Search results for: green graders
1366 Fluorescence Effect of Carbon Dots Modified with Silver Nanoparticles
Authors: Anna Piasek, Anna Szymkiewicz, Gabriela Wiktor, Jolanta Pulit-Prociak, Marcin Banach
Abstract:
Carbon dots (CDs) have great potential for application in many fields of science. They are characterized by fluorescent properties that can be manipulated. The nanomaterial has many advantages in addition to its unique properties. CDs may be obtained easily, and they undergo surface functionalization in a simple way. In addition, there is a wide range of raw materials that can be used for their synthesis. An interesting possibility is the use of numerous waste materials of natural origin. In the research presented here, the synthesis of CDs was carried out according to the principles of Green chemistry. Beet molasses was used as a natural raw material. It has a high sugar content. This makes it an excellent high-carbon precursor for obtaining CDs. To increase the fluorescence effect, we modified the surface of CDs with silver (Ag-CDs) nanoparticles. The process of obtaining CQD was based on the hydrothermal method by applying microwave radiation. Silver nanoparticles were formed via the chemical reduction method. The synthesis plans were performed on the Design of the Experimental method (DoE). Variable process parameters such as concentration of beet molasses, temperature and concentration of nanosilver were used in these syntheses. They affected the obtained properties and particle parameters. The Ag-CDs were analyzed by UV-vis spectroscopy. The fluorescence properties and selection of the appropriate excitation light wavelength were performed by spectrofluorimetry. Particle sizes were checked using the DLS method. The influence of the input parameters on the obtained results was also studied.Keywords: fluorescence, modification, nanosilver, molasses, Green chemistry, carbon dots
Procedia PDF Downloads 841365 Green and Cost-Effective Biofabrication of Copper Oxide Nanoparticles: Exploring Antimicrobial and Anticancer Applications
Authors: Yemane Tadesse Gebreslassie, Fisseha Guesh Gebremeskel
Abstract:
Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an alternative approach for future therapeutic interventions against cancer and microbial infections.Keywords: biological synthesis, copper oxide nanoparticles, microbial infection, nanotechnology
Procedia PDF Downloads 621364 Development of Expanded Perlite-Caprylicacid Composite for Temperature Maintainance in Buildings
Authors: Akhila Konala, Jagadeeswara Reddy Vennapusa, Sujay Chattopadhyay
Abstract:
The energy consumption of humankind is growing day by day due to an increase in the population, industrialization and their needs for living. Fossil fuels are the major source of energy to satisfy energy needs, which are non-renewable energy resources. So, there is a need to develop green resources for energy production and storage. Phase change materials (PCMs) derived from plants (green resources) are well known for their capacity to store the thermal energy as latent heat during their phase change from solid to liquid. This property of PCM could be used for storage of thermal energy. In this study, a composite with fatty acid (caprylic acid; M.P 15°C, Enthalpy 179kJ/kg) as a phase change material and expanded perlite as support porous matrix was prepared through direct impregnation method for thermal energy storage applications. The prepared composite was characterized using Differential scanning calorimetry (DSC), Field Emission Scanning Electron Microscope (FESEM), Thermal Gravimetric Analysis (TGA), and Fourier Transform Infrared (FTIR) spectrometer. The melting point of the prepared composite was 15.65°C, and the melting enthalpy was 82kJ/kg. The surface nature of the perlite was observed through FESEM. It was observed that there are micro size pores in the perlite surface, which were responsible for the absorption of PCM into perlite. In TGA thermogram, the PCM loss from composite was started at ~90°C. FTIR curves proved there was no chemical interaction between the perlite and caprylic acid. So, the PCM composite prepared in this work could be effective to use in temperature maintenance of buildings.Keywords: caprylic acid, composite, phase change materials, PCM, perlite, thermal energy
Procedia PDF Downloads 1231363 Research on the Efficiency and Driving Elements of Manufacturing Transformation and Upgrading in the Context of Digitization
Authors: Chen Zhang; Qiang Wang
Abstract:
With the rapid development of the new generation of digital technology, various industries have created more and more value by using digital technology, accelerating the digital transformation of various industries. The economic form of human society has evolved with the progress of technology, and in this context, the power conversion, transformation and upgrading of the manufacturing industry in terms of quality, efficiency and energy change has become a top priority. Based on the digitalization background, this paper analyzes the transformation and upgrading efficiency of the manufacturing industry and evaluates the impact of the driving factors, which have very important theoretical and practical significance. This paper utilizes qualitative research methods, entropy methods, data envelopment analysis methods and econometric models to explore the transformation and upgrading efficiency of manufacturing enterprises and driving factors. The study shows that the transformation and upgrading efficiency of the manufacturing industry shows a steady increase, and regions rich in natural resources and social resources provide certain resources for transformation and upgrading. The ability of scientific and technological innovation has been improved, but there is still much room for progress in the transformation of scientific and technological innovation achievements. Most manufacturing industries pay more attention to green manufacturing and sustainable development. In addition, based on the existing problems, this paper puts forward suggestions for improving infrastructure construction, developing the technological innovation capacity of enterprises, green production and sustainable development.Keywords: digitization, manufacturing firms, transformation and upgrading, efficiency, driving factors
Procedia PDF Downloads 661362 Biodegradable Polymeric Composites of Polylactide and Epoxidized Natural Rubber
Authors: Masek A., Diakowska K., Zaborski M.
Abstract:
Polymeric materials have found their use almost in every branch of industry worldwide. Most of them constitute so-called “petropolymers" obtained from crude oil. However literature information sounds a warning that its global sources are running out. Thus, it seems that one should search for polymeric materials from renewable raw materials belonging to the group of green polymers. Therefore on account of environmental protection and the issue of sustainable technologies, nowadays greater and greater achievements have been observed in the field of green technology using engineering sciences to develop composite materials. The main aim of this study was to research what is the influence of biofillers on the properties. We used biofillers like : cellulose with different length of fiber, cellulose UFC100, silica and montmorillonite. In our research, we reported on biodegradable composites exhibitingspecificity properties by melt blending of polylactide (PLA), one of the commercially available biodegradable material, and epoxidized natural rubber (ENR) containing 50 mol.%epoxy group. Blending hydrophilic natural polymers and aliphatic polyesters is of significant interest, since it could lead to the development of a new range of biodegradable polymeric materials. We research the degradation of composites on the basis epoxidized natural rubber and poly(lactide). The addition of biofillers caused far-reaching degradation processes. The greatest resistance to biodegradation showed a montmorillonite-based mixtures, the smallest inflated cellulose fibers of varying length.The final aim in the present study is to use ENR and poly(lactide) to design composite from renewable resources with controlled degradation.Keywords: renewable resources, biopolymer, degradation, polylactide
Procedia PDF Downloads 3761361 Attitudes of Resort Hotel Managers toward Climate Change Adaptation and Mitigation Practices, Bishoftu, Ethiopia
Authors: Mohammed Aman Kassim
Abstract:
This study explored the attitudes of hotel managers toward climate change adaption and mitigation practices in resort hotels located in Bishoftu town, Ethiopia. Weak resource management in the area causes serious environmental problems. So sustainable way forward is needed for the destination in order to reduce environmental damage. Six resorts were selected out of twelve resort hotels in Bishoftu City by using the systematic sampling method, and a total of fifty-six managers were taken for the study. The data analyzed came from self-administered questionnaires, site observation, and a short face-to-face interview with general managers. The results showed that 99% of hotel managers possess positive attitudes toward climate change adaptation and mitigation practices. But they did not show a high commitment to adopting all adaptation and mitigation practices in their hotel’s actions and day-to-day operation. Key adoption influencing factors identified were: owners' commitment toward sustainability, the applicability of government rules and regulations, and incentives for good achievement. The findings also revealed that the attitudes of resort hotel managers toward climate change adaption and mitigation practices are more significantly influenced by their social factors, such as level of education and age, in this study. The study demonstrated that in order to increase managers' commitment and hotels become green: government led-education and training programs, green certification actions, and application of government environmental regulation are important.Keywords: climate change, climate change adaptation and mitigation practices, environmental attitude, resort hotels
Procedia PDF Downloads 1031360 Screening the Growth Inhibition Mechanism of Sulfate-Reducing Bacteria by Chitosan/Lignosulfonate Nanocomposite in Seawater Media
Authors: K. Rasool
Abstract:
Sulfate-reducing bacteria (SRBs) induced biofilm formation is a global industrial concern due to its role in the development of microbial-induced corrosion (MIC). Herein, we have developed a biodegradable chitosan/lignosulfonate nanocomposite (CS@LS) as an efficient green biocide for the inhibition of SRBs biofilms. We investigated in detail the inhibition mechanism of SRBs by CS@LS in seawater media. Stable CS@LS-1:1 with 150–200 nm average size and zeta potential of + 34.25 mV was synthesized. The biocidal performance of CS@LS was evaluated by sulfate reduction profiles coupled with analysis of extracted extracellular polymeric substances (EPS) and lactate dehydrogenase (LDH) release assays. As the nanocomposite concentration was increased from 50 to 500 µg/mL, the specific sulfate reduction rate (SSRR) decreased from 0.278 to 0.036 g-sulfate/g-VSS*day showing a relative sulfate reduction inhibition of 86.64% as compared to that of control. Similarly, the specific organic uptake rate (SOUR) decreased from 0.082 to 0.039 0.036 g-TOC/g-VSS*day giving a relative co-substrate oxidation inhibition of 52.19% as compared to that of control. The SRBs spiked with 500 µg/mL CS@LS showed a reduction in cell viability to 1.5 × 106 MPN/mL. To assess the biosafety of the nanocomposite on the marine biota, the 72-hours acute toxicity assays using the zebrafish embryo model revealed that the LC50 for the CS@LS was 103.3 µg/mL. Thus, CS@LS can be classified as environmentally friendly. The nanocomposite showed long-term stability and excellent antibacterial properties against SRBs growth and is thus potentially useful for combating the problems of biofilm growth in harsh marine and aquatic environments.Keywords: green biocides, chitosan/lignosulfonate nanocomposite, SRBs, toxicity
Procedia PDF Downloads 1201359 Development of a Roadmap for Assessment the Sustainability of Buildings in Saudi Arabia Using Building Information Modeling
Authors: Ibrahim A. Al-Sulaihi, Khalid S. Al-Gahtani, Abdullah M. Al-Sugair, Aref A. Abadel
Abstract:
Achieving environmental sustainability is one of the important issues considered in many countries’ vision. Green/Sustainable building is widely used terminology for describing a friendly environmental construction. Applying sustainable practices has a significant importance in various fields, including construction field that consumes an enormous amount of resource and causes a considerable amount of waste. The need for sustainability is increased in the regions that suffering from the limitation of natural resource and extreme weather conditions such as Saudi Arabia. Since buildings designs are getting sophisticated, the need for tools, which support decision-making for sustainability issues, is increasing, especially in the design and preconstruction stages. In this context, Building Information Modeling (BIM) can aid in performing complex building performance analyses to ensure an optimized sustainable building design. Accordingly, this paper introduces a roadmap towards developing a systematic approach for presenting the sustainability of buildings using BIM. The approach includes set of main processes including; identifying the sustainability parameters that can be used for sustainability assessment in Saudi Arabia, developing sustainability assessment method that fits the special circumstances in the Kingdom, identifying the sustainability requirements and BIM functions that can be used for satisfying these requirements, and integrating these requirements with identified functions. As a result, the sustainability-BIM approach can be developed which helps designers in assessing the sustainability and exploring different design alternatives at the early stage of the construction project.Keywords: green buildings, sustainability, BIM, rating systems, environment, Saudi Arabia
Procedia PDF Downloads 3781358 Thermodynamic and Magnetic Properties of Heavy Fermion UTE₂ Superconductor
Authors: Habtamu Anagaw Muluneh, Gebregziabher Kahsay, Tamiru Negussie
Abstract:
Theoretical study of the density of state, condensation energy, specific heat, and magnetization in a spin-triplet superconductor are the main goals of this work. Utilizing the retarded double-time temperature-dependent Green's function formalism and building a model Hamiltonian for the system at hand, we were able to derive the expressions for the parameters mentioned above. The phase diagrams are plotted using MATLAB scripts. From the phase diagrams, the density of electrons increases as the excitation energy increases, and the maximum excitation energy is equal to the superconducting gap, but it decreases when the value exceeds the gap and finally becomes the same as the density of the normal state. On the other hand, the condensation energy decreases with the increase in temperature and attains its minimum value at the superconducting transition temperature but increases with the increase in superconducting transition temperature (TC) and finally becomes zero, implying the superconducting energy is equal to the normal state energy. The specific heat increases with the increase in temperature, attaining its maximum value at the TC and then undergoing a jump, showing the presence of a second-order phase transition from the superconducting state to the normal state. Finally, the magnetization of both the itinerant and localized electrons decreases with the increase in temperature and finally becomes zero at TC = 1.6 K and magnetic phase transition temperature T = 2 K, respectively, which results in a magnetic phase transition from a ferromagnetic to a paramagnetic state. Our finding is in good agreement with the previous findings.Keywords: spin triplet superconductivity, Green’s function, condensation energy, density of state, specific heat, magnetization
Procedia PDF Downloads 221357 Color Image Compression/Encryption/Contour Extraction using 3L-DWT and SSPCE Method
Authors: Ali A. Ukasha, Majdi F. Elbireki, Mohammad F. Abdullah
Abstract:
Data security needed in data transmission, storage, and communication to ensure the security. This paper is divided into two parts. This work interests with the color image which is decomposed into red, green and blue channels. The blue and green channels are compressed using 3-levels discrete wavelet transform. The Arnold transform uses to changes the locations of red image channel pixels as image scrambling process. Then all these channels are encrypted separately using the key image that has same original size and are generating using private keys and modulo operations. Performing the X-OR and modulo operations between the encrypted channels images for image pixel values change purpose. The extracted contours from color images recovery can be obtained with accepted level of distortion using single step parallel contour extraction (SSPCE) method. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Color images and completely reconstructed without any distortion. Also shown that the analyzed algorithm has extremely large security against some attacks like salt and pepper and Jpeg compression. Its proof that the color images can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.Keywords: SSPCE method, image compression and salt and peppers attacks, bitplanes decomposition, Arnold transform, color image, wavelet transform, lossless image encryption
Procedia PDF Downloads 5181356 A Generalised Propensity Score Analysis to Investigate the Influence of Agricultural Research Systems on Greenhouse Gas Emissions
Authors: Spada Alessia, Fiore Mariantonietta, Lamonaca Emilia, Contò Francesco
Abstract:
Bioeconomy can give the chance to face new global challenges and can move ahead the transition from a waste economy to an economy based on renewable resources and sustainable consumption. Air pollution is a grave issue in green challenges, mainly caused by anthropogenic factors. The agriculture sector is a great contributor to global greenhouse gases (GHGs) emissions due to lacking efficient management of the resources involved and research policies. In particular, livestock sector contributes to emissions of GHGs, deforestation, and nutrient imbalances. More effective agricultural research systems and technologies are crucial in order to improve farm productivity but also to reduce the GHGs emissions. Using data from FAOSTAT statistics and concern the EU countries; the aim of this research is to evaluate the impact of ASTI R&D (Agricultural Science and Technology Indicators) on GHGs emissions for countries EU in 2015 by generalized propensity score procedures, estimating a dose-response function, also considering a set of covariates. Expected results show the existence of the influence of ASTI R&D on GHGs across EU countries. Implications are crucial: reducing GHGs emissions by means of R&D based policies and correlatively reaching eco-friendly management of required resources by means of green available practices could have a crucial role for fair intra-generational implications.Keywords: agricultural research systems, dose-response function, generalized propensity score, GHG emissions
Procedia PDF Downloads 2781355 Climate Change Based Frontier Research in Landscape Architecture
Authors: Xiaoyan Wang, Zhongde Wang
Abstract:
The issue of climate change, which originated in the middle of the twentieth century, has become a focus of international political, academic, and non-governmental organizations and public attention. In order to address the problems caused by climate change, the Chinese government has proposed a dual-carbon target and taken some national measures, such as ecological priority and green low-carbon development. These goals and measures are highly aligned with the values of the landscape architecture industry. This is an opportunity for the architectural discipline and the landscape architecture industry, so it is very necessary to summarize and analyze the hotspots related to climate change in the field of building science in China, which can assist the landscape architecture industry and related organizations in formulating more rational professional goals and taking actions that contribute to the betterment of societal, environmental development. Through the study, it is found as follows: firstly, after 20 years of rapid development, the research on climate change in the major architectural disciplines has shown a trend of diversification of research perspectives, interdisciplinary cross-cutting, and broadening of content; secondly, the research contents of landscape architecture focuses on the strategies to adapt to climate change, such as selection of urban tree species, the urban green infrastructure space layout, and the resilient city. Finally, in the future, climate change-based landscape architecture research will make the content system more diversified, but at the same time, it is still necessary to further deepen the research on quantitative methodology and construct scale systematic planning and design methods.Keywords: climate change, landscape architecture, knowledge mapping, cites-pace
Procedia PDF Downloads 541354 An Efficient Aptamer-Based Biosensor Developed via Irreversible Pi-Pi Functionalisation of Graphene/Zinc Oxide Nanocomposite
Authors: Sze Shin Low, Michelle T. T. Tan, Poi Sim Khiew, Hwei-San Loh
Abstract:
An efficient graphene/zinc oxide (PSE-G/ZnO) platform based on pi-pi stacking, non-covalent interactions for the development of aptamer-based biosensor was presented in this study. As a proof of concept, the DNA recognition capability of the as-developed PSE-G/ZnO enhanced aptamer-based biosensor was evaluated using Coconut Cadang-cadang viroid disease (CCCVd). The G/ZnO nanocomposite was synthesised via a simple, green and efficient approach. The pristine graphene was produced through a single step exfoliation of graphite in sonochemical alcohol-water treatment while the zinc nitrate hexahydrate was mixed with the graphene and subjected to low temperature hydrothermal growth. The developed facile, environmental friendly method provided safer synthesis procedure by eliminating the need of harsh reducing chemicals and high temperature. The as-prepared nanocomposite was characterised by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to evaluate its crystallinity, morphology and purity. Electrochemical impedance spectroscopy (EIS) was employed for the detection of CCCVd sequence with the use of potassium ferricyanide (K3[Fe(CN)6]). Recognition of the RNA analytes was achieved via the significant increase in resistivity for the double stranded DNA, as compared to single-stranded DNA. The PSE-G/ZnO enhanced aptamer-based biosensor exhibited higher sensitivity than the bare biosensor, attributing to the synergistic effect of high electrical conductivity of graphene and good electroactive property of ZnO.Keywords: aptamer-based biosensor, graphene/zinc oxide nanocomposite, green synthesis, screen printed carbon electrode
Procedia PDF Downloads 3701353 Green Concrete for Sustainable Indonesia Structures: Lightweight Concrete Using Oil Palm Shell as Coarse Aggregate with Superplasticizer and Fly Ash
Authors: Feny Acelia Silaban
Abstract:
The development of Indonesia’s infrastructure in many islands is significantly increased through the years. Based on this condition, concrete materials which are extracted from natural resources are over exploited and slowly becoming rare, thus the demand for alternative materials becomes so urgently crucial. Oil Palm is one of the biggest commodities in Indonesia with the total amount of 31 million tons in the last 2014. The production of palm oil also generates lots of solid wastes in the form of Oil Palm Shell (OPS). Constructing more environmentally sustainable structures can be achieved by producing lightweight concrete using the Oil Palm Shell (OPS). This paper investigated the effects of OPS and combination of Superplasticizer and fly ash proportion of lightweight concrete mix design to the compressive strength, flexure strength, modulus of elasticity, shrinkage behavior, and water absorption. The Oil Palm Shell had undergone special treatment by washing it with hot water and soap to reduce the oil content. This experiment used four different proportions of Superplasticizer with fly ash and 30 % OPS proportion from the weight of total compositions mixture by the result of trial mix. The experiment result showed that using OPS coarse aggregates and Superplasticizer with fly ash, the average of 28-day compressive strength reached 30-35 MPa. The highest 28-day compressive strength comes from 1.2 % Superplasticizer with 5 % fly ash proportion samples with the strength by 33 MPa. The sample with proportion of 1 % Superplasticizer and 7.5 % fly ash has the highest shrinkage value compared to other proportions. The characteristic of OPS as coarse aggregates is in a standard range of natural coarse aggregates. In general, this lightweight concrete using OPS coarse aggregate and Superplasticizer has high potential to be green-structural lightweight concrete alternative in Indonesia.Keywords: lightweight concrete, oil palm shell, waste materials, superplasticizer
Procedia PDF Downloads 2591352 Permeable Asphalt Pavement as a Measure of Urban Green Infrastructure in the Extreme Events Mitigation
Authors: Márcia Afonso, Cristina Fael, Marisa Dinis-Almeida
Abstract:
Population growth in cities has led to an increase in the infrastructures construction, including buildings and roadways. This aspect leads directly to the soils waterproofing. In turn, changes in precipitation patterns are developing into higher and more frequent intensities. Thus, these two conjugated aspects decrease the rainwater infiltration into soils and increase the volume of surface runoff. The practice of green and sustainable urban solutions has encouraged research in these areas. The porous asphalt pavement, as a green infrastructure, is part of practical solutions set to address urban challenges related to land use and adaptation to climate change. In this field, permeable pavements with porous asphalt mixtures (PA) have several advantages in terms of reducing the runoff generated by the floods. The porous structure of these pavements, compared to a conventional asphalt pavement, allows the rainwater infiltration in the subsoil, and consequently, the water quality improvement. This green infrastructure solution can be applied in cities, particularly in streets or parking lots to mitigate the floods effects. Over the years, the pores of these pavements can be filled by sediment, reducing their function in the rainwater infiltration. Thus, double layer porous asphalt (DLPA) was developed to mitigate the clogging effect and facilitate the water infiltration into the lower layers. This study intends to deepen the knowledge of the performance of DLPA when subjected to clogging. The experimental methodology consisted on four evaluation phases of the DLPA infiltration capacity submitted to three precipitation events (100, 200 and 300 mm/h) in each phase. The evaluation first phase determined the behavior after DLPA construction. In phases two and three, two 500 g/m2 clogging cycles were performed, totaling a 1000 g/m2 final simulation. Sand with gradation accented in fine particles was used as clogging material. In the last phase, the DLPA was subjected to simple sweeping and vacuuming maintenance. A precipitation simulator, type sprinkler, capable of simulating the real precipitation was developed for this purpose. The main conclusions show that the DLPA has the capacity to drain the water, even after two clogging cycles. The infiltration results of flows lead to an efficient performance of the DPLA in the surface runoff attenuation, since this was not observed in any of the evaluation phases, even at intensities of 200 and 300 mm/h, simulating intense precipitation events. The infiltration capacity under clogging conditions decreased about 7% on average in the three intensities relative to the initial performance that is after construction. However, this was restored when subjected to simple maintenance, recovering the DLPA hydraulic functionality. In summary, the study proved the efficacy of using a DLPA when it retains thicker surface sediments and limits the fine sediments entry to the remaining layers. At the same time, it is guaranteed the rainwater infiltration and the surface runoff reduction and is therefore a viable solution to put into practice in permeable pavements.Keywords: clogging, double layer porous asphalt, infiltration capacity, rainfall intensity
Procedia PDF Downloads 4911351 Soil Salinity from Wastewater Irrigation in Urban Greenery
Authors: H. Nouri, S. Chavoshi Borujeni, S. Anderson, S. Beecham, P. Sutton
Abstract:
The potential risk of salt leaching through wastewater irrigation is of concern for most local governments and city councils. Despite the necessity of salinity monitoring and management in urban greenery, most attention has been on agricultural fields. This study was defined to investigate the capability and feasibility of monitoring and predicting soil salinity using near sensing and remote sensing approaches using EM38 surveys, and high-resolution multispectral image of WorldView3. Veale Gardens within the Adelaide Parklands was selected as the experimental site. The results of the near sensing investigation were validated by testing soil salinity samples in the laboratory. Over 30 band combinations forming salinity indices were tested using image processing techniques. The outcomes of the remote sensing and near sensing approaches were compared to examine whether remotely sensed salinity indicators could map and predict the spatial variation of soil salinity through a potential statistical model. Statistical analysis was undertaken using the Stata 13 statistical package on over 52,000 points. Several regression models were fitted to the data, and the mixed effect modelling was selected the most appropriate one as it takes to account the systematic observation-specific unobserved heterogeneity. Results showed that SAVI (Soil Adjusted Vegetation Index) was the only salinity index that could be considered as a predictor for soil salinity but further investigation is needed. However, near sensing was found as a rapid, practical and realistically accurate approach for salinity mapping of heterogeneous urban vegetation.Keywords: WorldView3, remote sensing, EM38, near sensing, urban green spaces, green smart cities
Procedia PDF Downloads 1621350 Vocational Education for Sustainable Development: Teaching Methods and Practices
Authors: Seyilnan Hannah Wadak, Dangway Monica Clement
Abstract:
This theoretical study explores distinct teaching methods and practices for integrating sustainable development principles into vocational education. It examines how vocational institutions can prepare students for a sustainability-oriented workforce while addressing environmental and social challenges. The research analyzes current literature, case studies, and emerging trends to identify effective strategies for incorporating sustainability across various vocational disciplines. Key approaches discussed include experiential learning, green skills training, and interdisciplinary projects that simulate real-world sustainability challenges. The study also investigates the role of technology, such as virtual reality and online collaboration tools, in enhancing sustainability education. Additionally, it addresses the importance of industry partnerships and community engagement in creating relevant, practical learning experiences. The paper highlights potential barriers to implementation and proposes solutions for overcoming them, including professional development for educators and curriculum redesign. Findings suggest that integrating sustainability into vocational education not only enhances students’ employability but also contributes to broader societal goals of sustainable development. This research provides a comprehensive framework for educational institutions and policymakers to transform vocational programs, ensuring they meet the evolving demands of a sustainable future.Keywords: vocational education, sustainable development, teaching methods, experiential learning, green skills, curriculum integration, industry partnerships, educational technology
Procedia PDF Downloads 321349 Transcriptomic Analyses of Kappaphycus alvarezii under Different Wavelengths of Light
Authors: Vun Yee Thien, Kenneth Francis Rodrigues, Clemente Michael Vui Ling Wong, Wilson Thau Lym Yong
Abstract:
Transcriptomes associated with the process of photosynthesis have offered insights into the mechanism of gene regulation in terrestrial plants; however, limited information is available as far as macroalgae are concerned. This investigation aims to decipher the underlying mechanisms associated with photosynthesis in the red alga, Kappaphycus alvarezii, by performing a differential expression analysis on a de novo assembled transcriptomes. Comparative analysis of gene expression was designed to examine the alteration of light qualities and its effect on physiological mechanisms in the red alga. High-throughput paired-end RNA-sequencing was applied to profile the transcriptome of K. alvarezii irradiated with different wavelengths of light (blue 492-455 nm, green 577-492 nm and red 780-622 nm) as compared to the full light spectrum, resulted in more than 60 million reads individually and assembled using Trinity and SOAPdenovo-Trans. The transcripts were annotated in the NCBI non-redundant (nr) protein, SwissProt, KEGG and COG databases with a cutoff E-value of 1e-5 and nearly 30% of transcripts were assigned to functional annotation by Blast searches. Differential expression analysis was performed using edgeR. The DEGs were designated to six categories: BL (blue light) regulated, GL (green light) regulated, RL (red light) regulated, BL or GL regulated, BL or RL regulated, GL or RL regulated, and either BL, GL or RL regulated. These DEGs were mapped to terms in KEGG database and compared with the whole transcriptome background to search for genes that regulated by light quality. The outcomes of this study will enhance our understanding of molecular mechanisms underlying light-induced responses in red algae.Keywords: de novo transcriptome sequencing, differential gene expression, Kappaphycus alvareziired, red alga
Procedia PDF Downloads 5081348 Rapid Green Synthesis of Silver Nanoparticles Using Solanum Nigrum Leaves Extract with Antimicrobial and Anticancer Properties
Authors: Anushaa A.
Abstract:
In this work, silver nanoparticles (AgNP) were manufactured directly without harmful chemicals utilising methanol extract (SNLME) Solanum nigrume leaves. We are using nigrum leaf extract from Solanum, which converts silver nitrate to silver ions, for synthesization purposes. An examination of the AgNP produced was performed using ultraviolet (UV-VIS) spectroscopy, infrared spectroscopy (FTIR) transformed from Fourier and scanning electrons (SEM). Biological activity was also tested. UV-VIS has proven that biosynthesized AgNP exists (420-450 nm). The FTIR spectrum has been utilised to confirm the presence of different functional groups within the biomolecules, which are a nanoparticular capping agent and the spectroscopic and crystal nature of AgNP. The viability of the silver nanoparticles was evaluated using zeta potential calculations. Negative zeta potential of -33.4 mV demonstrated the stability of silver-nanoparticles. The morphology of AgNP was examined using a scanning electron microscope. Greenly generated AgNP showed significant anti-Staphylococcus aureus, Candida, and Escherichia coli action. The green AgNP demonstration indicated that the IC50 for the human teratocarcinoma cell line was 29.24 μg/ml during 24 hours of therapy (PA1 Ovarian cell line). The dose-dependent effects were reported in both antibacterial and cytotoxicity assays and as an effective agent. Finally, the findings of this research showed that silver nanoparticles generated might serve as a viable therapeutic agent to combat microorganisms killing and curing cancer.Keywords: antimicrobial activity, PA1 ovarian cancer cell line, silver nanoparticles, Solanum nigrum
Procedia PDF Downloads 1871347 The Effect of the Environmental Activities of Organizations on Financial Performance
Authors: Fatemeh Khalili Varnamkhasti
Abstract:
Natural administration has outside impacts such that companies regularly respect natural input as a fetched with no clear advantage. In this manner, in case natural security can bring financial benefits, showing that natural security and financial interface are in concordance, companies will effectively fulfill their obligation to ensure the environment. Contamination is, for the most part, related to the squandering of assets, misplaced vitality, and crude materials not completely utilized. Contamination avoidance and clean innovation, as inner organizational hones, can offer assistance to play down taken toll and to develop economic aptitudes for the long run, whereas outside organizational hones (item stewardship and maintainability vision) can offer assistance to coordinated partner sees into trade operations and to define future commerce directions. Taken together, these practices can drive shareholder esteem while at the same time contributing to a more feasible world. On the off chance that the company's budgetary execution is nice, it'll draw in financial specialists to contribute and progress the company's execution. In this way, budgetary execution is additionally the determinant of the progression of a company. This can be because the monetary back gotten by the company gets to be the premise for the running of trade forms in the future. Moreover, A green picture can assist firms in pulling in more clients by influencing shopper choices and moving forward with buyer brand dependability. Numerous shoppers need to purchase items from ecologically inviting firms, in spite of the fact that there are, of course, a few who will not pay premium costs for green items.Keywords: environmental activities, financial performanance, advantage, clients
Procedia PDF Downloads 571346 Biomedical Application of Green Biosynthesis Magnetic Iron Oxide (Fe3O4) Nanoparticles Using Seaweed (Sargassum muticum) Aqueous Extract
Authors: Farideh Namvar, Rosfarizan Mohamed
Abstract:
In the field of nanotechnology, the use of various biological units instead of toxic chemicals for the reduction and stabilization of nanoparticles, has received extensive attention. This use of biological entities to create nanoparticles has designated as “Green” synthesis and it is considered to be far more beneficial due to being economical, eco-friendly and applicable for large-scale synthesis as it operates on low pressure, less input of energy and low temperatures. The lack of toxic byproducts and consequent decrease in degradation of the product renders this technique more preferable over physical and classical chemical methods. The variety of biomass having reduction properties to produce nanoparticles makes them an ideal candidate for fabrication. Metal oxide nanoparticles have been said to represent a "fundamental cornerstone of nanoscience and nanotechnology" due to their variety of properties and potential applications. However, this also provides evidence of the fact that metal oxides include many diverse types of nanoparticles with large differences in chemical composition and behaviour. In this study, iron oxide nanoparticles (Fe3O4-NPs) were synthesized using a rapid, single step and completely green biosynthetic method by reduction of ferric chloride solution with brown seaweed (Sargassum muticum) water extract containing polysaccharides as a main factor which acts as reducing agent and efficient stabilizer. Antimicrobial activity against six microorganisms was tested using well diffusion method. The resulting S-IONPs are crystalline in nature, with a cubic shape. The average particle diameter, as determined by TEM, was found to be 18.01 nm. The S-IONPs were efficiently inhibited the growth of Listeria monocytogenes, Escherichia coli and Candida species. Our favorable results suggest that S-IONPs could be a promising candidate for development of future antimicrobial therapies. The nature of biosynthesis and the therapeutic potential by S-IONPs could pave the way for further research on design of green synthesis therapeutic agents, particularly nanomedicine, to deal with treatment of infections. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial activity of these particles. Antioxidant activity of S-IONPs synthesized by green method was measured by ABTS (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (IC50= 1000µg) radical scavenging activity. Also, with the increasing concentration of S-IONPs, catalase gene expression compared to control gene GAPDH increased. For anti-angiogenesis study the Ross fertilized eggs were divided into four groups; the control and three experimental groups. The gelatin sponges containing albumin were placed on the chorioalantoic membrane and soaked with different concentrations of S-IONPs. All the cases were photographed using a photo stereomicroscope. The number and the lengths of the vessels were measured using Image J software. The crown rump (CR) and weight of the embryo were also recorded. According to the data analysis, the number and length of the blood vessels, as well as the CR and weight of the embryos reduced significantly compared to the control (p < 0.05), dose dependently. The total hemoglobin was quantified as an indicator of the blood vessel formation, and in the treated samples decreased, which showed its inhibitory effect on angiogenesis.Keywords: anti-angiogenesis, antimicrobial, antioxidant, biosynthesis, iron oxide (fe3o4) nanoparticles, sargassum muticum, seaweed
Procedia PDF Downloads 3141345 Load Balancing Technique for Energy - Efficiency in Cloud Computing
Authors: Rani Danavath, V. B. Narsimha
Abstract:
Cloud computing is emerging as a new paradigm of large scale distributed computing. Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., three service models, and four deployment networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model is composed of five essential characteristics models. Load balancing is one of the main challenges in cloud computing, which is required to distribute the dynamic workload across multiple nodes, to ensure that no single node is overloaded. It helps in optimal utilization of resources, enhancing the performance of the system. The goal of the load balancing is to minimize the resource consumption and carbon emission rate, that is the direct need of cloud computing. This determined the need of new metrics energy consumption and carbon emission for energy-efficiency load balancing techniques in cloud computing. Existing load balancing techniques mainly focuses on reducing overhead, services, response time and improving performance etc. In this paper we introduced a Technique for energy-efficiency, but none of the techniques have considered the energy consumption and carbon emission. Therefore, our proposed work will go towards energy – efficiency. So this energy-efficiency load balancing technique can be used to improve the performance of cloud computing by balancing the workload across all the nodes in the cloud with the minimum resource utilization, in turn, reducing energy consumption, and carbon emission to an extent, which will help to achieve green computing.Keywords: cloud computing, distributed computing, energy efficiency, green computing, load balancing, energy consumption, carbon emission
Procedia PDF Downloads 4491344 Novel Fluorescent High Density Polyethylene Composites for Fused Deposition Modeling 3D Printing in Packaging Security Features
Authors: Youssef R. Hassan, Mohamed S. Hasanin, Reda M. Abdelhameed
Abstract:
Recently, innovations in packaging security features become more important to see the originality of packaging in industrial application. Luminescent 3d printing materials have been a promising property which can provides a unique opportunity for the design and application of 3D printing. Lack emission of terbium ions, as a source of green emission, in salt form prevent its uses in industrial applications, so searching about stable and highly emitter material become essential. Nowadays, metal organic frameworks (MOFs) play an important role in designing light emitter material. In this work, fluorescent high density polyethylene (FHDPE) composite filament with Tb-benzene 1,3,5-tricarboxylate (Tb-BTC) MOFs for 3D printing have been successfully developed.HDPE pellets were mixed with Tb-BTC and melting extrustion with single screw extruders. It was found that Tb-BTCuniformly dispersed in the HDPE matrix and significantly increased the crystallinity of PE, which not only maintained the good thermal property but also improved the mechanical properties of Tb-BTC@HDPE composites. Notably, the composite filaments emitted ultra-bright green light under UV lamp, and the fluorescence intensity increased as the content of Tb-BTC increased. Finally, several brightly luminescent exquisite articles could be manufactured by fused deposition modeling (FDM) 3D printer with these new fluorescent filaments. In this context, the development of novel fluorescent Tb-BTC@HDPE composites was combined with 3D printing technology to amplified the packaging Security Features.Keywords: 3D printing, fluorescent, packaging, security
Procedia PDF Downloads 1011343 Azadrachea indica Leaves Extract Assisted Green Synthesis of Ag-TiO₂ for Degradation of Dyes in Aqueous Medium
Authors: Muhammad Saeed, Sheeba Khalid
Abstract:
Aqueous pollution due to the textile industry is an important issue. Photocatalysis using metal oxides as catalysts is one of the methods used for eradication of dyes from textile industrial effluents. In this study, the synthesis, characterization, and evaluation of photocatalytic activity of Ag-TiO₂ are reported. TiO₂ catalysts with 2, 4, 6 and 8% loading of Ag were prepared by green methods using Azadrachea indica leaves' extract as reducing agent and titanium dioxide and silver nitrate as precursor materials. The 4% Ag-TiO₂ exhibited the best catalytic activity for degradation of dyes. Prepared catalyst was characterized by advanced techniques. Catalytic degradation of methylene blue and rhodamine B were carried out in Pyrex glass batch reactor. Deposition of Ag greatly enhanced the catalytic efficiency of TiO₂ towards degradation of dyes. Irradiation of catalyst excites electrons from conduction band of catalyst to valence band yielding an electron-hole pair. These photoexcited electrons and positive hole undergo secondary reaction and produce OH radicals. These active radicals take part in the degradation of dyes. More than 90% of dyes were degraded in 120 minutes. It was found that there was no loss catalytic efficiency of prepared Ag-TiO₂ after recycling it for two times. Photocatalytic degradation of methylene blue and rhodamine B followed Eley-Rideal mechanism which states that dye reacts in fluid phase with adsorbed oxygen. 27 kJ/mol and 20 kJ/mol were found as activation energy for photodegradation of methylene blue and rhodamine B dye respectively.Keywords: TiO₂, Ag-TiO₂, methylene blue, Rhodamine B., photo degradation
Procedia PDF Downloads 1651342 Enzyme Immobilization: A Strategy to Overcome Enzyme Limitations and Expand Their Applications
Authors: Charline Monnier, Rudolf Andrys, Irene Castellino, Lucie Zemanova
Abstract:
Due to their inherent sustainability and compatibility with green chemistry principles, enzymes are attracting increasing attention for various applications like bioremediation or biocatalysis. These natural catalysts boast remarkable substrate specificity and operate under mild biological conditions. However, their intrinsic limitations, such as instability at high temperatures or in organic solvents, impede their wider applicability. Enzyme immobilization on supportive matrices emerges as a promising strategy to address these challenges. This approach not only facilitates enzyme reusability but also offers the potential to modulate their stability, activity, and selectivity. The present study investigates the immobilization and application of two distinct groups of hydrolases on supportive matrices: PETases, naturally capable of PolyEthylene Terephthalate (PET) degradation, and cholinesterases (ChEs), key enzymes in neurotransmitter regulation. All tested enzymes will be immobilized on porous and non-porous particles using both covalent and non-covalent methods. Additionally, the stability of PETases and cholinesterases will be explored, followed by exposure to denaturing conditions to assess their resilience under harsh conditions. Furthermore, due to the exceptional catalytic efficiency and selectivity, their biocatalytic efficiency will be tested using xenobiotic substrates, aiming to establish them as replacements for conventional chemical catalysts in environmentally friendly processes. By exploiting the power of enzyme immobilization, this research strives to unlock the full potential of these biocatalysts for sustainable and efficient technological advancements.Keywords: biocatalysis, bioremediation, enzyme efficiency, enzyme immobilization, green chemistry
Procedia PDF Downloads 571341 Effects of Cooking and Drying on the Phenolic Compounds, and Antioxidant Activity of Cleome gynandra (Spider Plant)
Authors: E. Kayitesi, S. Moyo, V. Mavumengwana
Abstract:
Cleome gynandra (spider plant) is an African green leafy vegetable categorized as an indigenous, underutilized and has been reported to contain essential phenolic compounds. Phenolic compounds play a significant role in human diets due to their proposed health benefits. These compounds however may be affected by different processing methods such as cooking and drying. Cleome gynandra was subjected to boiling, steam blanching, and drying processes and analysed for Total Phenolic Content (TPC), Total Flavonoid Content (TFC), antioxidant activity and flavonoid composition. Cooking and drying significantly (p < 0.05) increased the levels of phenolic compounds and antioxidant activity of the vegetable. The boiled sample filtrate exhibited the lowest TPC followed by the raw sample while the steamed sample depicted the highest TPC levels. Antioxidant activity results showed that steamed sample showed the highest DPPH, FRAP and ABTS with mean values of 499.38 ± 2.44, 578.68 ± 5.19, and 214.39 ± 12.33 μM Trolox Equivalent/g respectively. An increase in quercetin-3-rutinoside, quercetin-rhamnoside and kaempferol-3-rutinoside occurred after all the cooking and drying methods employed. Cooking and drying exerted positive effects on the vegetable’s phenolic content, antioxidant activity as a whole, but with varied effects on the individual flavonoid molecules. The results obtained help in defining the importance of African green leafy vegetable and resultant processed products as functional foods and their potential to exert health promoting properties.Keywords: Cleome gynandra, phenolic compounds, cooking, drying, health promoting properties
Procedia PDF Downloads 1701340 Contemporary World Values: The Effects of Quality of Brand-Generated Visual Contents on Customer Engagement Behaviours in Social Commerce
Authors: Hamed Azad, Azadeh M. Ardakani
Abstract:
Visual content, as an integral part of social media marketing, is growing dramatically. They are, in different technological usage categories (i.e., photos, graphics, animation IGTV, Stories, Livestreams, and Reels), associated with improving customer engagement behaviours (CEBs) in social commerce (SC). However, few researchers have explored the impact of specific and occasional contents that respect green products, gender equality, religious freedom, and LGBTs' rights. This study aims to compare and analyse how the ten best global brands (Interbrand's) in different categories communicate with customers on Instagram. Netnography approach and method used to conduct the data collection and data analysis of 1072 Instagram posts and 10494 comments. The results show that brands in fashion, sport, and homeware categories (H&M, Nike, and Ikea) emerge to use more effective content with the above global values elements than other brand categories. Findings also indicate that some different themes such as celebrities, models, pets, kids, aged and disabled people are part of visual management strategies on Instagram brands' pages. This research aims to inform researchers to consider all aspects of visual elements in content quality and marketing managers to increase brand optimisation, awareness, and authenticity by promoting contemporary world values on Instagram.Keywords: green products, gender equality, religious freedom, LGBTs, Instagram, netnography
Procedia PDF Downloads 1231339 Audit Examining Maternity Assessment Suite Triage Compliance with Birmingham Symptom Specific Obstetric Triage System in a London Teaching Hospital
Authors: Sarah Atalla, Shubham Gupta, Kim Alipio, Tanya Maric
Abstract:
Background: Chelsea and Westminster Hospital have introduced the Birmingham Symptom Specific Obstetric Triage System (BSOTS) for patients who present acutely to the Maternity Assessment Suite (MAS) to prioritise care by urgency. The primary objective was to evaluate whether BSOTS was used appropriately to assess patients (defined as a 90% threshold). The secondary objective was to assess whether patients were seen within their designated triaged timeframe (defined as a 90% threshold). Methodology: MAS records were retrospectively reviewed for a randomly selected one-week period of data from 2020 (21/09/2020 - 27/09/2020). 189 patients presented to MAS during this time. Data were collected on the presenting complaint, time of attendance (divided into four time categories), and triage colour code for the urgency of a review by a doctor (red: immediately, orange: within 15 minutes, yellow: within 1 hour, green: within 4 hours). The number of triage waiting times that were breached and the outcome of the attendance was noted. Results: 49% of patients presenting to MAS during this time period were triaged, which therefore did not meet the 90% target. 67% of patients who were triaged were seen within their allocated timeframe as designated by their triage colour code, which therefore did not meet the 90% target. The most frequent reason for patient attendance was reduced fetal movements (30.5% of attendances). The busiest time of day (when most patients presented) was between 06:01-12:00, and this was also when the highest number of patients were not triaged (26 patients or 54% of patients presenting in this time category). The most used triage category (59%) was the green colour code (to be seen by a doctor within 4 hours), followed by orange (24%), yellow (14%), and red (3%). 45% of triaged patients were admitted, whilst 55% were discharged. 62% of patients allocated to the green triage category were discharged, as compared to 56% of yellow category patients, 27% of orange category patients, and 50% of red category patients. The time of patient presentation to the hospital was also associated with the level of urgency and outcome. Patients presenting from 12:01 to 18:00 were more likely to be discharged (72% discharged) compared to 00:01-06:00 where only 12.5% of patients were discharged. Conclusion: The triage system for assessing the urgency of acutely presenting obstetric patients is only being effectively utilised for 49% of patients. There is potential for enhancing the employment of the triage system to enable further efficiency and boost the promotion of patient safety. It is noted that MAS was busiest at 06:01 - 12:00 when there was also the highest number of non-triaged patients – this highlights some areas where we can improve, including higher levels of staffing, better use of BSOTS to triage patients, and patient education.Keywords: birmingham, BSOTS, maternal, obstetric, pregnancy, specific, symptom, triage
Procedia PDF Downloads 1051338 Exploring Tourist’s Attitude towards Environmentally Friendly Practices
Authors: René Haarhoff
Abstract:
Consumers are constantly reminded of their responsibility towards the environment in a world where words such as global warming, carbon footprint, recycling or ‘green’’ everything has become common language. What was previously considered to be ordinary practices are in many instances frowned upon today and consumers are expected to individually contribute towards a greener mother earth. However unused recycle bins, single travelers in luxury cars, busy airports and vast deforested areas for new developments tell another story. The question arises whether the everyday man in the street really takes the responsibility to balance the three pillars of sustainability: the planet, its people and profit. Undeniably our activities impact on the environment where a healthy economy is needed in a fast paced global environment. The situation is further gloomed in instances where the consumer has paid for inclusive services which directly impacts on the environment. A prime example of this is the tourism industry: accommodation establishments or resorts include clean, daily washed towels and bedding, large bath tubs, inclusive use of electricity and water to name a few. This research evaluates environmentally friendly practices consumers follow at home and also when on holiday. Respondents at Bloemfontein airport, often using tourism products were included in the study. Results reveal that the majority of respondents state that they are concerned about the environment yet when questioned on donation towards endangered species, switching off lights in hotel rooms or using water sparingly a significant difference in results are evident. From the research results it is evident that consumers do not practice what they preach towards a greener environment.Keywords: green, environment, consumer, tourism, sustainable practices
Procedia PDF Downloads 3431337 Perception of Neighbourhood-Level Built Environment in Relation to Youth Physical Activity in Malaysia
Authors: A. Abdullah, N. Faghih Mirzaei, S. Hany Haron
Abstract:
Neighbourhood environment walkability on reported physical activity (PA) levels of students of Universiti Sains Malaysia (USM) in Malaysia. Compared with previous generations, today’s young people spend less time playing outdoors and have lower participation rates in PA. Research suggests that negative perceptions of neighbourhood walkability may be a potential barrier to adolescents’ PA. The sample consisted of 200 USM students (to 24 years old) who live outside of the main campus and engage in PA in sport halls and sport fields of USM. The data were analysed using the t-test, binary logistic regression, and discriminant analysis techniques. The present study found that youth PA was affected by neighbourhood environment walkability factors, including neighbourhood infrastructures, neighbourhood safety (crime), and recreation facilities, as well as street characteristics and neighbourhood design variables such as facades of sidewalks, roadside trees, green spaces, and aesthetics. The finding also illustrated that active students were influenced by street connectivity, neighbourhood infrastructures, recreation facilities, facades of sidewalks, and aesthetics, whereas students in the less active group were affected by access to destinations, neighbourhood safety (crime), and roadside trees and green spaces for their PAs. These results report which factors of built environments have more effect on youth PA and they message to the public to create more awareness about the benefits of PA on youth health.Keywords: fear of crime, neighbourhood built environment, physical activities, street characteristics design
Procedia PDF Downloads 353