Search results for: semantic memory
839 A Reduced Distributed Sate Space for Modular Petri Nets
Authors: Sawsen Khlifa, Chiheb AMeur Abid, Belhassan Zouari
Abstract:
Modular verification approaches have been widely attempted to cope with the well known state explosion problem. This paper deals with the modular verification of modular Petri nets. We propose a reduced version for the modular state space of a given modular Petri net. The new structure allows the creation of smaller modular graphs. Each one draws the behavior of the corresponding module and outlines some global information. Hence, this version helps to overcome the explosion problem and to use less memory space. In this condensed structure, the verification of some generic properties concerning one module is limited to the exploration of its associated graph.Keywords: distributed systems, modular verification, petri nets, state space explosition
Procedia PDF Downloads 117838 The Impact of Corporate Social Responsibility and Relationship Marketing on Relationship Maintainer and Customer Loyalty by Mediating Role of Customer Satisfaction
Authors: Anam Bhatti, Sumbal Arif, Mariam Mehar, Sohail Younas
Abstract:
CSR has become one of the imperative implements in satisfying customers. The impartial of this research is to calculate CSR, relationship marketing, and customer satisfaction. In Pakistan, there is not enough research work on the effect of CSR and relationship marketing on relationship maintainer and customer loyalty. To find out deductive approach and survey method is used as research approach and research strategy respectively. This research design is descriptive and quantitative study. For data, collection questionnaire method with semantic differential scale and seven point scales are adopted. Data has been collected by adopting the non-probability convenience technique as sampling technique and the sample size is 400. For factor confirmatory factor analysis, structure equation modeling and medication analysis, regression analysis Amos software were used. Strong empirical evidence supports that the customer’s perception of CSR performance is highly influenced by the values.Keywords: CSR, Relationship marketing, Relationship maintainer, Customer loyalty, Customer satisfaction
Procedia PDF Downloads 485837 A Video Surveillance System Using an Ensemble of Simple Neural Network Classifiers
Authors: Rodrigo S. Moreira, Nelson F. F. Ebecken
Abstract:
This paper proposes a maritime vessel tracker composed of an ensemble of WiSARD weightless neural network classifiers. A failure detector analyzes vessel movement with a Kalman filter and corrects the tracking, if necessary, using FFT matching. The use of the WiSARD neural network to track objects is uncommon. The additional contributions of the present study include a performance comparison with four state-of-art trackers, an experimental study of the features that improve maritime vessel tracking, the first use of an ensemble of classifiers to track maritime vessels and a new quantization algorithm that compares the values of pixel pairs.Keywords: ram memory, WiSARD weightless neural network, object tracking, quantization
Procedia PDF Downloads 312836 Parallel 2-Opt Local Search on GPU
Authors: Wen-Bao Qiao, Jean-Charles Créput
Abstract:
To accelerate the solution for large scale traveling salesman problems (TSP), a parallel 2-opt local search algorithm with simple implementation based on Graphics Processing Unit (GPU) is presented and tested in this paper. The parallel scheme is based on technique of data decomposition by dynamically assigning multiple K processors on the integral tour to treat K edges’ 2-opt local optimization simultaneously on independent sub-tours, where K can be user-defined or have a function relationship with input size N. We implement this algorithm with doubly linked list on GPU. The implementation only requires O(N) memory. We compare this parallel 2-opt local optimization against sequential exhaustive 2-opt search along integral tour on TSP instances from TSPLIB with more than 10000 cities.Keywords: parallel 2-opt, double links, large scale TSP, GPU
Procedia PDF Downloads 628835 The Impact of Insomnia on the Academic Performance of Mexican Medical Students: Gender Perspective
Authors: Paulina Ojeda, Damaris Estrella, Hector Rubio
Abstract:
Insomnia is a disorder characterized by difficulty falling asleep, staying asleep or both. It negatively affects the life quality of people, it hinders the concentration, attention, memory, motor skills, among other abilities that complicate work or learning. Some studies show that women are more susceptible to insomnia. Medicine curricula usually involve a great deal of theoretical and memory content, especially in the early years of the course. The way to accredit a university course is to demonstrate the level of competence or acquired knowledge. In Mexico the most widely used form of measurement is written exams, with numerical scales results. The prevalence of sleep disorders in university students is usually high, so it is important to know if insomnia has an effect on school performance in men and women. A cross-sectional study was designed that included a probabilistic sample of 118 regular students from the School of Medicine of the Autonomous University of Yucatan, Mexico. All on legally age. The project was authorized by the School of Medicine and all the ethical implications of the case were monitored. Participants completed anonymously the following questionnaires: Pittsburgh Sleep Quality Index, Insomnia Severity Index, AUDIT test, epidemiological and clinical data. Academic performance was assessed by the average number of official grades earned on written exams, as well as the number of approved or non-approved courses. These data were obtained officially through the corresponding school authorities. Students with at least one unapproved course or average less than 70 were considered to be poor performers. With all courses approved and average between 70-79 as regular performance and with an average of 80 or higher as a good performance. Statistical analysis: t-Student, difference of proportions and ANOVA. 65 men with a mean age of 19.15 ± 1.60 years and 53 women of 18.98 ± 1.23 years, were included. 96% of the women and 78.46% of the men sleep in the family home. 16.98% of women and 18.46% of men consume tobacco. Most students consume caffeinated beverages. 3.7% of the women and 10.76% of the men complete criteria of harmful consumption of alcohol. 98.11% of the women and 90.76% of the men are perceived with poor sleep quality. Insomnia was present in 73% of women and 66% of men. Women had higher levels of moderate insomnia (p=0.02) compared to men and only one woman had severe insomnia. 50.94% of the women and 44.61% of the men had poor academic performance. 18.86% of women and 27% of men performed well. Only in the group of women we found a significant association between poor performance with mild (p= 0.0035) and moderate (p=0.031) insomnia. The medical students reported poor sleep quality and insomnia. In women, levels of insomnia were associated with poor academic performance.Keywords: scholar-average, sex, sleep, university
Procedia PDF Downloads 296834 Grid Computing for Multi-Objective Optimization Problems
Authors: Aouaouche Elmaouhab, Hassina Beggar
Abstract:
Solving multi-objective discrete optimization applications has always been limited by the resources of one machine: By computing power or by memory, most often both. To speed up the calculations, the grid computing represents a primary solution for the treatment of these applications through the parallelization of these resolution methods. In this work, we are interested in the study of some methods for solving multiple objective integer linear programming problem based on Branch-and-Bound and the study of grid computing technology. This study allowed us to propose an implementation of the method of Abbas and Al on the grid by reducing the execution time. To enhance our contribution, the main results are presented.Keywords: multi-objective optimization, integer linear programming, grid computing, parallel computing
Procedia PDF Downloads 486833 Morphological Analysis of Manipuri Language: Wahei-Neinarol
Authors: Y. Bablu Singh, B. S. Purkayashtha, Chungkham Yashawanta Singh
Abstract:
Morphological analysis forms the basic foundation in NLP applications including syntax parsing Machine Translation (MT), Information Retrieval (IR) and automatic indexing in all languages. It is the field of the linguistics; it can provide valuable information for computer based linguistics task such as lemmatization and studies of internal structure of the words. Computational Morphology is the application of morphological rules in the field of computational linguistics, and it is the emerging area in AI, which studies the structure of words, which are formed by combining smaller units of linguistics information, called morphemes: the building blocks of words. Morphological analysis provides about semantic and syntactic role in a sentence. It analyzes the Manipuri word forms and produces several grammatical information associated with the words. The Morphological Analyzer for Manipuri has been tested on 3500 Manipuri words in Shakti Standard format (SSF) using Meitei Mayek as source; thereby an accuracy of 80% has been obtained on a manual check.Keywords: morphological analysis, machine translation, computational morphology, information retrieval, SSF
Procedia PDF Downloads 326832 Scientific Recommender Systems Based on Neural Topic Model
Authors: Smail Boussaadi, Hassina Aliane
Abstract:
With the rapid growth of scientific literature, it is becoming increasingly challenging for researchers to keep up with the latest findings in their fields. Academic, professional networks play an essential role in connecting researchers and disseminating knowledge. To improve the user experience within these networks, we need effective article recommendation systems that provide personalized content.Current recommendation systems often rely on collaborative filtering or content-based techniques. However, these methods have limitations, such as the cold start problem and difficulty in capturing semantic relationships between articles. To overcome these challenges, we propose a new approach that combines BERTopic (Bidirectional Encoder Representations from Transformers), a state-of-the-art topic modeling technique, with community detection algorithms in a academic, professional network. Experiences confirm our performance expectations by showing good relevance and objectivity in the results.Keywords: scientific articles, community detection, academic social network, recommender systems, neural topic model
Procedia PDF Downloads 100831 [Keynote Talk]: The Intoxicated Eyewitness: Effect of Alcohol Consumption on Identification Accuracy in Lineup
Authors: Vikas S. Minchekar
Abstract:
The eyewitness is a crucial source of evidence in the criminal judicial system. However, rely on the reminiscence of an eyewitness especially intoxicated eyewitness is not always judicious. It might lead to some serious consequences. Day by day, alcohol-related crimes or the criminal incidences in bars, nightclubs, and restaurants are increasing rapidly. Tackling such cases is very complicated to any investigation officers. The people in that incidents are violated due to the alcohol consumption hence, their ability to identify the suspects or recall these phenomena is affected. The studies on the effects of alcohol consumption on motor activities such as driving and surgeries have received much attention. However, the effect of alcohol intoxication on memory has received little attention from the psychology, law, forensic and criminology scholars across the world. In the Indian context, the published articles on this issue are equal to none up to present day. This field experiment investigation aimed at to finding out the effect of alcohol consumption on identification accuracy in lineups. Forty adult, social drinkers, and twenty sober adults were randomly recruited for the study. The sober adults were assigned into 'placebo' beverage group while social drinkers were divided into two group e. g. 'low dose' of alcohol (0.2 g/kg) and 'high dose' of alcohol (0.8 g/kg). The social drinkers were divided in such a way that their level of blood-alcohol concentration (BAC) will become different. After administering the beverages for the placebo group and liquor to the social drinkers for 40 to 50 minutes of the period, the five-minute video clip of mock crime is shown to all in a group of four to five members. After the exposure of video, clip subjects were given 10 portraits and asked them to recognize whether they are involved in mock crime or not. Moreover, they were also asked to describe the incident. The subjects were given two opportunities to recognize the portraits and to describe the events; the first opportunity is given immediately after the video clip and the second was 24 hours later. The obtained data were analyzed by one-way ANOVA and Scheffe’s posthoc multiple comparison tests. The results indicated that the 'high dose' group is remarkably different from the 'placebo' and 'low dose' groups. But, the 'placebo' and 'low dose' groups are equally performed. The subjects in a 'high dose' group recognized only 20% faces correctly while the subjects in a 'placebo' and 'low dose' groups are recognized 90 %. This study implied that the intoxicated witnesses are less accurate to recognize the suspects and also less capable of describing the incidents where crime has taken place. Moreover, this study does not assert that intoxicated eyewitness is generally less trustworthy than their sober counterparts.Keywords: intoxicated eyewitness, memory, social drinkers, lineups
Procedia PDF Downloads 269830 Characterization of Onboard Reliable Error Correction Code FORSDRAM Controller
Authors: N. Pitcheswara Rao
Abstract:
In the process of conveying the information there may be a chance of signal being corrupted which leads to the erroneous bits in the message. The message may consist of single, double and multiple bit errors. In high-reliability applications, memory can sustain multiple soft errors due to single or multiple event upsets caused by environmental factors. The traditional hamming code with SEC-DED capability cannot be address these types of errors. It is possible to use powerful non-binary BCH code such as Reed-Solomon code to address multiple errors. However, it could take at least a couple dozen cycles of latency to complete first correction and run at a relatively slow speed. In order to overcome this drawback i.e., to increase speed and latency we are using reed-Muller code.Keywords: SEC-DED, BCH code, Reed-Solomon code, Reed-Muller code
Procedia PDF Downloads 428829 Re-interpreting Ruskin with Respect to the Wall
Authors: Anjali Sadanand, R. V. Nagarajan
Abstract:
Architecture morphs with advances in technology and the roof, wall, and floor as basic elements of a building, follow in redefining themselves over time. Their contribution is bound by time and held by design principles that deal with function, sturdiness, and beauty. Architecture engages with people to give joy through its form, material, design structure, and spatial qualities. This paper attempts to re-interpret John Ruskin’s “Seven lamps of Architecture” in the context of the architecture of the modern and present period. The paper focuses on the “wall” as an element of study in this context. Four of Ruskin’s seven lamps will be discussed, namely beauty, truth, life, and memory, through examples of architecture ranging from modernism to contemporary architecture of today. The study will focus on the relevance of Ruskin’s principles to the “wall” in specific, in buildings of different materials and over a range of typologies from all parts of the world. Two examples will be analyzed for each lamp. It will be shown that in each case, there is relevance to the significance of Ruskin’s lamps in modern and contemporary architecture. Nature to which Ruskin alludes to for his lamp of “beauty” is found in the different expressions of interpretation used by Corbusier in his Villa Stein façade based on proportion found in nature and in the direct expression of Toyo Ito in his translation of an understanding of the structure of trees into his façade design of the showroom for a Japanese bag boutique. “Truth” is shown in Mies van der Rohe’s Crown Hall building with its clarity of material and structure and Studio Mumbai’s Palmyra House, which celebrates the use of natural materials and local craftsmanship. “Life” is reviewed with a sustainable house in Kerala by Ashrams Ravi and Alvar Aalto’s summer house, which illustrate walls as repositories of intellectual thought and craft. “Memory” is discussed with Charles Correa’s Jawahar Kala Kendra and Venturi’s Vana Venturi house and discloses facades as text in the context of its materiality and iconography. Beauty is reviewed in Villa Stein and Toyo Ito’s Branded Retail building in Tokyo. The paper thus concludes that Ruskin’s Lamps can be interpreted in today’s context and add richness to meaning to the understanding of architecture.Keywords: beauty, design, facade, modernism
Procedia PDF Downloads 118828 Minimizing Mutant Sets by Equivalence and Subsumption
Authors: Samia Alblwi, Amani Ayad
Abstract:
Mutation testing is the art of generating syntactic variations of a base program and checking whether a candidate test suite can identify all the mutants that are not semantically equivalent to the base: this technique is widely used by researchers to select quality test suites. One of the main obstacles to the widespread use of mutation testing is cost: even small pro-grams (a few dozen lines of code) can give rise to a large number of mutants (up to hundreds): this has created an incentive to seek to reduce the number of mutants while preserving their collective effectiveness. Two criteria have been used to reduce the size of mutant sets: equiva-lence, which aims to partition the set of mutants into equivalence classes modulo semantic equivalence, and selecting one representative per class; subsumption, which aims to define a partial ordering among mutants that ranks mutants by effectiveness and seeks to select maximal elements in this ordering. In this paper we analyze these two policies using analytical and em-pirical criteria.Keywords: mutation testing, mutant sets, mutant equivalence, mutant subsumption, mutant set minimization
Procedia PDF Downloads 64827 Cross-Knowledge Graph Relation Completion for Non-Isomorphic Cross-Lingual Entity Alignment
Authors: Yuhong Zhang, Dan Lu, Chenyang Bu, Peipei Li, Kui Yu, Xindong Wu
Abstract:
The Cross-Lingual Entity Alignment (CLEA) task aims to find the aligned entities that refer to the same identity from two knowledge graphs (KGs) in different languages. It is an effective way to enhance the performance of data mining for KGs with scarce resources. In real-world applications, the neighborhood structures of the same entities in different KGs tend to be non-isomorphic, which makes the representation of entities contain diverse semantic information and then poses a great challenge for CLEA. In this paper, we try to address this challenge from two perspectives. On the one hand, the cross-KG relation completion rules are designed with the alignment constraint of entities and relations to improve the topology isomorphism of two KGs. On the other hand, a representation method combining isomorphic weights is designed to include more isomorphic semantics for counterpart entities, which will benefit the CLEA. Experiments show that our model can improve the isomorphism of two KGs and the alignment performance, especially for two non-isomorphic KGs.Keywords: knowledge graphs, cross-lingual entity alignment, non-isomorphic, relation completion
Procedia PDF Downloads 124826 Characterization of Onboard Reliable Error Correction Code for SDRAM Controller
Authors: Pitcheswara Rao Nelapati
Abstract:
In the process of conveying the information there may be a chance of signal being corrupted which leads to the erroneous bits in the message. The message may consist of single, double and multiple bit errors. In high-reliability applications, memory can sustain multiple soft errors due to single or multiple event upsets caused by environmental factors. The traditional hamming code with SEC-DED capability cannot be address these types of errors. It is possible to use powerful non-binary BCH code such as Reed-Solomon code to address multiple errors. However, it could take at least a couple dozen cycles of latency to complete first correction and run at a relatively slow speed. In order to overcome this drawback i.e., to increase speed and latency we are using reed-Muller code.Keywords: SEC-DED, BCH code, Reed-Solomon code, Reed-Muller code
Procedia PDF Downloads 430825 A Comprehensive Study of Camouflaged Object Detection Using Deep Learning
Authors: Khalak Bin Khair, Saqib Jahir, Mohammed Ibrahim, Fahad Bin, Debajyoti Karmaker
Abstract:
Object detection is a computer technology that deals with searching through digital images and videos for occurrences of semantic elements of a particular class. It is associated with image processing and computer vision. On top of object detection, we detect camouflage objects within an image using Deep Learning techniques. Deep learning may be a subset of machine learning that's essentially a three-layer neural network Over 6500 images that possess camouflage properties are gathered from various internet sources and divided into 4 categories to compare the result. Those images are labeled and then trained and tested using vgg16 architecture on the jupyter notebook using the TensorFlow platform. The architecture is further customized using Transfer Learning. Methods for transferring information from one or more of these source tasks to increase learning in a related target task are created through transfer learning. The purpose of this transfer of learning methodologies is to aid in the evolution of machine learning to the point where it is as efficient as human learning.Keywords: deep learning, transfer learning, TensorFlow, camouflage, object detection, architecture, accuracy, model, VGG16
Procedia PDF Downloads 152824 Performance Evaluation of the Classic seq2seq Model versus a Proposed Semi-supervised Long Short-Term Memory Autoencoder for Time Series Data Forecasting
Authors: Aswathi Thrivikraman, S. Advaith
Abstract:
The study is aimed at designing encoders for deciphering intricacies in time series data by redescribing the dynamics operating on a lower-dimensional manifold. A semi-supervised LSTM autoencoder is devised and investigated to see if the latent representation of the time series data can better forecast the data. End-to-end training of the LSTM autoencoder, together with another LSTM network that is connected to the latent space, forces the hidden states of the encoder to represent the most meaningful latent variables relevant for forecasting. Furthermore, the study compares the predictions with those of a traditional seq2seq model.Keywords: LSTM, autoencoder, forecasting, seq2seq model
Procedia PDF Downloads 156823 Misleading Node Detection and Response Mechanism in Mobile Ad-Hoc Network
Authors: Earleen Jane Fuentes, Regeene Melarese Lim, Franklin Benjamin Tapia, Alexis Pantola
Abstract:
Mobile Ad-hoc Network (MANET) is an infrastructure-less network of mobile devices, also known as nodes. These nodes heavily rely on each other’s resources such as memory, computing power, and energy. Thus, some nodes may become selective in forwarding packets so as to conserve their resources. These nodes are called misleading nodes. Several reputation-based techniques (e.g. CORE, CONFIDANT, LARS, SORI, OCEAN) and acknowledgment-based techniques (e.g. TWOACK, S-TWOACK, EAACK) have been proposed to detect such nodes. These techniques do not appropriately punish misleading nodes. Hence, this paper addresses the limitations of these techniques using a system called MINDRA.Keywords: acknowledgment-based techniques, mobile ad-hoc network, selfish nodes, reputation-based techniques
Procedia PDF Downloads 386822 Efficacy and Safety of COVID-19 Vaccination in Patients with Multiple Sclerosis: Looking Forward to Post-COVID-19
Authors: Achiron Anat, Mathilda Mandel, Mayust Sue, Achiron Reuven, Gurevich Michael
Abstract:
Introduction: As coronavirus disease 2019 (COVID-19) vaccination is currently spreading around the world, it is of importance to assess the ability of multiple sclerosis (MS) patients to mount an appropriate immune response to the vaccine in the context of disease-modifying treatments (DMT’s). Objectives: Evaluate immunity generated following COVID-19 vaccination in MS patients, and assess factors contributing to protective humoral and cellular immune responses in MS patients vaccinated against severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) virus infection. Methods: Review our recent data related to (1) the safety of PfizerBNT162b2 COVID-19 mRNA vaccine in adult MS patients; (2) the humoral post-vaccination SARS-CoV2 IgG response in MS vaccinees using anti-spike protein-based serology; and (3) the cellular immune response of memory B-cells specific for SARS-CoV-2 receptor-binding domain (RBD) and memory T-cells secreting IFN-g and/or IL-2 in response to SARS-CoV2 peptides using ELISpot/Fluorospot assays in MS patients either untreated or under treatment with fingolimod, cladribine, or ocrelizumab; (4) covariate parameters related to mounting protective immune responses. Results: COVID-19 vaccine proved safe in MS patients, and the adverse event profile was mainly characterised by pain at the injection site, fatigue, and headache. Not any increased risk of relapse activity was noted and the rate of patients with acute relapse was comparable to the relapse rate in non-vaccinated patients during the corresponding follow-up period. A mild increase in the rate of adverse events was noted in younger MS patients, among patients with lower disability, and in patients treated with DMTs. Following COVID-19 vaccination protective humoral immune response was significantly decreased in fingolimod- and ocrelizumab- treated MS patients. SARS-CoV2 specific B-cell and T-cell cellular responses were respectively decreased. Untreated MS patients and patients treated with cladribine demonstrated protective humoral and cellular immune responses, similar to healthy vaccinated subjects. Conclusions: COVID-19 BNT162b2 vaccine proved as safe for MS patients. No increased risk of relapse activity was noted post-vaccination. Although COVID-19 vaccination is new, accumulated data demonstrate differences in immune responses under various DMT’s. This knowledge can help to construct appropriate COVID-19 vaccine guidelines to ensure proper immune responses for MS patients.Keywords: covid-19, vaccination, multiple sclerosis, IgG
Procedia PDF Downloads 139821 Block Mining: Block Chain Enabled Process Mining Database
Authors: James Newman
Abstract:
Process mining is an emerging technology that looks to serialize enterprise data in time series data. It has been used by many companies and has been the subject of a variety of research papers. However, the majority of current efforts have looked at how to best create process mining from standard relational databases. This paper is the first pass at outlining a database custom-built for the minimal viable product of process mining. We present Block Miner, a blockchain protocol to store process mining data across a distributed network. We demonstrate the feasibility of storing process mining data on the blockchain. We present a proof of concept and show how the intersection of these two technologies helps to solve a variety of issues, including but not limited to ransomware attacks, tax documentation, and conflict resolution.Keywords: blockchain, process mining, memory optimization, protocol
Procedia PDF Downloads 104820 The Relationship Between Sleep Characteristics and Cognitive Impairment in Patients with Alzheimer’s Disease
Authors: Peng Guo
Abstract:
Objective: This study investigates the clinical characteristics of sleep disorders (SD) in patients with Alzheimer's disease (AD) and their relationship with cognitive impairment. Methods: According to the inclusion and exclusion criteria of AD, 460 AD patients were consecutively included in Beijing Tiantan Hospital from January 2016 to April 2022. Demographic data, including gender, age, age of onset, course of disease, years of education and body mass index, were collected. The Pittsburgh sleep quality index (PSQI) scale was used to evaluate the overall sleep status. AD patients with PSQI ≥7 was divided into AD with SD (AD-SD) group, and those with PSQI < 7 were divided into AD with no SD (AD-nSD) group. The overall cognitive function of AD patients was evaluated by the scales of Mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA), memory was evaluated by the AVLT-immediate recall, AVLT-delayed recall and CFT-delayed memory scales, the language was evaluated by BNT scale, visuospatial ability was evaluated by CFT-imitation, executive function was evaluated by Stroop-A, Stroop-B and Stroop-C scales, attention was evaluated by TMT-A, TMT-B, and SDMT scales. The correlation between cognitive function and PSQI score in AD-SD group was analyzed. Results: Among the 460 AD patients, 173 cases (37.61%) had SD. There was no significant difference in gender, age, age of onset, course of disease, years of education and body mass index between AD-SD and AD-nSD groups (P>0.05). The factors with significant difference in PSQI scale between AD-SD and AD-nSD groups include sleep quality, sleep latency, sleep duration, sleep efficiency, sleep disturbance, use of sleeping medication and daytime dysfunction (P<0.05). Compared with AD-nSD group, the total scores of MMSE, MoCA, AVLT-immediate recall and CFT-imitation scales in AD-SD group were significantly lower(P<0.01,P<0.01,P<0.01,P<0.05). In AD-SD group, subjective sleep quality was significantly and negatively correlated with the scores of MMSE, MoCA, AVLT-immediate recall and CFT-imitation scales (r=-0.277,P=0.000; r=-0.216,P=0.004; r=-0.253,P=0.001; r=-0.239, P=0.004), daytime dysfunction was significantly and negatively correlated with the score of AVLT-immediate recall scale (r=-0.160,P=0.043). Conclusion The incidence of AD-SD is 37.61%. AD-SD patients have worse subjective sleep quality, longer time to fall asleep, shorter sleep time, lower sleep efficiency, severer nighttime SD, more use of sleep medicine, and severer daytime dysfunction. The overall cognitive function, immediate recall and visuospatial ability of AD-SD patients are significantly impaired and are closely correlated with the decline of subjective sleep quality. The impairment of immediate recall is highly correlated with daytime dysfunction in AD-SD patients.Keywords: Alzheimer's disease, sleep disorders, cognitive impairment, correlation
Procedia PDF Downloads 32819 Cultural Studies in the Immigration Movements: Memories and Social Collectives
Authors: María Eugenia Peltzer, María Estela Rodríguez
Abstract:
This work presents an approach to the cultural aspects of the Immigrants as part of the Cultural Intangible Heritage of Argentina. The intangible cultural heritage consists of the manifestations, practices, uses, representations, expressions, knowledge, techniques and cultural spaces that communities and groups recognize as an integral part of their cultural heritage. This heritage generates feelings of identity and establishes links with the collective memory, as well as being transmitted and recreated over time according to its environment, its interaction with nature and its history contributing to promote respect for cultural diversity and Human creativity. The Immigrants brings together those who came from other lands and their descendants, thus maintaining their traditions through time and linking the members of each cultural group with a strong sense of belonging through a communicative and effective process.Keywords: cultural, immigration, memories, social
Procedia PDF Downloads 439818 Teaching Linguistic Humour Research Theories: Egyptian Higher Education EFL Literature Classes
Authors: O. F. Elkommos
Abstract:
“Humour studies” is an interdisciplinary research area that is relatively recent. It interests researchers from the disciplines of psychology, sociology, medicine, nursing, in the work place, gender studies, among others, and certainly teaching, language learning, linguistics, and literature. Linguistic theories of humour research are numerous; some of which are of interest to the present study. In spite of the fact that humour courses are now taught in universities around the world in the Egyptian context it is not included. The purpose of the present study is two-fold: to review the state of arts and to show how linguistic theories of humour can be possibly used as an art and craft of teaching and of learning in EFL literature classes. In the present study linguistic theories of humour were applied to selected literary texts to interpret humour as an intrinsic artistic communicative competence challenge. Humour in the area of linguistics was seen as a fifth component of communicative competence of the second language leaner. In literature it was studied as satire, irony, wit, or comedy. Linguistic theories of humour now describe its linguistic structure, mechanism, function, and linguistic deviance. Semantic Script Theory of Verbal Humor (SSTH), General Theory of Verbal Humor (GTVH), Audience Based Theory of Humor (ABTH), and their extensions and subcategories as well as the pragmatic perspective were employed in the analyses. This research analysed the linguistic semantic structure of humour, its mechanism, and how the audience reader (teacher or learner) becomes an interactive interpreter of the humour. This promotes humour competence together with the linguistic, social, cultural, and discourse communicative competence. Studying humour as part of the literary texts and the perception of its function in the work also brings its positive association in class for educational purposes. Humour is by default a provoking/laughter-generated device. Incongruity recognition, perception and resolving it, is a cognitive mastery. This cognitive process involves a humour experience that lightens up the classroom and the mind. It establishes connections necessary for the learning process. In this context the study examined selected narratives to exemplify the application of the theories. It is, therefore, recommended that the theories would be taught and applied to literary texts for a better understanding of the language. Students will then develop their language competence. Teachers in EFL/ESL classes will teach the theories, assist students apply them and interpret text and in the process will also use humour. This is thus easing students' acquisition of the second language, making the classroom an enjoyable, cheerful, self-assuring, and self-illuminating experience for both themselves and their students. It is further recommended that courses of humour research studies should become an integral part of higher education curricula in Egypt.Keywords: ABTH, deviance, disjuncture, episodic, GTVH, humour competence, humour comprehension, humour in the classroom, humour in the literary texts, humour research linguistic theories, incongruity-resolution, isotopy-disjunction, jab line, longer text joke, narrative story line (macro-micro), punch line, six knowledge resource, SSTH, stacks, strands, teaching linguistics, teaching literature, TEFL, TESL
Procedia PDF Downloads 303817 Thermodynamic Trends in Co-Based Alloys via Inelastic Neutron Scattering
Authors: Paul Stonaha, Mariia Romashchenko, Xaio Xu
Abstract:
Magnetic shape memory alloys (MSMAs) are promising technological materials for a range of fields, from biomaterials to energy harvesting. We have performed inelastic neutron scattering on two powder samples of cobalt-based high-entropy MSMAs across a range of temperatures in an effort to compare calculations of thermodynamic properties (entropy, specific heat, etc.) to the measured ones. The measurements were correct for multiphonon scattering and multiple scattering contributions. We present herein the neutron-weighted vibrational density of states. Future work will utilize DFT calculations of the disordered lattice to correct for the neutron weighting and retrieve the true thermodynamical properties.Keywords: neutron scattering, vibrational dynamics, computational physics, material science
Procedia PDF Downloads 36816 Research on the Optimization of Satellite Mission Scheduling
Authors: Pin-Ling Yin, Dung-Ying Lin
Abstract:
Satellites play an important role in our daily lives, from monitoring the Earth's environment and providing real-time disaster imagery to predicting extreme weather events. As technology advances and demands increase, the tasks undertaken by satellites have become increasingly complex, with more stringent resource management requirements. A common challenge in satellite mission scheduling is the limited availability of resources, including onboard memory, ground station accessibility, and satellite power. In this context, efficiently scheduling and managing the increasingly complex satellite missions under constrained resources has become a critical issue that needs to be addressed. The core of Satellite Onboard Activity Planning (SOAP) lies in optimizing the scheduling of the received tasks, arranging them on a timeline to form an executable onboard mission plan. This study aims to develop an optimization model that considers the various constraints involved in satellite mission scheduling, such as the non-overlapping execution periods for certain types of tasks, the requirement that tasks must fall within the contact range of specified types of ground stations during their execution, onboard memory capacity limits, and the collaborative constraints between different types of tasks. Specifically, this research constructs a mixed-integer programming mathematical model and solves it with a commercial optimization package. Simultaneously, as the problem size increases, the problem becomes more difficult to solve. Therefore, in this study, a heuristic algorithm has been developed to address the challenges of using commercial optimization package as the scale increases. The goal is to effectively plan satellite missions, maximizing the total number of executable tasks while considering task priorities and ensuring that tasks can be completed as early as possible without violating feasibility constraints. To verify the feasibility and effectiveness of the algorithm, test instances of various sizes were generated, and the results were validated through feedback from on-site users and compared against solutions obtained from a commercial optimization package. Numerical results show that the algorithm performs well under various scenarios, consistently meeting user requirements. The satellite mission scheduling algorithm proposed in this study can be flexibly extended to different types of satellite mission demands, achieving optimal resource allocation and enhancing the efficiency and effectiveness of satellite mission execution.Keywords: mixed-integer programming, meta-heuristics, optimization, resource management, satellite mission scheduling
Procedia PDF Downloads 31815 Aesthetics and Semiotics in Theatre Performance
Authors: Păcurar Diana Istina
Abstract:
Structured in three chapters, the article attempts an X-ray of the theatrical aesthetics, correctly understood through the emotions generated in the intimate structure of the spectator that precedes the triggering of the viewer’s perception and not through the superposition, unfortunately common, of the notion of aesthetics with the style in which a theater show is built. The first chapter contains a brief history of the appearance of the word aesthetic, the formulation of definitions for this new term, as well as its connections with the notions of semiotics, in particular with the perception of the message transmitted. Starting with Aristotle and Plato, and reaching Magritte, their interventions should not be interpreted in the sense that the two scientific concepts can merge into one discipline. The perception that is the object of everyone’s analysis, the understanding of meaning, the decoding of the messages sent, and the triggering of feelings that culminate in pleasure, shaping the aesthetic vision, are some elements that keep semiotics and aesthetics distinct, even though they share many methods of analysis. The compositional processes of aesthetic representation and symbolic formation are analyzed in the second part of the paper from perspectives that include or do not include historical, cultural, social, and political processes. Aesthetics and the organization of its symbolic process are treated, taking into account expressive activity. The last part of the article explores the notion of aesthetics in applied theater, more specifically in the theater show. Taking the postmodern approach that aesthetics applies to the creation of an artifact and the reception of that artifact, the intervention of these elements in the theatrical system must be emphasized –that is, the analysis of the problems arising in the stages of the creation, presentation, and reception, by the public, of the theater performance. The aesthetic process is triggered involuntarily, simultaneously, or before the moment when people perceive the meaning of the messages transmitted by the work of art. The finding of this fact makes the mental process of aesthetics similar or related to that of semiotics. No matter how perceived individually, beauty, the mechanism of production can be reduced to two. The first step presents similarities to Peirce’s model, but the process between signified and signified additionally stimulates the related memory of the evaluation of beauty, adding to the meanings related to the signification itself. Then, the second step, a process of comparison, is followed, in which one examines whether the object being looked at matches the accumulated memory of beauty. Therefore, even though aesthetics is derived from the conceptual part, the judgment of beauty and, more than that, moral judgment come to be so important to the social activities of human beings that it evolves as a visible process independent of other conceptual contents.Keywords: aesthetics, semiotics, symbolic composition, subjective joints, signifying, signified
Procedia PDF Downloads 110814 Syntactic Ambiguity and Syntactic Analysis: Transformational Grammar Approach
Authors: Olufemi Olupe
Abstract:
Within linguistics, various approaches have been adopted to the study of language. One of such approaches is the syntax. The syntax is an aspect of the grammar of the language which deals with how words are put together to form phrases and sentences and how such structures are interpreted in language. Ambiguity, which is also germane in this discourse is about the uncertainty of meaning as a result of the possibility of a phrase or sentence being understood and interpreted in more than one way. In the light of the above, this paper attempts a syntactic study of syntactic ambiguities in The English Language, using the Transformational Generative Grammar (TGG) Approach. In doing this, phrases and sentences were raised with each description followed by relevant analysis. Finding in the work reveals that ambiguity cannot always be disambiguated by the means of syntactic analysis alone without recourse to semantic interpretation. The further finding shows that some syntactical ambiguities structures cannot be analysed on two surface structures in spite of the fact that there are more than one deep structures. The paper concludes that in as much as ambiguity remains in language; it will continue to pose a problem of understanding to a second language learner. Users of English as a second language, must, however, make a conscious effort to avoid its usage to achieve effective communication.Keywords: language, syntax, semantics, morphology, ambiguity
Procedia PDF Downloads 395813 Family Satisfaction with Neuro-Linguistic Care for Patients with Alzheimer’s Disease
Authors: Sara Sahraoui
Abstract:
This research studied the effect of Alzheimer's disease (AD) on language information processing in subjects with Alzheimer’s disease (AD) who were bilingual (French and dialectical Arabic). The results show a disorder of certain semantic aspects of their mother tongue (L1). On the other hand, grammatical levels appeared to be relatively unaffected in oral speech in L1 but were disturbed in the second language (L2). In consequence, we constructed a cognitive-language stimulation protocol for bilingual patients (PSCLAB) to respond to this disorder. The efficacy of this protocol in terms of rehabilitation was assessed in 30 such patients through discourse analysis carried out before and after initiating the protocol. The results show that cognitive/language training using the PSCLAB appears to improve the language behaviour of bilingual patients with AD. However, this survey study aims to verify the satisfaction of patients’ relatives with the results of cognitive language training by PSCLAB. We developed a brief instrument to measure the satisfaction of family members. The results report that the patient's relatives are satisfied with the results of cognitive training by PSCLAB.Keywords: satisfaction, Alzheimer's disease, rehabilitation, levels language
Procedia PDF Downloads 81812 Hybrid Feature Selection Method for Sentiment Classification of Movie Reviews
Authors: Vishnu Goyal, Basant Agarwal
Abstract:
Sentiment analysis research provides methods for identifying the people’s opinion written in blogs, reviews, social networking websites etc. Sentiment analysis is to understand what opinion people have about any given entity, object or thing. Sentiment analysis research can be broadly categorised into three types of approaches i.e. semantic orientation, machine learning and lexicon based approaches. Feature selection methods improve the performance of the machine learning algorithms by eliminating the irrelevant features. Information gain feature selection method has been considered best method for sentiment analysis; however, it has the drawback of selection of threshold. Therefore, in this paper, we propose a hybrid feature selection methods comprising of information gain and proposed feature selection method. Initially, features are selected using Information Gain (IG) and further more noisy features are eliminated using the proposed feature selection method. Experimental results show the efficiency of the proposed feature selection methods.Keywords: feature selection, sentiment analysis, hybrid feature selection
Procedia PDF Downloads 341811 PsyVBot: Chatbot for Accurate Depression Diagnosis using Long Short-Term Memory and NLP
Authors: Thaveesha Dheerasekera, Dileeka Sandamali Alwis
Abstract:
The escalating prevalence of mental health issues, such as depression and suicidal ideation, is a matter of significant global concern. It is plausible that a variety of factors, such as life events, social isolation, and preexisting physiological or psychological health conditions, could instigate or exacerbate these conditions. Traditional approaches to diagnosing depression entail a considerable amount of time and necessitate the involvement of adept practitioners. This underscores the necessity for automated systems capable of promptly detecting and diagnosing symptoms of depression. The PsyVBot system employs sophisticated natural language processing and machine learning methodologies, including the use of the NLTK toolkit for dataset preprocessing and the utilization of a Long Short-Term Memory (LSTM) model. The PsyVBot exhibits a remarkable ability to diagnose depression with a 94% accuracy rate through the analysis of user input. Consequently, this resource proves to be efficacious for individuals, particularly those enrolled in academic institutions, who may encounter challenges pertaining to their psychological well-being. The PsyVBot employs a Long Short-Term Memory (LSTM) model that comprises a total of three layers, namely an embedding layer, an LSTM layer, and a dense layer. The stratification of these layers facilitates a precise examination of linguistic patterns that are associated with the condition of depression. The PsyVBot has the capability to accurately assess an individual's level of depression through the identification of linguistic and contextual cues. The task is achieved via a rigorous training regimen, which is executed by utilizing a dataset comprising information sourced from the subreddit r/SuicideWatch. The diverse data present in the dataset ensures precise and delicate identification of symptoms linked with depression, thereby guaranteeing accuracy. PsyVBot not only possesses diagnostic capabilities but also enhances the user experience through the utilization of audio outputs. This feature enables users to engage in more captivating and interactive interactions. The PsyVBot platform offers individuals the opportunity to conveniently diagnose mental health challenges through a confidential and user-friendly interface. Regarding the advancement of PsyVBot, maintaining user confidentiality and upholding ethical principles are of paramount significance. It is imperative to note that diligent efforts are undertaken to adhere to ethical standards, thereby safeguarding the confidentiality of user information and ensuring its security. Moreover, the chatbot fosters a conducive atmosphere that is supportive and compassionate, thereby promoting psychological welfare. In brief, PsyVBot is an automated conversational agent that utilizes an LSTM model to assess the level of depression in accordance with the input provided by the user. The demonstrated accuracy rate of 94% serves as a promising indication of the potential efficacy of employing natural language processing and machine learning techniques in tackling challenges associated with mental health. The reliability of PsyVBot is further improved by the fact that it makes use of the Reddit dataset and incorporates Natural Language Toolkit (NLTK) for preprocessing. PsyVBot represents a pioneering and user-centric solution that furnishes an easily accessible and confidential medium for seeking assistance. The present platform is offered as a modality to tackle the pervasive issue of depression and the contemplation of suicide.Keywords: chatbot, depression diagnosis, LSTM model, natural language process
Procedia PDF Downloads 72810 Exploring Deep Neural Network Compression: An Overview
Authors: Ghorab Sara, Meziani Lila, Rubin Harvey Stuart
Abstract:
The rapid growth of deep learning has led to intricate and resource-intensive deep neural networks widely used in computer vision tasks. However, their complexity results in high computational demands and memory usage, hindering real-time application. To address this, research focuses on model compression techniques. The paper provides an overview of recent advancements in compressing neural networks and categorizes the various methods into four main approaches: network pruning, quantization, network decomposition, and knowledge distillation. This paper aims to provide a comprehensive outline of both the advantages and limitations of each method.Keywords: model compression, deep neural network, pruning, knowledge distillation, quantization, low-rank decomposition
Procedia PDF Downloads 45