Search results for: idling conditions
9125 Evaluating of Bearing Capacity of Two Adjacent Strip Foundations Located around a Soil Slip
Authors: M. Meftahi, M. Hoseinzadeh, S. A. Naeini
Abstract:
Selection of soil bearing capacity is an important issue that should be investigated under different conditions. The bearing capacity of foundation around of soil slope is based on the active and passive forces. On the other hand, due to extension of urban structures, it is inevitable to put the foundations together. Concerning the two cases mentioned above, investigating the behavior of adjacent foundations which are constructed besides soil slope is essential. It should be noted that, according to the conditions, the bearing capacity of adjacent foundations can be less or more than mat foundations. Also, soil reinforcement increases the bearing capacity of adjacent foundations, and the amount of its increase depends on the distance between foundations. In this research, based on numerical studies, a method is presented for evaluating ultimate bearing capacity of adjacent foundations at different intervals. In the present study, the effect of foundation width, the center to center distance of adjacent foundations and reinforced soil has been investigated on the bearing capacity of adjacent foundations beside soil slope. The results indicate that, due to interference of failure surfaces created under foundation, it depends on their intervals and the ultimate bearing capacity of foundation varies.Keywords: adjacent foundation, bearing capacity, reinforcements, settlement, numerical analysis
Procedia PDF Downloads 1719124 Improving Electrical Safety through Enhanced Work Permits
Authors: Nuwan Karunarathna, Hemali Seneviratne
Abstract:
Distribution Utilities inherently present electrical hazards for their workers in addition to the general public especially due to bare overhead lines spreading out over a large geographical area. Therefore, certain procedures such as; de-energization, verification of de-energization, isolation, lock-out tag-out and earthing are carried out to ensure safe working conditions when conducting maintenance work on de-energized overhead lines. However, measures must be taken to coordinate the above procedures and to ensure successful and accurate execution of those procedures. Issuing of 'Work Permits' is such a measure that is used by the Distribution Utility considered in this paper. Unfortunately, the Work Permit method adopted by the Distribution Utility concerned here has not been successful in creating the safe working conditions as expected which was evidenced by four (4) number of fatalities of workers due to electrocution occurred in the Distribution Utility from 2016 to 2018. Therefore, this paper attempts to identify deficiencies in the Work Permit method and related contributing factors through careful analysis of the four (4) fatalities and work place practices to rectify the short comings to prevent future incidents. The analysis shows that the present level of coordination between the 'Authorized Person' who issues the work permit and the 'Competent Person' who performs the actual work is grossly inadequate to achieve the intended safe working conditions. The paper identifies the need of active participation of a 'Control Person' who oversees the whole operation from a bird’s eye perspective and recommends further measures that are derived through the analysis of the fatalities to address the identified lapses in the current work permit system.Keywords: authorized person, competent person, control person, de-energization, distribution utility, isolation, lock-out tag-out, overhead lines, work permit
Procedia PDF Downloads 1339123 A Prototype for Biological Breakdown of Plastic Bags in Desert Areas
Authors: Yassets Egaña, Patricio Núñez, Juan C. Rios, Ivan Balic, Alex Manquez, Yarela Flores, Maria C. Gatica, Sergio Diez De Medina, Rocio Tijaro-Rojas
Abstract:
Globally, humans produce millions of tons of waste per year. An important percentage of this waste is plastic, which frequently ends up in landfills and oceans. During the last decades, the greatest plastics production in history have been made, a few amount of this plastic is recycled, the rest ending up as plastic pollution in soils and seas. Plastic pollution is disastrous for the environment, affecting essential species, quality of consumption water, and some economic activities such as tourism, in different parts of the world. Due to its durability and decomposition on micro-plastics, animals and humans are accumulating a variety of plastic components without having clear their effects on human health, economy, and wildlife. In dry regions as the Atacama Desert, up to 95% of the water consumption comes from underground reservoirs, therefore preventing the soil pollution is an urgent need. This contribution focused on isolating, genotyping and optimizing microorganisms that use plastic waste as the only source of food to construct a batch-type bioreactor able to degrade in a faster way the plastic waste before it gets the desert soils and groundwater consumed by people living in this areas. Preliminary results, under laboratory conditions, has shown an improved degradation of polyethylene when three species of bacteria and three of fungi act on a selected plastic material. These microorganisms have been inoculated in dry soils, initially lacking organic matter, under environmental conditions in the laboratory. Our team designed and constructed a prototype using the natural conditions of the region and the best experimental results.Keywords: biological breakdown, plastic bags, prototype, desert regions
Procedia PDF Downloads 2879122 Numerical Simulation of Convective Flow of Nanofluids with an Oriented Magnetic Field in a Half Circular-Annulus
Authors: M. J. Uddin, M. M. Rahman
Abstract:
The unsteady convective heat transfer flow of nanofluids in a half circular-annulus shape enclosure using nonhomogeneous dynamic model has been investigated numerically. The round upper wall of the enclosure is maintained at constant low temperature whereas the bottom wall is heated by three different thermal conditions. The enclosure is permeated by a uniform magnetic field having variable orientation. The Brownian motion and thermophoretic phenomena of the nanoparticles are taken into account in model construction. The governing nonlinear momentum, energy, and concentration equations are solved numerically using Galerkin weighted residual finite element method. To discover the best performer, the average Nusselt number is demonstrated for different types of nanofluids. The heat transfer rate for different flow parameters, positions of the annulus, thicknesses of the half circular-annulus and thermal conditions is also exhibited.Keywords: nanofluid, convection, semicircular-annulus, nonhomogeneous dynamic model, finite element method
Procedia PDF Downloads 2229121 Impact of the Transport on the Urban Heat Island
Authors: L. Haddad, Z. Aouachria
Abstract:
The development of transport systems has negative impacts on the environment although it has beneficial effects on society.. The car policy caused many problems such as: - the spectacular growth of fuel consumption hence the very vast increase in urban pollution, traffic congestion in certain places and at certain times, the increase in the number of accidents. The exhaust emissions from cars and weather conditions are the main factors that determine the level of pollution in urban atmosphere. These conditions lead to the phenomenon of heat transfer and radiation occurring between the air and the soil surface of any town. These exchanges give rise, in urban areas, to the effects of heat islands that correspond to the appearance of excess air temperature between the city and its surrounding space. In this object, we perform a numerical simulation of the plume generated by the cars exhaust gases and show that these gases form a screening effect above the urban city which cause the heat island in the presence of wind flow. This study allows us: i. To understand the different mechanisms of interactions between these phenomena. ii. To consider appropriate technical solutions to mitigate the effects of the heat island.Keywords: atmospheric pollution, impact on the health, urban transport, heat island
Procedia PDF Downloads 3959120 Influence of Transportation Mode to the Deterioration Rate: Case Study of Food Transport by Ship
Authors: Danijela Tuljak-Suban, Valter Suban
Abstract:
Food as perishable goods represents a specific and sensitive part in the supply chain theory, since changing of its physical or chemical characteristics considerably influences the approach to stock management. The most delicate phase of this process is transportation, where it becomes difficult to ensure stability conditions that limit the deterioration, since the value of the deterioration rate could be easily influenced by the transportation mode. Fuzzy definition of variables allows taking into account these variations. Furthermore an appropriate choice of the defuzzification method permits to adapt results, as much as possible, to real conditions. In the article will be applied the those methods to the relationship between the deterioration rate of perishable goods and transportation by ship, with the aim: (a) to minimize the total costs function, defined as the sum of the ordering cost, holding cost, disposing cost and transportation costs, and (b) to improve supply chain sustainability by reducing the environmental impact and waste disposal costs.Keywords: perishable goods, fuzzy reasoning, transport by ship, supply chain sustainability
Procedia PDF Downloads 5449119 The Relation between Physical Health and Mental Health in Women of Reproductive Age
Authors: Hannah Yael Ephraim
Abstract:
During reproductive age (between 15 and 44), women are particularly susceptible to psychiatric illness. Depression and anxiety disorders are especially common for women during reproductive age. Women of reproductive age are also at greater risk for multiple physical conditions during this time. Existing literature focuses on the impact of mental health on physical health, showing that people with anxiety and depression repeatedly show greater physical health risk among those with developing chronic medical illness. However, there is limited research on the impact physical health has on mental health in women of reproductive age, a large and vulnerable population. For this reason, the current study seeks to ask the following questions: are women of reproductive age with a diagnosis of a chronic physical condition more likely to experience symptoms of mental illness than women without a diagnosis of a chronic physical condition? Does the type of physical illness relate to signs and symptoms of depression and anxiety? A quasi-experimental research design was implemented to compare the mental health outcomes of women with the diagnosis of chronic medical conditions and women without the diagnosis of a chronic medical condition. Quantitative data was collected through an anonymous ten-minute Qualtrics survey. The survey was sent out through multiple online platforms. The sample includes two groups of women: one group with the diagnosis of a chronic medical illness, and one group without a diagnosis and/or symptoms (N = 541). Participants identify as a woman and are between the ages of 15 and 44. A comparison of women with a diagnosis of a chronic physical condition and those without a diagnosis will be conducted to explore differences in depression and anxiety symptoms between women with and without a chronic medical diagnosis. The impact race, SES, and occupation will also be addressed in relation to anxiety and/or depression in women of reproductive age. This study will further the understanding of the relationship between mental illness in women of reproductive age with chronic medical conditions. The results of this study will have implications for the integration of mental health care in women’s health centers and perhaps training of clinicians and physicians providing psychological and medical care to women of reproductive age.Keywords: mental health, physical health, reproductive age, women
Procedia PDF Downloads 3159118 Is Ag@TiO2 Core-Shell Nanoparticles Superior to Ag Surface Doped TiO2 Nanostructures?
Authors: Xiaohong Yang, Haitao Fu, Xizhong An, Aibing Yu
Abstract:
Silver@titanium dioxide (Ag@TiO2) core-shell nanostructures and Ag surface doped TiO2 particles (TiO2@Ag) have been designed and synthesized by sol-gel and hydrothermal methods under mild conditions. These two types of Ag/TiO2 nanocomposites were characterized in terms of their properties by various techniques such as transmission electron microscope (TEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) and ultra violet-visible absorption spectroscopy (UV-Vis). Specifically, the photocatalystic performance and antibacterial behavior of such nanocomposites have been investigated and compared. It was found that The Ag@TiO2 core-shell nanostructures exhibit superior photocatalytic property to the Ag surface doped TiO2 particles under the reported conditions. While with UV pre-irradiation, the Ag@TiO2 core-shell composites exhibit better bactericidal performance. This is probably because the Ag cores tend to facilitate charge separation for TiO2, producing greater hydroxyl radicals on the surface of the TiO2 particles. These findings would be useful for the design and synthesis of Ag/TiO2 nanocomposites with desirable photocatalystic and antimicrobial activity for environmental applications.Keywords: Ag@TiO2 core-shell nanoparticles, Ag surface doped TiO2 nanoparticles, photocatalysis, antibacterial
Procedia PDF Downloads 4859117 Investigating Optical Properties of Unsaturated Polyurethane Matrix and Its Glass Fiber Composite Under Extreme Temperatures
Authors: Saad Ahmed, Sanjeev Khannaa
Abstract:
Glass fiber reinforced polymers are widely used in structural systems as load-bearing elements at both high and low temperatures. This investigation presents the evaluation of glass fiber reinforced unsaturated polyurethane under harsh conditions of changing temperature and moisture content. This study Explores how these parameters affect the optical properties of the polymer matrix and the composite. Using the hand layup method, the polyurethane resin was modified by E-glass fibers (15 vol. %) to manufacture fiber-reinforced composite. This work includes the preparation of glass-like polyurethane resin sheets and estimates all light transmittance properties at high and very low temperatures and wet conditions. All-optical properties were retested to evaluate the level of improvement or failure. The results found that when comprising reinforced composite fiber to the unreinforced specimens, the reinforced composite shows a fair optical property at high temperatures and good performance at low temperatures.Keywords: unsaturated polyurethane, extreme temperatures, light transmittance, haze number
Procedia PDF Downloads 1479116 Limiting Fracture Stress of Composite Ceramics with Symmetric Triangle Eutectic
Authors: Jian Zheng, Jinfeng Yu, Xinhua Ni
Abstract:
The limiting fracture stress predicting model of composite ceramics with symmetric triangle eutectic was established based on its special microscopic structure. The symmetric triangle eutectic is consisted of matrix, the strong constraint inter-phase and reinforced fiber inclusions which are 120 degrees uniform symmetrical distribution. Considering the conditions of the rupture of the cohesive bond between matrix and fibers in eutectic and the stress concentration effect at the fiber end, the intrinsic fracture stress of eutectic was obtained. Based on the biggest micro-damage strain in eutectic, defining the load function, the macro-damage fracture stress of symmetric triangle eutectic was determined by boundary conditions. Introducing the conception of critical zone, the theoretical limiting fracture stress forecasting model of composite ceramics was got, and the stress was related to the fiber size and fiber volume fraction in eutectic. The calculated results agreed with the experimental results in the literature.Keywords: symmetric triangle eutectic, composite ceramics, limiting stress, intrinsic fracture stress
Procedia PDF Downloads 2589115 Field Theories in Chiral Liquid Crystals: A Theory for Helicoids and Skyrmions
Authors: G. De Matteis, L. Martina, V. Turco
Abstract:
The work is focused on determining and comparing special nonlinear static configurations in cholesteric liquid crystals (CLCs), confined between two parallel plates and in the presence of an external static electric/magnetic field. The solutions are stabilised by topological and non-topological conservation laws since they are described in terms of integrable or partially integrable nonlinear boundary value problems. In cholesteric liquid crystals which are subject to geometric frustration; anchoring conditions at boundaries, i.e., homeotropic conditions, are incompatible with the cholesteric twist. This aspect turns out to be essential in the admissible classes of solutions, allowing also for disclination type singularities. Within the framework of Frank-Oseen theory, we study the static configurations for CLCs. First, we find numerical solutions for isolated axisymmetric states in confined CLCs with weak homeotropic anchoring at the boundaries. These solutions describe 3-dimensional modulations, namely spherulites or cholesteric bubbles, actually observed in these systems, of standard baby skyrmions. Relations with well-known nonlinear integrable systems are found and are used to explore the asymptotic behavior of the solutions. Then we turn our attention to extended periodic static configurations called Helicoids or cholesteric fingers, described by an elliptic sine-Gordon model with appropriate boundary conditions, showing how their period and energies are determined by both the thickness of the cell and the intensity of the external electric/magnetic field. We explicitly show that helicoids with π or 2π of rotations of the molecular director are different in many aspects and are not simply algebraically related. The behaviour of the solutions, their energy and the properties of the associated disclinations are discussed in detail, both analytically and numerically.Keywords: cholesteric liquid crystals, geometric frustration, helicoids, skyrmions
Procedia PDF Downloads 1309114 Buckling Analysis of Laminated Composite Plates with Central Holes
Authors: Pratyasha Patnaik, A. V. Asha
Abstract:
Laminated composite plates are made up of plates consisting of layers bonded together and made up of materials chemically different from each other but combined macroscopically. These have an application in aircrafts, railway coaches, bridges etc. because they are easy to handle, have got improved properties and the cost of their fabrication is low. But their failure can lead to catastrophic disasters. And generally, the failure of these structures is due to the combined effect of excessive stresses on it and buckling. Hence, the buckling behavior of these kinds of plates should be analyzed properly. Holes are provided either at the center or elsewhere in the laminar plates for the purpose of pipes for electric cables or other purposes. Due to the presence of holes in the plates, the stress concentration is near to the holes and the stiffness of the plates is reduced. In this study, the effect of a cut-out, its shape, different boundary conditions, length/thickness ratio, stacking sequence, and ply orientation has been studied. The analysis was carried out with laminated composite plates with circular, square and triangular cut-outs. Results show the effect of different cut-out shapes, boundary conditions, the orientation of layers and length/thickness ratio of the buckling loadKeywords: buckling, composite plates, cut-out, stress
Procedia PDF Downloads 3319113 Integrated Gas Turbine Performance Diagnostics and Condition Monitoring Using Adaptive GPA
Authors: Yi-Guang Li, Suresh Sampath
Abstract:
Gas turbine performance degrades over time, and the degradation is greatly affected by environmental, ambient, and operating conditions. The engines may degrade slowly under favorable conditions and result in a waste of engine life if a scheduled maintenance scheme is followed. They may also degrade fast and fail before a scheduled overhaul if the conditions are unfavorable, resulting in serious secondary damage, loss of engine availability, and increased maintenance costs. To overcome these problems, gas turbine owners are gradually moving from scheduled maintenance to condition-based maintenance, where condition monitoring is one of the key supporting technologies. This paper presents an integrated adaptive GPA diagnostics and performance monitoring system developed at Cranfield University for gas turbine gas path condition monitoring. It has the capability to predict the performance degradation of major gas path components of gas turbine engines, such as compressors, combustors, and turbines, using gas path measurement data. It is also able to predict engine key performance parameters for condition monitoring, such as turbine entry temperature that cannot be directly measured. The developed technology has been implemented into digital twin computer Software, Pythia, to support the condition monitoring of gas turbine engines. The capabilities of the integrated GPA condition monitoring system are demonstrated in three test cases using a model gas turbine engine similar to the GE aero-derivative LM2500 engine widely used in power generation and marine propulsion. It shows that when the compressor of the model engine degrades, the Adaptive GPA is able to predict the degradation and the changing engine performance accurately using gas path measurements. Such a presented technology and software are generic, can be applied to different types of gas turbine engines, and provide crucial engine health and performance parameters to support condition monitoring and condition-based maintenance.Keywords: gas turbine, adaptive GPA, performance, diagnostics, condition monitoring
Procedia PDF Downloads 919112 Self-Organizing Map Network for Wheeled Robot Movement Optimization
Authors: Boguslaw Schreyer
Abstract:
The paper investigates the application of the Kohonen’s Self-Organizing Map (SOM) to the wheeled robot starting and braking dynamic states. In securing wheeled robot stability as well as minimum starting and braking time, it is important to ensure correct torque distribution as well as proper slope of braking and driving moments. In this paper, a correct movement distribution has been formulated, securing optimum adhesion coefficient and good transversal stability of a wheeled robot. A neural tuner has been proposed to secure the above properties, although most of the attention is attached to the SOM network application. If the delay of the torque application or torque release is not negligible, it is important to change the rising and falling slopes of the torque. The road/surface condition is also paramount in robot dynamic states control. As the road conditions may randomly change in time, application of the SOM network has been suggested in order to classify the actual road conditions.Keywords: slip control, SOM network, torque distribution, wheeled Robot
Procedia PDF Downloads 1289111 Braiding Channel Pattern Due to Variation of Discharge
Authors: Satish Kumar, Spandan Sahu, Sarjati Sahoo, K. K. Khatua
Abstract:
An experimental investigation has been carried out in a tilting flume of 2 m wide, 13 m long, and 0.3 m deep to study the effect of flow on the formation of braided channel pattern. Sediment flow is recirculated through the flume, which passes from the headgate to the sediment/water collecting tank through the tailgate. Further, without altering the geometry of the sand bed channel, the discharge is varied to study the effect of the formation of the braided pattern with time. Then the flow rate is varied to study the effect of flow on the formation of the braided pattern. Sediment transport rate is highly variable and was found to be a nonlinear function of flow rate, aspect ratio, longitudinal slope, and time. Total braided intensity (BIT) for each discharge case is found to be more than the active braided intensity (BIA). Both the parameters first increase and then decrease as the time progresses following a similar pattern for all the observed discharge cases. When the flow is increased, the movement of sediment also increases since the active braided intensity is found to adjust quickly. The measurement of velocity and boundary shear helps to study the erosion and sedimentation processes in the channel and formation of small meandering channels and then the braided channel for different discharge conditions of a sediment river. Due to regime properties of rivers, both total braided Intensity and active braided intensity become stable for a given channel and flow conditions. In the present case, the trend of the ratio of BIA to BIT is found to be asymptotic against the time with a value of 0.4. After the particular time elapses off the flow, new small channels are also found to be formed with changes in the sinuosity of the active channels, thus forming the braided network. This is due to the continuous erosion and sedimentation processes occurring for the flow process for the flow and sediment conditions.Keywords: active braided intensity, bed load, sediment transport, shear stress, total braided intensity
Procedia PDF Downloads 1319110 Passenger Movement Pattern during Ship Evacuation Considering the Combined Effect of Ship Heeling and Trim
Authors: Jinlu Sun, Shouxiang Lu, Siuming Lo
Abstract:
Large passenger ship, especially luxury cruise, is one of the most prevalent means of marine transportation and tourism nowadays. In case of an accident, an effective evacuation would be the ultimate way to minimize the consequence. Ship heeling and trim has a considerable influence on passenger walking speed and posture during ship evacuation. To investigate passenger movement pattern under the combined effect of ship heeling and trim, a ship corridor simulator was developed. Both fast and freely individual walking experiments by male and female experimental subjects under heeling and trim conditions were conducted and recorded therein. It is found that routes of experimental subjects would change due to the heeling and trim angles, although they always walk along the right side because of cultural factors. Experimental subjects would also change their posture to adapt the combined heeling and trim conditions, such as leaning forward, adopting larger arm swaying, shorter and more frequent steps. While for individual walking speed, the speed would decrease with the increasing heeling and trim angles. But the maximum individual walking speed is achieved at heeling angle of 0° with trim angle ranging from -15° to -5 °, instead of on level ground, which may be attributable to the effect of the gravitational acceleration. Female is approximately 10% slower than male due to the discrepancy in physical quality. Besides, individual walking speed shows similar trends in both fast and freely walking modes, and the speed value in freely walking mode is about 78% of that in fast walking mode under each experimental condition. Furthermore, to designate the movement pattern of passengers in heeling and trim conditions, a model of the walking speed reduction was proposed. This work would provide guidance on the development of evacuation models and the design of evacuation facilities on board.Keywords: evacuation, heeling, individual walking speed, ship corridor simulator, trim
Procedia PDF Downloads 2599109 Exploring the Working Conditions of Physical Education Teachers in Times of COVID-19: A Phenomenological Study
Authors: Raziel Mojica
Abstract:
This study delves into the challenging working conditions faced by physical education (PE) teachers in public schools, particularly during the transition to remote teaching due to the impact of the COVID-19 pandemic. Using a qualitative, hermeneutic phenomenological approach, the research involves in-depth interviews with PE teachers to gain profound insight into their lived experiences and to answer the main question: What is the essence of the lived experience of physical education? The study explores the following sub-questions: (1) How do the participants describe their lived experience regarding their working conditions as physical education teachers in the new normal setup?; (2) What themes emerge from the testimonies of Physical Education Public School teachers from the Division of Calamba?; (3) Based on the consolidated findings and reflection, what material may be produced to inspire the physical education public school teachers? The study identifies emerging themes such as professional growth, personal life boundaries, accessible facilities and equipment, time management, and school leadership. Framed by Frederick Herzberg's Work-Motivation Theory, the study emphasizes motivator and hygienic factors that significantly impact job satisfaction and dissatisfaction. As a result of the study, the teachers vividly identified the challenges they face, including the lack of resources, training, and support from school leaders, which have made it difficult for them to adapt to the new teaching environment. These findings underscore the urgent need to revise teacher training curricula and for school leaders to provide strategic support to PE teachers in remote learning contexts. In conclusion, the study recommends targeted interventions to address these challenges and better equip PE teachers for the new normal in education.Keywords: PE teachers, COVID-19 pandemic, hermeneutic phenomenological, physical education, new normal
Procedia PDF Downloads 329108 Enhancing Greenhouse Productivity and Energy Efficiency Through UV-IR Reflective Coatings and Dust Mitigation: A Case Study in Saudi Arabia
Authors: Tayirjan Taylor Isimjan, Essam Jamea, Muien Qaryouti
Abstract:
The demand for efficient greenhouse production is escalating, necessitating continuous improvements in controlled plant growth environments. Central to maximizing growth are critical light-related factors, including quantity, quality, and geometric distribution of intercepted radiation. This becomes particularly crucial in regions like the Middle East, characterized by high solar radiation and dusty atmospheric conditions. Existing greenhouse technologies often rely on additional expensive equipment to manage light conditions effectively. In this study, we propose a distinct approach employing functional coatings to mitigate dust and block UV and IR radiation, thereby conserving energy and enhancing productivity. By combining UV-IR reflective coatings with dust mitigation strategies, we aim to address both environmental challenges and energy consumption issues faced by greenhouse agriculture in Saudi Arabia.Keywords: greenhouse, UV-IR reflective coatings, dust mitigation, energy efficiency, productivity
Procedia PDF Downloads 639107 Blue Whale Body Condition from Photographs Taken over a 14-Year Period in the North East Pacific: Annual Variations and Connection to Measures of Ocean Productivity
Authors: Rachel Wachtendonk, John Calambokidis, Kiirsten Flynn
Abstract:
Large marine mammals can serve as an indicator of the overall state of the environment due to their long lifespan and apex position in marine food webs. Reductions in prey, driven by changes in environmental conditions can have resounding impacts on the trophic system as a whole; this can manifest in reduced fat stores that are visible on large whales. Poor health can lead to reduced survivorship and fitness, both of which can be detrimental to a recovering population. A non-invasive technique was used for monitoring blue whale health and for seeing if it changes with ocean conditions. Digital photographs of blue whales taken in the NE Pacific by Cascadia Research and collaborators from 2005-2018 (n=3,545) were scored for overall body condition based on visible vertebrae and body shape on a scale of 0-3 where a score of 0 indicated best body condition and a score of 3 indicated poorest. The data was analyzed to determine if there were patterns in the health of whales across years and whether overall poor health was related to oceanographic conditions and predictors of prey abundance on the California coast. The year was a highly significant factor in body condition (Chi-Square, p<0.001). The proportion of whales showing poor body condition (scores 2 & 3) overall was 33% but by year varied widely from a low of 18% (2008) to a high of 55% (2015). The only two years where >50% of animals had poor body condition were 2015 and 2017 (no other year was above 45%). The 2015 maximum proportion of whales in poor body condition coincide with the marine heat wave that affected the NE Pacific 2014-16 and impacted other whale populations. This indicates that the scoring method was an effective way to evaluate blue whale health and how they respond to a changing ocean.Keywords: blue whale, body condition, environmental variability, photo-identification
Procedia PDF Downloads 2049106 Effects of Preparation Conditions on the Properties of Crumb Rubber Modified Binder
Authors: Baha Vural Kök, Mehmet Yilmaz, Mustafa Akpolat, Cihat Sav
Abstract:
Various types of additives are used frequently in order to improve the rheological and mechanical properties of bituminous mixtures. Small devices instead of full scale machines are used for bitumen modification in the laboratory. These laboratory scale devices vary in terms of their properties such as mixing rate, mixing blade and the amount of binder. In this study, the effect of mixing rate and time during the bitumen modification processes on conventional and rheological properties of pure and crumb rubber modified binder were investigated. Penetration, softening point, rotational viscosity (RV) and dynamic shear rheometer (DSR) tests were applied to pure and CR modified bitumen. It was concluded that the penetration and softening point test did not show the efficiency of CR obtained by different mixing conditions. Besides, oxidation that occurred during the preparation processes plays a great part in the improvement effects of the modified binder.Keywords: bitumen, crumb rubber, modification, rheological properties
Procedia PDF Downloads 3169105 Designing an Exhaust Gas Energy Recovery Module Following Measurements Performed under Real Operating Conditions
Authors: Jerzy Merkisz, Pawel Fuc, Piotr Lijewski, Andrzej Ziolkowski, Pawel Czarkowski
Abstract:
The paper presents preliminary results of the development of an automotive exhaust gas energy recovery module. The aim of the performed analyses was to select the geometry of the heat exchanger that would ensure the highest possible transfer of heat at minimum heat flow losses. The starting point for the analyses was a straight portion of a pipe, from which the exhaust system of the tested vehicle was made. The design of the heat exchanger had a cylindrical cross-section, was 300 mm long and was fitted with a diffuser and a confusor. The model works were performed for the mentioned geometry utilizing the finite volume method based on the Ansys CFX v12.1 and v14 software. This method consisted in dividing of the system into small control volumes for which the exhaust gas velocity and pressure calculations were performed using the Navier-Stockes equations. The heat exchange in the system was modeled based on the enthalpy balance. The temperature growth resulting from the acting viscosity was not taken into account. The heat transfer on the fluid/solid boundary in the wall layer with the turbulent flow was done based on an arbitrarily adopted dimensionless temperature. The boundary conditions adopted in the analyses included the convective condition of heat transfer on the outer surface of the heat exchanger and the mass flow and temperature of the exhaust gas at the inlet. The mass flow and temperature of the exhaust gas were assumed based on the measurements performed in actual traffic using portable PEMS analyzers. The research object was a passenger vehicle fitted with a 1.9 dm3 85 kW diesel engine. The tests were performed in city traffic conditions.Keywords: waste heat recovery, heat exchanger, CFD simulation, pems
Procedia PDF Downloads 5749104 Ethics in the Islamic Political System
Authors: Djehich Mohamed Yousri
Abstract:
This research deals with an important issue in Islamic political thought, which is the relationship of ethics to the Islamic political system. This is done by following the legal politics books and analyzing their texts in order to reach the moral values on which the political system in Islam is based, starting from the concept of politics to the political principles and conditions of the ruler and the reasons for his removal and the conditions of those authorized to choose him, and ending with the ruler’s relationship with his people, and the relationship of the Islamic state with other countries. The research concluded that moral values are the basis of the political system in Islam, and the reason for this is due to the fact that Islam is a religion and a global and realistic human system that embraces morals and higher values in order to preserve its lofty message and calls for brotherhood, love, and justice and does not harm human morals. And if the reality of politics in the Islamic world today is not related to the moral values and the lofty message of Islam, this research tries to show the origins of political theory in Islam, and the purpose of the Islamic political system, towards the morality of politics.Keywords: moral, politics, islam, political system, islamic political system
Procedia PDF Downloads 1059103 Intracellular Strategies for Gene Delivery into Mammalian Cells Using Bacteria as a Vector
Authors: Kumaran Narayanan, Andrew N. Osahor
Abstract:
E. coli has been engineered by our group and by others as a vector to deliver DNA into cultured human and animal cells. However, so far conditions to improve gene delivery using this vector have not been investigated, resulting in a major gap in our understanding of the requirements for this vector to function optimally. Our group recently published novel data showing that simple addition of the DNA transfection reagent Lipofectamine increased the efficiency of the E. coli vector by almost 3-fold, providing the first strong evidence that further optimization of bactofection is possible. This presentation will discuss advances that demonstrate the effects of several intracellular strategies that improve the efficiency of this vector. Conditions that promote endosomal escape of internalized bacteria to evade lysosomal destruction after entry in the cell, a known obstacle limiting this vector, are elucidated. Further, treatments that increase bacterial lysis so that the vector can release its transgene into the mammalian environment for expression will be discussed. These experiments will provide valuable new insight to advance this E. coli system as an important class of vector technology for genetic correction of human disease models in cells and whole animals.Keywords: DNA, E. coli, gene expression, vector
Procedia PDF Downloads 3589102 Geographic Information System Based Development Potentiality Assessment for Rural Villages: Case Study in Fuliang County, Jingdezhen
Authors: Sishen Wang
Abstract:
Chinese rural industry development is the major task currently during rapid urbanization. Development of potentiality assessment, evaluate the overall suitability of each village for further industrial development, could offer reference for policy makers, especially considering the limited data available in Chinese rural regions. The study focuses on 157 official villages in Fuliang County and evaluates their development potentiality by their topography, transportation condition, population, income of villagers, infrastructure and environmental conditions. Land cover changes for Fuliang county and surrounding areas of each village is also investigated for reference. The final development potentiality of each village was calculated by adding different weighted scores of different categories. Besides, inverse distance weighting (IDW) images for both final score of development potentiality and each factor were made and compared to help to understand the final result. The study found that village in the southern and northern regions have higher development potentiality than villages in the eastern and western regions, mainly because of higher income of villagers, good accessibilities and a large amount of population size. In addition, the Fuliang county was divided into five regions based on final result and policy reference for the development of each region were put forward individually. In addition, three suggestions were made for better local development potentiality: Firstly, the transportation accessibility needs to be improved in the northern regions by building more public transit system there. Secondly, the environmental conditions and infrastructure conditions in the eastern region of the county need some improvement. Thirdly, some encouragement and job opportunities should beset up in the western regions to attract labor force to move in and settle down.Keywords: development potentiality, Fuliang GIS-Based, GIS, official village
Procedia PDF Downloads 1119101 Steady State Modeling and Simulation of an Industrial Steam Boiler
Authors: Amina Lyria Deghal Cheridi, Abla Chaker, Ahcene Loubar
Abstract:
Relap5 system code is one among powerful tools, which is used in the area of design and safety evaluation. This work aims to simulate the behavior of a radiant steam boiler at the steady-state conditions using Relap5 code system. To perform this study, a detailed Relap5 model is built including all the parts of the steam boiler. The control and regulation systems are also considered. To reproduce the most important parameters and phenomena with an acceptable accuracy and fidelity, a strong qualification work is undertaken concerning the facility nodalization. It consists of making a comparison between the code results and the plant available data in steady-state operation mode. Therefore, the model qualification results at the steady-state are in good agreement with the steam boiler experimental data. The steam boiler Relap5 model has proved satisfactory; and the model was capable of predicting the main thermal-hydraulic steady-state conditions of the steam boiler.Keywords: industrial steam boiler, model qualification, natural circulation, relap5/mod3.2, steady state simulation
Procedia PDF Downloads 2739100 Using Water Erosion Prediction Project Simulation Model for Studying Some Soil Properties in Egypt
Authors: H. A. Mansour
Abstract:
The objective of this research work is studying the water use prediction, prediction technology for water use by action agencies, and others involved in conservation, planning, and environmental assessment of the Water Erosion Prediction Project (WEPP) simulation model. Models the important physical, processes governing erosion in Egypt (climate, infiltration, runoff, ET, detachment by raindrops, detachment by flowing water, deposition, etc.). Simulation of the non-uniform slope, soils, cropping/management., and Egyptian databases for climate, soils, and crops. The study included important parameters in Egyptian conditions as follows: Water Balance & Percolation, Soil Component (Tillage impacts), Plant Growth & Residue Decomposition, Overland Flow Hydraulics. It could be concluded that we can adapt the WEPP simulation model to determining the previous important parameters under Egyptian conditions.Keywords: WEPP, adaptation, soil properties, tillage impacts, water balance, soil percolation
Procedia PDF Downloads 2989099 Interaction Diagrams for Symmetrically Reinforced Concrete Square Sections Under 3 Dimensional Multiaxial Loading Conditions
Authors: Androniki-Anna Doulgeroglou, Panagiotis Kotronis, Giulio Sciarra, Catherine Bouillon
Abstract:
The interaction diagrams are functions that define ultimate states expressed in terms of generalized forces (axial force, bending moment and shear force). Two characteristic states for reinforced concrete (RC) sections are proposed: the first characteristic state corresponds to the yield of the reinforcement bars and the second to the peak values of the generalized forces generalized displacements curves. 3D numerical simulations are then conducted for RC columns and the global responses are compared to experimental results. Interaction diagrams for combined flexion, shear and axial force loading conditions are numerically produced for symmetrically RC square sections for different reinforcement ratios. Analytical expressions of the interaction diagrams are also proposed, satisfying the condition of convexity. Comparison with interaction diagrams from the Eurocode is finally presented for the study cases.Keywords: analytical convex expressions, finite element method, interaction diagrams, reinforced concrete
Procedia PDF Downloads 1479098 In-Situ Reactive Growth of Silver Nanoparticles on Cotton Textile for Antiviral and Electromagnetic Shielding Applications
Authors: Hamed Mohammadi Mofarah, Mutalifu Abulikemu, Ghassan E. Jabbour
Abstract:
Personal protective equipment (PPE) is finding increasing interest in incorporating silver nanoparticles (NPs) for various applications including microbial disinfection and shielding against electromagnetic waves. In this venue, we present an in situ reactive coating approach where silver nanoparticles are self-assembled on the surface of cotton yarn. The impacts of a variety of experimental parameters on the average size of the synthesized silver NPs were investigated. These include vacuum conditions, the concentration of the silver salt solution and reducer, temperature, and curing time. Silver NPs with an average size ranging from 10 to 50 nanometers were self-assembled as a result of careful regulation of such reaction conditions. The disinfection efficacy against the COVID surrogate virus of the functional textile reached a rate of 99.99%. On the other hand, the silver NPs decorated textile demonstrated an electromagnetic shielding ranging from 31 dB to 45 dB were achieved for the frequency range 8.2-12.4 GHz.Keywords: antiviral, COVID, electromagnetic shielding, in-situ reactive coating, SARS CoV 2, silver nanoparticles, smart textile
Procedia PDF Downloads 1009097 Modelling the Effect of Head and Bucket Splitter Angle on the Power Output of a Pelton Turbine
Authors: J. A. Ujam, J. L. Chukwuneke, C. H. Achebe, G. O. R. Ikwu
Abstract:
This work investigates the effect of head and bucket splitter angle on the power output of a pelton turbine (water turbine), so as to boost the efficiency of Hydro-electric power generation systems. A simulation program was developed using MatLab to depict the force generated by the bucket as the water jet strikes the existing splitter angle (100 to 150) and predicted (10 to 250) splitter angles. Result shows that in addition to the existing splitter angle, six more angles have been investigated for the two operating conditions to give maximum power. The angles are 250, 60 and 190 for high head and low flow with increased pressure while low head and high flow with decreased pressure are 230, 210 and 30 in order of the maximum generating power. The Turbine power output for simulation was more than that of the experiment. This was as a result of their head conditions and the bucket splitter angle.Keywords: bucket splitter angle, force, head, modelling, pelton turbine, power output, shaft output
Procedia PDF Downloads 3569096 Space Telemetry Anomaly Detection Based On Statistical PCA Algorithm
Authors: Bassem Nassar, Wessam Hussein, Medhat Mokhtar
Abstract:
The crucial concern of satellite operations is to ensure the health and safety of satellites. The worst case in this perspective is probably the loss of a mission but the more common interruption of satellite functionality can result in compromised mission objectives. All the data acquiring from the spacecraft are known as Telemetry (TM), which contains the wealth information related to the health of all its subsystems. Each single item of information is contained in a telemetry parameter, which represents a time-variant property (i.e. a status or a measurement) to be checked. As a consequence, there is a continuous improvement of TM monitoring systems in order to reduce the time required to respond to changes in a satellite's state of health. A fast conception of the current state of the satellite is thus very important in order to respond to occurring failures. Statistical multivariate latent techniques are one of the vital learning tools that are used to tackle the aforementioned problem coherently. Information extraction from such rich data sources using advanced statistical methodologies is a challenging task due to the massive volume of data. To solve this problem, in this paper, we present a proposed unsupervised learning algorithm based on Principle Component Analysis (PCA) technique. The algorithm is particularly applied on an actual remote sensing spacecraft. Data from the Attitude Determination and Control System (ADCS) was acquired under two operation conditions: normal and faulty states. The models were built and tested under these conditions and the results shows that the algorithm could successfully differentiate between these operations conditions. Furthermore, the algorithm provides competent information in prediction as well as adding more insight and physical interpretation to the ADCS operation.Keywords: space telemetry monitoring, multivariate analysis, PCA algorithm, space operations
Procedia PDF Downloads 416