and optical properties of SiB and semi-hydrogenated SiB structures were investigated utilizing the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The calculated phonon dispersion shows that while an unhydrogenated SiB monolayer is dynamically unstable, surface semi-hydrogenation improves the stability of the structure and leads to a transition from metallic to semiconducting conductivity with a direct band gap of about 1.57 eV, appropriate for photovoltaic applications. The optical conductivity of this H-SiB structure, determined using the random phase approximation (RPA), shows that light adsorption should begin at the boundary of the visible range of light. Additionally, due to hydrogenation, the reflectivity spectrum declines sharply with respect to the unhydrogenated reflectivity spectrum in the IR and visible ranges of light. The energy band gap remains direct, increasing from 0.9 to 1.8 eV, upon increasing the strain from -6% (compressive) to +6% (tensile). Additionally, compressive and tensile strains lead, respectively, to red and blue shifts of optical the conductivity threshold around the visible range of light. Overall, this study suggests that H-SiB monolayers are suitable as two-dimensional solar cell materials.

Keywords: surface plasmon, hot carrier, strain engineering, valley polariton

Procedia PDF Downloads 88
184 Comprehensive Profiling and Characterization of Untargeted Extracellular Metabolites in Fermentation Processes: Insights and Advances in Analysis and Identification

Authors: Marianna Ciaccia, Gennaro Agrimi, Isabella Pisano, Maurizio Bettiga, Silvia Rapacioli, Giulia Mensa, Monica Marzagalli

Abstract:

Objective: Untargeted metabolomic analysis of extracellular metabolites is a powerful approach that focuses on comprehensively profiling in the extracellular space. In this study, we applied extracellular metabolomic analysis to investigate the metabolism of two probiotic microorganisms with health benefits that extend far beyond the digestive tract and the immune system. Methods: Analytical techniques employed in extracellular metabolomic analysis encompass various technologies, including mass spectrometry (MS), which enables the identification of metabolites present in the fermentation media, as well as the comparison of metabolic profiles under different experimental conditions. Multivariate statistical analysis techniques like principal component analysis (PCA) or partial least squares-discriminant analysis (PLS-DA) play a crucial role in uncovering metabolic signatures and understanding the dynamics of metabolic networks. Results: Different types of supernatants from fermentation processes, such as dairy-free, not dairy-free media and media with no cells or pasteurized, were subjected to metabolite profiling, which contained a complex mixture of metabolites, including substrates, intermediates, and end-products. This profiling provided insights into the metabolic activity of the microorganisms. The integration of advanced software tools has facilitated the identification and characterization of metabolites in different fermentation conditions and microorganism strains. Conclusions: In conclusion, untargeted extracellular metabolomic analysis, combined with software tools, allowed the study of the metabolites consumed and produced during the fermentation processes of probiotic microorganisms. Ongoing advancements in data analysis methods will further enhance the application of extracellular metabolomic analysis in fermentation research, leading to improved bioproduction and the advancement of sustainable manufacturing processes.

Keywords: biotechnology, metabolomics, lactic bacteria, probiotics, postbiotics

Procedia PDF Downloads 40
183 Antimicrobial, Antioxidant and Cytotoxic Activities of Cleoma viscosa Linn. Crude Extracts

Authors: Suttijit Sriwatcharakul

Abstract:

The bioactivity studies from the weed ethanolic crude extracts from leaf, stem, pod and root of wild spider flower; Cleoma viscosa Linn. were analyzed for the growth inhibition of 6 bacterial species; Salmonella typhimurium TISTR 5562, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus TISTR 1466, Streptococcus epidermidis ATCC 1228, Escherichia coli DMST 4212 and Bacillus subtilis ATCC 6633 with initial concentration crude extract of 50 mg/ml. The agar well diffusion results found that the extracts inhibit only gram positive bacteria species; S. aureus, S. epidermidis and B. subtilis. The minimum inhibition concentration study with gram positive strains revealed that leaf crude extract give the best result of the lowest concentration compared with other plant parts to inhibit the growth of S. aureus, S. epidermidis and B. subtilis at 0.78, 0.39 and lower than 0.39 mg/ml, respectively. The determination of total phenolic compounds in the crude extracts exhibited the highest phenolic content was 10.41 mg GAE/g dry weight in leaf crude extract. Analyzed the efficacy of free radical scavenging by using DPPH radical scavenging assay with all crude extracts showed value of IC50 of leaf, stem, pod and root crude extracts were 8.32, 12.26, 21.62 and 35.99 mg/ml, respectively. Studied cytotoxicity of crude extracts on human breast adenocarcinoma cell line by MTT assay found that pod extract had the most cytotoxicity CC50 value, 32.41 µg/ml. Antioxidant activity and cytotoxicity of crude extracts exhibited that the more increase of extract concentration, the more activities indicated. According to the bioactivities results, the leaf crude extract of Cleoma viscosa Linn. is the most interesting plant part for further work to search the beneficial of this weed.

Keywords: antimicrobial, antioxidant activity, Cleoma viscosa Linn., cytotoxicity test, total phenolic compound

Procedia PDF Downloads 248
182 Coupled Space and Time Homogenization of Viscoelastic-Viscoplastic Composites

Authors: Sarra Haouala, Issam Doghri

Abstract:

In this work, a multiscale computational strategy is proposed for the analysis of structures, which are described at a refined level both in space and in time. The proposal is applied to two-phase viscoelastic-viscoplastic (VE-VP) reinforced thermoplastics subjected to large numbers of cycles. The main aim is to predict the effective long time response while reducing the computational cost considerably. The proposed computational framework is a combination of the mean-field space homogenization based on the generalized incrementally affine formulation for VE-VP composites, and the asymptotic time homogenization approach for coupled isotropic VE-VP homogeneous solids under large numbers of cycles. The time homogenization method is based on the definition of micro and macro-chronological time scales, and on asymptotic expansions of the unknown variables. First, the original anisotropic VE-VP initial-boundary value problem of the composite material is decomposed into coupled micro-chronological (fast time scale) and macro-chronological (slow time-scale) problems. The former is purely VE, and solved once for each macro time step, whereas the latter problem is nonlinear and solved iteratively using fully implicit time integration. Second, mean-field space homogenization is used for both micro and macro-chronological problems to determine the micro and macro-chronological effective behavior of the composite material. The response of the matrix material is VE-VP with J2 flow theory assuming small strains. The formulation exploits the return-mapping algorithm for the J2 model, with its two steps: viscoelastic predictor and plastic corrections. The proposal is implemented for an extended Mori-Tanaka scheme, and verified against finite element simulations of representative volume elements, for a number of polymer composite materials subjected to large numbers of cycles.

Keywords: asymptotic expansions, cyclic loadings, inclusion-reinforced thermoplastics, mean-field homogenization, time homogenization

Procedia PDF Downloads 342
181 Stability Analysis of Slopes during Pile Driving

Authors: Yeganeh Attari, Gudmund Reidar Eiksund, Hans Peter Jostad

Abstract:

In Geotechnical practice, there is no standard method recognized by the industry to account for the reduction of safety factor of a slope as an effect of soil displacement and pore pressure build-up during pile installation. Pile driving disturbs causes large strains and generates excess pore pressures in a zone that can extend many diameters from the installed pile, resulting in a decrease of the shear strength of the surrounding soil. This phenomenon may cause slope failure. Moreover, dissipation of excess pore pressure set-up may cause weakening of areas outside the volume of soil remoulded during installation. Because of complex interactions between changes in mean stress and shearing, it is challenging to predict installation induced pore pressure response. Furthermore, it is a complex task to follow the rate and path of pore pressure dissipation in order to analyze slope stability. In cohesive soils it is necessary to implement soil models that account for strain softening in the analysis. In the literature, several cases of slope failure due to pile driving activities have been reported, for instance, a landslide in Gothenburg that resulted in a slope failure destroying more than thirty houses and Rigaud landslide in Quebec which resulted in loss of life. Up to now, several methods have been suggested to predict the effect of pile driving on total and effective stress, pore pressure changes and their effect on soil strength. However, this is still not well understood or agreed upon. In Norway, general approaches applied by geotechnical engineers for this problem are based on old empirical methods with little accurate theoretical background. While the limitations of such methods are discussed, this paper attempts to capture the reduction in the factor of safety of a slope during pile driving, using coupled Finite Element analysis and cavity expansion method. This is demonstrated by analyzing a case of slope failure due to pile driving in Norway.

Keywords: cavity expansion method, excess pore pressure, pile driving, slope failure

Procedia PDF Downloads 125
180 Pathogenic Candida Biofilms Producers Involved in Healthcare Associated Infections

Authors: Ouassila Bekkal Brikci Benhabib, Zahia Boucherit Otmani, Kebir Boucherit, A. Seghir

Abstract:

The establishment of intravenous catheters in hospitalized patient is an act common in many clinical situations. These therapeutic tools, from their insertion in the body, represent gateways including fungal germs prone. The latter can generate the growth of biofilms, which can be the cause of fungal infection. Faced with this problem, we conducted a study at the University Hospital of Tlemcen in the neurosurgery unit and aims to isolate and identify Candida yeasts from intravenous catheters. Then test their ability to form biofilms. Materials and methods: 256 patient hospitalized in surgery of the hospital in west Algeria were submitted to this study. All samples were taken from peripheral venous catheters implanted for 72 hours or more days. A total of 31 isolates of Candida species were isolated. MIC and SMIC are determined at 80% inhibition by the test XTT tetrazolium measured at 490 nm. The final concentrations of antifungal agent being between 0.03 and 16 mg / ml for amphotericin B and from 0.015 to 8 mg / mL caspofungin. Results: 31 Candida species isolates from catheters including 14 Candida albicans and 17 Candida non albicans . 21 strains of all the isolates were able to form biofilms. In their form of Planktonic cells, all isolates are 100% susceptible to antifungal agents tested. However, in their state of biofilms, more isolates have become tolerant to the tested antifungals. Conclusion: Candida yeasts isolated from intravascular catheters are considered an important virulence factor in the pathogenesis of infections. Their involvement in catheter-related infections can be disastrous for their potential to generate biofilms. They survive high concentrations of antifungal where treatment failure. Pending the development of a therapeutic approach antibiofilm related to catheters, their mastery is going through: -The risk of infection prevention based on the training and awareness of medical staff, -Strict hygiene and maximum asepsis, and -The choice of material limiting microbial colonization.

Keywords: candida, biofilm, hospital, infection, amphotericin B, caspofungin

Procedia PDF Downloads 301
179 Bioconversion of Kitchen Waste to Bio-Ethanol for Energy Security and Solid Waste Management

Authors: Sanjiv Kumar Soni, Chetna Janveja

Abstract:

The approach of utilizing zero cost kitchen waste residues for growing suitable strains of fungi for the induction of a cocktail of hydrolytic enzymes and ethanol generation has been validated in the present study with the objective of developing an indigenous biorefinery for low cost bioethanol production with the generation of zero waste. Solid state fermentation has been carried out to evaluate the potential of various steam pretreated kitchen waste residues as substrates for the co-production of multiple carbohydrases including cellulases, hemicellulases, pectinase and amylases by a locally isolated strain of Aspergillus niger C-5. Of all the residues, potato peels induced the maximum yields of all the enzyme components corresponding to 64.0±1.92 IU of CMCase, 17.0±0.54 IU of FPase , 42.8±1.28 IU of β-glucosidase, 990.0±28.90 IU of xylanase, 53.2±2.12 IU of mannanase, 126.0±3.72 IU of pectinase, 31500.0±375.78 IU of α-amylase and 488.8±9.82 IU of glucoamylase/g dry substrate respectively. Saccharification of various kitchen refuse residues using inhouse produced crude enzyme cocktail resulted in the release of 610±10.56, 570±8.89, 435±6.54, 475±4.56, 445±4.27, 385±4.49, 370±6.89, 490±10.45 mg of total reducing sugars/g of dried potato peels, orange peels, pineapple peels, mausami peels, onion peels, banana stalks, pea pods and composite mixture respectively revealing carbohydrate conversion efficiencies in the range of 97.0-99.4%. After fermentation of released hexoses by Saccharomyces cerevisae, ethanol yields ranging from 80-262 mL/ kg of dry residues were obtained. The study has successfully evaluated the valorization of kitchen garbage, a highly biodegradable component in Municipal Solid Waste by using it as a substrate for the in-house co-production of multiple carbohydrases and employing the steam treated residues as a feed stock for bioethanol production. Such valorization of kitchen garbage may reduce the level of Municipal Solid Waste going into land-fills thus lowering the emissions of greenhouse gases. Moreover, the solid residue left after the bioconversion may be used as a biofertilizer for improving the fertility of the soils.

Keywords: kitchen waste, bioethanol, solid waste, bioconversion, waste management

Procedia PDF Downloads 374
178 In vitro Antifungal Activity of Methanolic Extracts of Eight Various Cultivar of Persian Punica granatum L. against Candida Species

Authors: Shahindokht Bassiri-Jahromi, Mohammad Reza Pourshafie, Farzad Katiraee, Mannan Hajimahmoodi, Ehsan Mostafavi, Malihe Talebi

Abstract:

Objective: Resistance of Candida species to antifungal agents has potentially serious implications for management of infections. Candida species are now fourth common organisms isolated from hospitalized patients. It is important to increase effective therapy. In the past decade, numerous reports of treatment failures were reported. Prevention and control of these infections will require new antimicrobial agents. Plant-derived antifungal have always been a source of novel therapeutics. The aim of this study was to investigate the antifungal effect of methanolic extract of pomegranate peel and pulp against Candida species. Material and Methods: Eight cultivars of Punica granatum L. were collected from Saveh Agricultural Investigation Center in Iran. Both pomegranate pulp and peel were dried and powdered separately. The dried powders were extracted by using a soxhlet extractor. The antifungal effect of methanolic extract of pomegranate peel and pulp were determined in vitro by minimum inhibitory concentration (MIC) against five standard species of (ATCC 10231), C. parapsilosis (ATCC 22019), C. tropicalis (ATCC 750), C. glabrata (PTCC 5297), and C. kroseii (PTCC 5295). Results: Maximum inhibitions of antifungal effect were attributed to peel extract pomegranate cultivar and Candida species. The most potential antifungal inhibition among 8 different cultivars observed by sour malas, sour white peel, and sour summer extracts respectively, against five Candida strains. The antifungal activity of pulp extracts against Candida species was approximately negative. Conclusion: The use of Punica granatum peel extract has been shown to possess antifungal activities. The phytochemistry and pharmacological actions of Punica granatum peel components suggest a wide range of clinical applications for the treatment and prevention of candidiasis.

Keywords: antifungal activity, Candida species, Punica granatum L., pharmacognosy

Procedia PDF Downloads 452
177 Screening of Plant Growth Promoting Rhizobacteria in the Rhizo- and Endosphere of Sunflower (Helianthus anus) and Their Role in Enhancing Growth and Yield Attriburing Trairs and Colonization Studies

Authors: A. Majeed, M.K. Abbasi, S. Hameed, A. Imran, T. Naqqash, M. K. Hanif

Abstract:

Plant growth-promoting rhizobacteria (PGPR) are free-living soil bacteria that aggressively colonize the rhizosphere/plant roots, and enhance the growth and yield of plants when applied to seed or crops. Root associated (endophytic and rhizospheric) PGPR were isolated from Sunflower (Helianthus anus) grown in soils collected from 16 different sites of sub division Dhirkot, Poonch, Azad Jammu & Kashmir, Pakistan. A total of 150 bacterial isolates were isolated, purified, screened in vitro for their plant growth promoting (PGP) characteristics. 11 most effective isolates were selected on the basis of biochemical assays (nitrogen fixation, phosphate solubilization, growth hormone production, biocontrol assay, and carbon substrates utilization assay through gas chromatography (GCMS), spectrophotometry, high performance liquid chromatography HPLC, fungal and bacterial dual plate assay and BIOLOG GN2/GP2 microplate assay respectively) and were tested on the crop under controlled and field conditions. From the inoculation assay, the most promising 4 strains (on the basis of increased root/shoot weight, root/shoot length, seed oil content, and seed yield) were than selected for colonization studies through confocal laser scanning and transmission electron microscope. 16Sr RNA gene analysis showed that these bacterial isolates belong to Pseudononas, Enterobacter, Azospirrilum, and Citobacter genera. This study is the clear evident that such isolates have the potential for application as inoculants adapted to poor soils and local crops to minimize the chemical fertilizers harmful for soil and environment

Keywords: PGPR, nitrogen fixation, phosphate solubilization, colonization

Procedia PDF Downloads 307
176 Fully Coupled Porous Media Model

Authors: Nia Mair Fry, Matthew Profit, Chenfeng Li

Abstract:

This work focuses on the development and implementation of a fully implicit-implicit, coupled mechanical deformation and porous flow, finite element software tool. The fully implicit software accurately predicts classical fundamental analytical solutions such as the Terzaghi consolidation problem. Furthermore, it can capture other analytical solutions less well known in the literature, such as Gibson’s sedimentation rate problem and Coussy’s problems investigating wellbore stability for poroelastic rocks. The mechanical volume strains are transferred to the porous flow governing equation in an implicit framework. This will overcome some of the many current industrial issues, which use explicit solvers for the mechanical governing equations and only implicit solvers on the porous flow side. This can potentially lead to instability and non-convergence issues in the coupled system, plus giving results with an accountable degree of error. The specification of a fully monolithic implicit-implicit coupled porous media code sees the solution of both seepage-mechanical equations in one matrix system, under a unified time-stepping scheme, which makes the problem definition much easier. When using an explicit solver, additional input such as the damping coefficient and mass scaling factor is required, which are circumvented with a fully implicit solution. Further, improved accuracy is achieved as the solution is not dependent on predictor-corrector methods for the pore fluid pressure solution, but at the potential cost of reduced stability. In testing of this fully monolithic porous media code, there is the comparison of the fully implicit coupled scheme against an existing staggered explicit-implicit coupled scheme solution across a range of geotechnical problems. These cases include 1) Biot coefficient calculation, 2) consolidation theory with Terzaghi analytical solution, 3) sedimentation theory with Gibson analytical solution, and 4) Coussy well-bore poroelastic analytical solutions.

Keywords: coupled, implicit, monolithic, porous media

Procedia PDF Downloads 114
175 Occurrence of Porcine circovirus Type 2 in Pigs of Eastern Cape Province South Africa

Authors: Kayode O. Afolabi, Benson C. Iweriebor, Anthony I. Okoh, Larry C. Obi

Abstract:

Porcine circovirus type 2 (PCV2) is the major etiological viral agent of porcine multisystemic wasting syndrome (PWMS) and other porcine circovirus-associated diseases (PCVAD) of great economic importance in pig industry globally. In an effort to determine the status of swine herds in the Province as regarding the ‘small but powerful’ viral pathogen; a total of 375 blood, faecal and nasal swab samples were obtained from seven pig farms (commercial and communal) in Amathole, O.R. Tambo and Chris-Hani District Municipalities of Eastern Cape Province between the year 2015 and 2016. Three hundred and thirty nine (339) samples out of the total sample were subjected to molecular screening using PCV2 specific primers by conventional polymerase chain reaction (PCR). Selected sequences were further analyzed and confirmed through genome sequencing and phylogenetic analyses. The data obtained revealed that 15.93% of the screened samples (54/339) from the swine herds of the studied areas were positive for PCV2; while the severity of occurrence of the viral pathogen as observed at farm level ranges from approximately 5.6% to 60% in the studied farms. The Majority, precisely 15 out of 17 (88%) analyzed sequences were found clustering with other PCV2b reference strains in the phylogenetic analysis. More interestingly, two other sequences obtained were also found clustering within PCV2d genogroup, which is presently another fast-spreading genotype with observable higher virulence in global swine herds. This finding confirmed the presence of this all-important viral pathogen in pigs of the region; which could result in a serious outbreak of PCVAD and huge economic loss at the instances of triggering factors if no appropriate measures are taken to curb its spread effectively.

Keywords: pigs, polymerase chain reaction, porcine circovirus type 2, South Africa

Procedia PDF Downloads 185
174 One Health Approach: The Importance of Improving the Identification of Waterborne Bacteria in Austrian Water

Authors: Aurora Gitto, Philipp Proksch

Abstract:

The presence of various microorganisms (bacteria, fungi) in surface water and groundwater represents an important issue for human health worldwide. The matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) has emerged as a promising and reliable tool for bacteria identification in clinical diagnostic microbiology and environmental strains thanks to an ionization technique that uses a laser energy absorbing matrix to create ions from large molecules with minimal fragmentation. The study aims first to conceptualise and set up library information and create a comprehensive database of MALDI-TOF-MS spectra from environmental water samples. The samples were analysed over a year (2021-2022) using membrane filtration methodology (0.45 μm and 0.22 μm) and then isolated on R2A agar for a period of 5 days and Yeast extract agar growing at 22 °C up to 4 days and 37 °C for 48 hours. The undetected organisms by MALDI-TOF-MS were analysed by PCR and then sequenced. The information obtained by the sequencing was further implemented in the MALDI-TOF-MS library. Among the culturable bacteria, the results show how the incubator temperature affects the growth of some genera instead of others, as demonstrated by Pseudomonas sp., which grows at 22 °C, compared to Bacillus sp., which is abundant at 37 °C. The bacteria community shows a variation in composition also between the media used, as demonstrated with R2A agar which has been defined by a higher presence of organisms not detected compared to YEA. Interesting is the variability of the Genus over one year of sampling and how the seasonality impacts the bacteria community; in fact, in some sampling locations, we observed how the composition changed, moving from winter to spring and summer. In conclusion, the bacteria community in groundwater and river bank filtration represents important information that needs to be added to the library to simplify future water quality analysis but mainly to prevent potential risks to human health.

Keywords: water quality, MALDI-TOF-MS, sequencing, library

Procedia PDF Downloads 60
173 Tomato Endophytes Trichoderma asperellum AAUTLF and Stenotrophomonas maltophilia D1B Exhibits Plant Growth-Promotion and Fusarium Wilt Suppression

Authors: Bandana Saikia, Ashok Bhattacharyya

Abstract:

Endophytic microbes and their metabolites positively impact overall plant health, which may have a potential implication in agriculture. In the present study, 177 bacterial endophytes and 57 fungal endophytes were isolated, with the highest recovery rate from tomato roots. A maximum of 112 endophytes were isolated during monsoon, followed by 64 isolates and 58 isolates isolated during pre-monsoon and post-monsoon periods, respectively, indicating the rich diversity in bacterial and fungal endophytes of tomato crops from different locations of Assam, India. Further, the endophytes were evaluated for their antagonistic potential against Fusarium oxysporum f. sp. lycopersici. Fungal endophytic isolate AAUTLF (Endophytic Fungi of Tomato Leaf from Assam Agricultural University, Assam, India area) and bacterial endophyte D1B (Endophytic bacteria of tomato from Dhemiji, India district) showed the highest antifungal activity against the pathogen both in vitro and in vivo. Based on 5.8 rDNA sequence analysis of fungal and 16S rDNA sequence of bacteria endophytes, the most effective fungal and bacterial isolates against FOL were identified as Trichoderma asperellum AAUTLF and Stenotrophomonas maltophilia D1B, respectively. The isolates showed an antagonistic effect against Fusarium oxysporum f.sp. lycopersici in-vitro and reduced the disease index of Fusarium wilt in tomatoes by 64.4% under pot conditions. Trichoderma asperellum AAUTLF produced an antifungal compound viz., 6-pentyl-2H-pyran-2-one, which also possesses growth-promoting characteristics. The bacteria Stenotrophomonas maltophilia D1B produced antifungal compounds, including benzothiazole, oleic acid, phenylacetic acid, and 3-(Hydroxy-phenyl-methyl)-2,3-dimethyl-octan-4-one. This would be of high importance for the source of antagonistic strains and biocontrol of tomato Fusarium wilt, as well as other plant fungal diseases.

Keywords: root endophytes, Stemotrophomonas, Trichoderma, benzothiazole, 6-pentyl-2H-pyran-2-one

Procedia PDF Downloads 49
172 Impact of Locally Synthesized Carbon Nanotubes against Some Local Clinical Bacterial Isolates

Authors: Abdul Matin, Muazzama Akhtar, Shahid Nisar, Saddaf Mazzar, Umer Rashid

Abstract:

Antibiotic resistance is an increasing concern worldwide now a day. Neisseria gonorrhea and Staphylococcus aureus are known to cause major human sexually transmitted and respiratory diseases respectively. Nanotechnology is an emerging discipline and its application in various fields especially in medical sciences is gigantic. In the present study, we synthesized multi-walled carbon nanotubes (MWNTs) using acid oxidation method and solubilized MWNTs were with length predominantly >500 nm and diameters ranging from 40 to 50 nm. The locally synthesized MWNTs were used against gram positive and negative bacteria to determine their impact on bacterial growth. Clinical isolates of Neisseria gonorrhea (isolate: 4C-11) and Staphylococcus aureus (isolate: 38541) were obtained from local hospital and normally cultured in LB broth at 37°C. Both clinical strains can be obtained on request from University of Gujarat. Spectophometric assay was performed to determine the impact of MWNTs on bacterial growth in vitro. To determine the effect of MWTNs on test organisms, various concentration of MWNTs were used and recorded observation on various time intervals to understand the growth inhibition pattern. Our results demonstrated that MWNTs exhibited toxic effects to Staphylococcus aureus while showed very limited growth inhibition to Neisseria gonorrhea, which suggests the resistant potential of Neisseria against nanoparticles. Our results clearly demonstrate the gradual decrease in bacterial numbers with passage of time when compared with control. Maximum bacterial inhibition was observed at maximum concentration (50 µg/ml). Our future work will include further characterization and mode of action of our locally synthesized MWNTs. In conclusion, we investigated and reported for the first time the inhibitory potential of locally synthesized MWNTs on local clinical isolates of Staphylococcus aureus and Neisseria gonorrhea.

Keywords: antibacterial activity, multi walled carbon nanotubes, Neisseria gonorrhea, spectrophotometer assay, Staphylococcus aureus

Procedia PDF Downloads 294
171 Construction of Genetic Recombinant Yeasts with High Environmental Tolerance by Accumulation of Trehalose and Detoxication of Aldehyde

Authors: Yun-Chin Chung, Nileema Divate, Gen-Hung Chen, Pei-Ru Huang, Rupesh Divate

Abstract:

Many environmental factors, such as glucose concentration, ethanol, temperature, osmotic pressure and pH, decrease the production rate of ethanol using yeast as a starter. Fermentation starters with high tolerance to various stresses are always demanded for brewing industry. Trehalose, a storage carbohydrate in cell wall of yeast, plays an important role in tolerance of environmental stress by preserving integrity of plasma membrane and stabilizing proteins. Furan aldehydes are toxic to yeast and the growth rate of yeast is significantly reduced if furan aldehydes were present in the fermentation medium. In yeast, aldehyde reductase is involved in the detoxification of reactive aldehydes and consequently the growth of yeast is improved. The aims of this study were to construct a genetic recombinant Saccharomyces cerevisiae or Pichia pastoris with furfural and HMF degrading and high ethanol tolerance capacities. Yeast strains were engineered by genetic recombination for overexpression of trehalose-6-phosphate synthase gene (tps1) and aldehyde reductase gene (ari1). TPS1 gene was cloned from S. cerevisiae by reverse transcription-polymerase chain reaction (RT-PCR) and then ligated with pGAPZαC vector. The constructed vector, pGAPZC-tps1, was transformed to recombinant yeasts strain with overexpression of ari1. The transformants with pGAPZC-tps1-ari1 were generated called STA (S. cerevisiae) and PTA (P. pastoris) with overexpression of tps1, ari1. PCR with tps1-specific primers and western blot with his-tag confirmed the gene insertion and protein expression of tps1 in the transformants, respectively. The neutral trehalase gene (nth1) of STA was successfully deleted and the novel strain STAΔN will be used for further study, including the measurement of trehalose concentration and ethanol, furfural tolerance assay.

Keywords: genetic recombinant, yeast, ethanol tolerance, trehalase, aldehyde reductase

Procedia PDF Downloads 398
170 SiO2-Ag+Chlorex vs SilverSulfaDiazine: An 'in vitro' and 'in vivo' Silver Challenge

Authors: Roberto Cassino, Valeria Dissette, Carlo Alberto Bignozzi, Daniele Pazzi

Abstract:

Background and Aims: The aim of this work was to investigate, both ‘in vitro’ and ‘in vivo’, if the new SCX technology (SiO2-Ag+Chlorex) can easily defeat infections and it is really more effective than SSD (SilverSulfaDiazine). ‘In vitro’ methods: we tested ‘in vitro’ the effectiveness of both silver materials using a pool of 5 strains: Pseudomonas Aeruginosa, Staphylococcus aureus, Escherichia Coli, Enterococcus hirae and Candida Albicans. 100 µl of this pool have been seeded on Petri dishes and kept for 24 hours in incubation at 37 C°. ‘In vivo’ methods: we enrolled patients with multiple infectious chronic wounds (according with cutting & harding criteria for infection); after a qualitative evaluation of the wounds bacterial population, taking a sample by plug, we included in the study 6 patients for a total of 10 wounds, infected by one or more of the microorganisms used for the ‘in vitro’ test. The protocol consisted of a treatment with a spray powder of SSD every 48 hours for 14 days; in case of worsening we should have to start a new treatment with a spray powder containing silicon dioxide, ionic silver and chlorexidine (SiO2-Ag+Chlorex) every 48 hours for 14 days. We evaluated the number of clinical signs of infection and the disappearance or not of the wound edge erithema. ‘In vitro’ results: SSD demonstrated a wide zone of inhibition within 24 hours, but after 5 days there was no more signs of inhibition; on the contrary SCX had a good inhibition ring that lasted more than 5 days. ‘In vivo’ results: all wounds treated with SSD got worse; the signs of infection increased and the wound edge erithema did not disappear. According with the protocol, we treated then all wounds with SCX and they all improved within the period of observation with complete disappearance of clinical signs of infection and no more wound edge erithema. Conclusions: the study demonstrated the effectiveness of SiO2-Ag+Chlorex, especially in terms of long lasting antimicrobial action. We had the same results ‘in vitro’, so that there has been a perfect correspondence between the laboratory outcomes and the clinical ones.

Keywords: chronic wounds, infections, ionic silver, SSD

Procedia PDF Downloads 295