Search results for: excess pore water pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12495

Search results for: excess pore water pressure

11685 A Preliminary Outcome of the Effect of an Accumulating 10,000 Daily Steps on Blood Pressure and Diabetes in Overweight Thai Participants

Authors: Kornanong Yuenyongchaiwat, Duangnate Pepatsitipong, Panthip Sangprasert

Abstract:

High blood pressure and diabetes have been suggested as being non-communicable disease (NCDs), and there is one of the components of the definition of metabolic syndrome. Therefore, the purpose of this study was to evaluate the effect of a 12-week pedometer based community walking intervention on change in resting blood pressure and blood glucose in participants with overweight in the community setting. Method: Participants were recruited both males and females who had a sedentary lifestyle aged 35-59 years (mean aged 49.67 years). A longitudinal quasi-experimental study was designed with 35 overweight participants who had body mass index ≥ 25 kg/m2. These volunteers were assigned to the 12-week pedometer-based walking program (an accumulated at least 10,000 steps a day). Blood pressure and blood glucose were measured initially before and after 12-week intervention. Results: Systolic blood pressure and heart rate were significantly lower in 30 individuals who had accumulated 10,000 steps d-1 in the intervention group at 12 week follow-up (-13.74 mmHg and 5.3 bpm, respectively). In addition, reduction in blood glucose (-14.89 mmol) in the intervention participants was statistically significant (p < .001). A regression analysis indicated that reductions in systolic blood pressure were significantly related to the increase in steps per day. Conclusion: The accumulation of least 10,000 steps d-1 resulted in decreased resting systolic blood pressure and blood glucose in overweight participants. This has also shown that an increase in physical activity in overweight participants with sedentary lifestyle by accumulating at least 10,000 steps a day can reduce the risk of cardiovascular disease (e.g., hypertension and diabetes).

Keywords: blood glucose, blood pressure, diabetes, hypertension, physical activity, walking

Procedia PDF Downloads 280
11684 Evaluation of Resting Systolic and Diastolic Blood Pressure of Staff of Multi-National Petroleum Company in Warri, Nigeria

Authors: Ekpon Oghenetega Philip, Tayire Okabare Favour, Boye Ejobowah Thomas

Abstract:

The study evaluated the resting systolic blood pressure (RSBP) and resting diastolic blood pressure (RDBP) of staff of a multi-national petroleum company in Nigeria with the aim of helping the staff maintain optimal health which is necessary to carry out their secular work. Eleven healthy male (age 36.9±10.48 years, mean±S.D) and 38 healthy female (39.99±12.23 years, mean±S.D) staff of the multi-national petroleum company performed an incremental exercise on a treadmill and cycle ergometers to determine RSBP and RDBP. An assessment of the health status of the staff of the company was carried out using a physical activity readiness questionnaire (PAR-Q) to determine their suitability for the program. Analysis of the t-test for male staff of RSBP shows that it was statistically significant with a calculated t value of 2.19, α = 0.05 and t-calculated for RSBP of female staff was 1.897, α = 0.05 showing a significance. While the t-calculated RSBP for male staff of the multi-national company is 0.44 with α =0.05 and the female RDBP is 4.129, α = 0.05 and they are all significant. It was recommended that staff of the company should regularly visit the company gym during their leisure hours to maintain optimum health.

Keywords: systolic blood pressure, diastolic blood pressure, exercise, pressure staff

Procedia PDF Downloads 278
11683 An Artificial Intelligence Supported QUAL2K Model for the Simulation of Various Physiochemical Parameters of Water

Authors: Mehvish Bilal, Navneet Singh, Jasir Mushtaq

Abstract:

Water pollution puts people's health at risk, and it can also impact the ecology. For practitioners of integrated water resources management (IWRM), water quality modelling may be useful for informing decisions about pollution control (such as discharge permitting) or demand management (such as abstraction permitting). To comprehend the current pollutant load, movement of effective load movement of contaminants generates effective relation between pollutants, mathematical simulation, source, and water quality is regarded as one of the best estimating tools. The current study involves the Qual2k model, which includes manual simulation of the various physiochemical characteristics of water. To this end, various sensors could be installed for the automatic simulation of various physiochemical characteristics of water. An artificial intelligence model has been proposed for the automatic simulation of water quality parameters. Models of water quality have become an effective tool for identifying worldwide water contamination, as well as the ultimate fate and behavior of contaminants in the water environment. Water quality model research is primarily conducted in Europe and other industrialized countries in the first world, where theoretical underpinnings and practical research are prioritized.

Keywords: artificial intelligence, QUAL2K, simulation, physiochemical parameters

Procedia PDF Downloads 105
11682 Screening of Rice Genotypes in Methane and Carbon Dioxide Emissions Under Different Water Regimes

Authors: Mthiyane Pretty, Mitsui Toshiake, Nagano Hirohiko, Aycan Murat

Abstract:

Among the most significant greenhouse gases released from rice fields are methane and carbon dioxide. The primary focus of this research was to quantify CH₄ and CO₂ gas using different 4 rice cultivars, two water regimes, and a recording of soil moisture and temperature. In this study, we hypothesized that paddy field soils may directly affect soil enzymatic activities and physicochemical properties in the rhizosphere soil of paddy fields and subsequently indirectly affect the activity, abundance, diversity, and community composition of methanogens, ultimately affecting CH₄ flux. The experiment was laid out in the randomized block design with two treatments and three replications for each genotype. In two treatments, paddy fields and artificial soil were used. 35 days after planting (DAP), continuous flooding irrigation, Alternate wetting, and drying (AWD) were applied during the vegetative stage. The highest recorded measurements of soil and environmental parameters were soil moisture at 76%, soil temperature at 28.3℃, Bulk EC at 0.99 ds/m, and pore water EC at 1,25, using HydraGO portable soil sensor system. Gas samples were carried out once on a weekly basis at 09:00 am and 12: 00 pm to obtain the mean GHG flux. Gas Chromatography (GC, Shimadzu, GC-2010, Japan) was used for the analysis of CH4 and CO₂. The treatments with paddy field soil had a 1.3℃ higher temperature than artificial soil. The overall changes in Bulk EC were not significant across the treatment. The CH₄ emission patterns were observed in all rice genotypes, although they were less in treatments with AWD with artificial soil. This shows that AWD creates oxic conditions in the rice soil. CO₂ was also quantified, but it was in minute quantities, as rice plants were using CO₂ for photosynthesis. The highest tillering number was 7, and the lowest was 3 in cultivars grown. The rice varieties to be used for breeding are Norin 24, with showed a high number of tillers with less CH₄.

Keywords: greenhouse gases, methane, morphological characterization, alternating wetting and drying

Procedia PDF Downloads 80
11681 Water Resources Crisis in Saudi Arabia, Challenges and Possible Management Options: An Analytic Review

Authors: A. A. Ghanim

Abstract:

The Kingdom of Saudi Arabia (KSA) is heading towards a severe and rapidly expanding water crisis, which can have negative impacts on the country’s environment and economy. Of the total water consumption in KSA, the agricultural sector accounts for nearly 87% of the total water use and, therefore, any attempt that overlooks this sector will not help in improving the sustainability of the country’s water resources. KSA Vision 2030 gives priority of water use in the agriculture sector for the regions that have natural renewable water resources. It means that there is little concern for making reuse of municipal wastewater for irrigation purposes in any region in general and in water-scarce regions in particular. The use of treated wastewater is very limited in Saudi Arabia, but it has very considerable potential for future expansion due its numerous beneficial uses. This study reviews the current situation of water resources in Saudi Arabia, providing more highlights on agriculture and wastewater reuse. The reviewed study is proposing some corrective measures for development and better management of water resources in the Kingdom. Suggestions also include consideration of treated water as an alternative source for irrigation in some regions of the country. The study concluded that a sustainable solution for the water crisis in KSA requires implementation of multiple measures in an integrated manner. The integrated solution plan should focus on two main directions: first, improving the current management practices of the existing water resources; second, developing new water supplies from both conventional and non-conventional sources.

Keywords: Saudia Arabia, water resources, water crises, wastewater reuse

Procedia PDF Downloads 171
11680 Blood Flow Estimator of the Left Ventricular Assist Device Based in Look-Up-Table: In vitro Tests

Authors: Tarcisio F. Leao, Bruno Utiyama, Jeison Fonseca, Eduardo Bock, Aron Andrade

Abstract:

This work presents a blood flow estimator based in Look-Up-Table (LUT) for control of Left Ventricular Assist Device (LVAD). This device has been used as bridge to transplantation or as destination therapy to treat patients with heart failure (HF). Destination Therapy application requires a high performance LVAD; thus, a stable control is important to keep adequate interaction between heart and device. LVAD control provides an adequate cardiac output while sustaining an appropriate flow and pressure blood perfusion, also described as physiologic control. Because thrombus formation and system reliability reduction, sensors are not desirable to measure these variables (flow and pressure blood). To achieve this, control systems have been researched to estimate blood flow. LVAD used in the study is composed by blood centrifugal pump, control, and power supply. This technique used pump and actuator (motor) parameters of LVAD, such as speed and electric current. Estimator relates electromechanical torque (motor or actuator) and hydraulic power (blood pump) via LUT. An in vitro Mock Loop was used to evaluate deviations between blood flow estimated and actual. A solution with glycerin (50%) and water was used to simulate the blood viscosity with hematocrit 45%. Tests were carried out with variation hematocrit: 25%, 45% and 58% of hematocrit, or 40%, 50% and 60% of glycerin in water solution, respectively. Test with bovine blood was carried out (42% hematocrit). Mock Loop is composed: reservoir, tubes, pressure and flow sensors, and fluid (or blood), beyond LVAD. Estimator based in LUT is patented, number BR1020160068363, in Brazil. Mean deviation is 0.23 ± 0.07 L/min for mean flow estimated. Larger mean deviation was 0.5 L/min considering hematocrit variation. This estimator achieved deviation adequate for physiologic control implementation. Future works will evaluate flow estimation performance in control system of LVAD.

Keywords: blood pump, flow estimator, left ventricular assist device, look-up-table

Procedia PDF Downloads 186
11679 Heat Transfer from a Cylinder in Cross-Flow of Single and Multiphase Flows

Authors: F. A. Hamad, S. He

Abstract:

In this paper, the average heat transfer characteristics for a cross flow cylinder of 16 mm diameter in a vertical pipe has been studied for single-phase flow (water/oil) and multicomponent (non-boiling) flow (water-air, water-oil, oil-air and water-oil-air). The cylinder is uniformly heated by electrical heater placed at the centre of the element. The results show that the values of average heat transfer coefficients for water are around four times the values for oil flow. Introducing air as a second phase with water has very little effect on heat transfer rate, while the heat transfer increased by 70% in case of oil. For water–oil flow, the heat transfer coefficient values are reflecting the percentage of water up to 50%, but increasing the water more than 50% leads to a sharp increase in the heat transfer coefficients to become close to the values of pure water. The enhancement of heat transfer by mixing two phases may be attributed to the changes in flow structure near to cylinder surface which lead to thinner boundary layer and higher turbulence. For three-phase flow, the heat transfer coefficients for all cases fall within the limit of single-phase flow of water and oil and are very close to pure water values. The net effect of the turbulence augmentation due to the introduction of air and the attenuation due to the introduction of oil leads to a thinner boundary layer of oil over the cylinder surface covered by a mixture of water and air bubbles.

Keywords: circular cylinder, cross flow, hear transfer, multicomponent multiphase flow

Procedia PDF Downloads 397
11678 The Response of the Accumulated Biomass and the Efficiency of Water Use in Five Varieties of Durum Wheat Lines under Water Stress

Authors: Fellah Sihem

Abstract:

The optimal use of soil moisture by culture, is related to the leaf area index, which stood in the cycle and its modulation according to the prevailing stress intensity. For a given stock of water in the soil, cultivar adapted and saving water is one that is no luxury consumption during the preanthesis. It modulates the leaf area index to regulate sweating in the degree of its water supply. In plants water saving, avoidance of dehydration is related to the reduction of water loss by cuticular and stomatal pathways. Muchow and Sinclair reported that the test of relative water content (TRE) is considered the best indicator of leaf water status. The search for indicators of the ability of the plant to make good use of the water, under water stress is a prerequisite for progress in improving performance under water stress. This experiment aims to characterize a set of durum wheat varieties, tested jars and vegetation under different levels of water stress to the surface of the leaf, relative water content, cell integrity, the accumulated biomass and efficiency of water use. The experiment was conducted during the 2005/2006 academic year, at the Agricultural Research Station of the Field Crop Institute of Setif, under semi-controlled conditions. Five genotypes of durum wheat (Triticum durum Desf) were evaluated for their ability to tolerate moderate and severe water stress. The results showed that geno types respond differently to water stress. Dry matter accumulation and growth rate varied among geno types and were significantly reduced. At severe water stress biomass accumulated by Boussalam was the least affected.

Keywords: water stress, triticum durum, biomass, cell membrane integrity, relative water content

Procedia PDF Downloads 469
11677 Ultra-High Frequency Passive Radar Coverage for Cars Detection in Semi-Urban Scenarios

Authors: Pedro Gómez-del-Hoyo, Jose-Luis Bárcena-Humanes, Nerea del-Rey-Maestre, María-Pilar Jarabo-Amores, David Mata-Moya

Abstract:

A study of achievable coverages using passive radar systems in terrestrial traffic monitoring applications is presented. The study includes the estimation of the bistatic radar cross section of different commercial vehicle models that provide challenging low values which make detection really difficult. A semi-urban scenario is selected to evaluate the impact of excess propagation losses generated by an irregular relief. A bistatic passive radar exploiting UHF frequencies radiated by digital video broadcasting transmitters is assumed. A general method of coverage estimation using electromagnetic simulators in combination with estimated car average bistatic radar cross section is applied. In order to reduce the computational cost, hybrid solution is implemented, assuming free space for the target-receiver path but estimating the excess propagation losses for the transmitter-target one.

Keywords: bistatic radar cross section, passive radar, propagation losses, radar coverage

Procedia PDF Downloads 336
11676 Analysis of the Occurrence of Hydraulic Fracture Phenomena in Roudbar Lorestan Dam

Authors: Masoud Ghaemi, MohammadJafar Hedayati, Faezeh Yousefzadeh, Hoseinali Heydarzadeh

Abstract:

According to the statistics of the International Committee on Large Dams, internal erosion and piping (scour) are major causes of the destruction of earth-fill dams. If such dams are constructed in narrow valleys, the valley walls will increase the arching of the dam body due to the transfer of vertical and horizontal stresses, so the occurrence of hydraulic fracturing in these embankments is more likely. Roudbar Dam in Lorestan is a clay-core pebble earth-fill dam constructed in a relatively narrow valley in western Iran. Three years after the onset of impoundment, there has been a fall in dam behavior. Evaluation of the dam behavior based on the data recorded on the instruments installed inside the dam body and foundation confirms the occurrence of internal erosion in the lower and adjacent parts of the core on the left support (abutment). The phenomenon of hydraulic fracturing is one of the main causes of the onset of internal erosion in this dam. Accordingly, the main objective of this paper is to evaluate the validity of this hypothesis. To evaluate the validity of this hypothesis, the dam behavior during construction and impoundment has been first simulated with a three-dimensional numerical model. Then, using validated empirical equations, the safety factor of the occurrence of hydraulic fracturing phenomenon upstream of the dam score was calculated. Then, using the artificial neural network, the failure time of the given section was predicted based on the maximum stress trend created. The study results show that steep slopes of valley walls, sudden changes in coefficient, and differences in compressibility properties of dam body materials have caused considerable stress transfer from core to adjacent valley walls, especially at its lower levels. This has resulted in the coefficient of confidence of the occurrence of hydraulic fracturing in each of these areas being close to one in each of the empirical equations used.

Keywords: arching, artificial neural network, FLAC3D, hydraulic fracturing, internal erosion, pore water pressure

Procedia PDF Downloads 177
11675 Achievement of Sustainable Groundwater Exploitation through the Introduction of Water-Efficient Usage Techniques in Fish Farms

Authors: Lusine Tadevosyan, Natella Mirzoyan, Anna Yeritsyan, Narek Avetisyan

Abstract:

Due to high quality, the artesian groundwater is the main source of water supply for the fisheries in Ararat Valley, Armenia. From 1.6 billion m3 abstracted groundwater in 2016, half was used by fish farms. Yet, the inefficient water use, typical for low-intensity aquaculture systems in Ararat Valley, has become a key environmental issue in Armenia. In addition to excessive pure groundwater exploitation, which along with other sectors of groundwater use in this area resulted in the reduction of artesian zone by approximately 67% during last 20 years, the negative environmental impact of these productions is magnified by the discharge of large volumes of wastewater into receiving water bodies. In turn, unsustainable use of artesian groundwater in Ararat Valley along with increasingly strict policy measures on water use had a devastating impact on small and/or medium scale aquaculture: over the last two years approximately 100 fish farms have permanently seized their operations. The current project aims at the introduction of efficient and environmentally friendly fish farming practices (e.g., Recirculating Aquaculture Systems) in Ararat Valley fisheries in order to support current levels of fish production and simultaneously reduce the negative environmental pressure of aquaculture facilities in Armenia. Economic and environmental analysis of current small and medium scale operational systems and subsequently developed environmentally–friendly and economically sustainable system configurations will be presented.

Keywords: aquaculture, groundwater, recirculation, sustainability

Procedia PDF Downloads 270
11674 Evaluation of Salt Content in Bread and the Amount Intake by Hypertensive Patients in the Algiers Region

Authors: S.lanasri, A.Boudjerrane, R.Belgherbi, O.Hadjoudj

Abstract:

Introduction: Bread is the most popular food in Algeria. The aim of this study was to examine the consumption of salt from bread by hypertensive patients. Materials and methods: sixty breads were collected from different artisans Algiers bakeries, each sample was mixed in harm distilled water until homogeneous and filtered. Analysis of the salt content was carried out according to the Mohr method titration. We calculated the amount of salt in bread consumed by 100 hypertensive patients using a questionnaire about the average amount of bread per day. Results: The salt content values from bread were 3.4g ± 0.37 NaCl / 100g.The average amount of salt consumed per day by patients from only bread was 3.82 g ± 3.8 with a maximum of 17 g per day. Only 38.18% of patients consume bread without salt even then 95% knew that excess salt intake can complicate hypertension. Conclusion: This study showed that bread is a major contributor to salt intake by Algerian hypertensive patients.

Keywords: salt, bread, hypertensive patients, Algiers

Procedia PDF Downloads 151
11673 Managed Aquifer Recharge (MAR) for the Management of Stormwater on the Cape Flats, Cape Town

Authors: Benjamin Mauck, Kevin Winter

Abstract:

The city of Cape Town in South Africa, has shown consistent economic and population growth in the last few decades and that growth is expected to continue to increase into the future. These projected economic and population growth rates are set to place additional pressure on the city’s already strained water supply system. Thus, given Cape Town’s water scarcity, increasing water demands and stressed water supply system, coupled with global awareness around the issues of sustainable development, environmental protection and climate change, alternative water management strategies are required to ensure water is sustainably managed. Water Sensitive Urban Design (WSUD) is an approach to sustainable urban water management that attempts to assign a resource value to all forms of water in the urban context, viz. stormwater, wastewater, potable water and groundwater. WSUD employs a wide range of strategies to improve the sustainable management of urban water such as the water reuse, developing alternative available supply sources, sustainable stormwater management and enhancing the aesthetic and recreational value of urban water. Managed Aquifer Recharge (MAR) is one WSUD strategy which has proven to be a successful reuse strategy in a number of places around the world. MAR is the process where an aquifer is intentionally or artificially recharged, which provides a valuable means of water storage while enhancing the aquifers supply potential. This paper investigates the feasibility of implementing MAR in the sandy, unconfined Cape Flats Aquifer (CFA) in Cape Town. The main objective of the study is to assess if MAR is a viable strategy for stormwater management on the Cape Flats, aiding the prevention or mitigation of the seasonal flooding that occurs on the Cape Flats, while also improving the supply potential of the aquifer. This involves the infiltration of stormwater into the CFA during the wet winter months and in turn, abstracting from the CFA during the dry summer months for fit-for-purpose uses in order to optimise the recharge and storage capacity of the CFA. The fully-integrated MIKE SHE model is used in this study to simulate both surface water and groundwater hydrology. This modelling approach enables the testing of various potential recharge and abstraction scenarios required for implementation of MAR on the Cape Flats. Further MIKE SHE scenario analysis under projected future climate scenarios provides insight into the performance of MAR as a stormwater management strategy under climate change conditions. The scenario analysis using an integrated model such as MIKE SHE is a valuable tool for evaluating the feasibility of the MAR as a stormwater management strategy and its potential to contribute towards improving Cape Town’s water security into the future.

Keywords: managed aquifer recharge, stormwater management, cape flats aquifer, MIKE SHE

Procedia PDF Downloads 248
11672 Umm Arrazam, Libyan Driling Fluid Resistivity Evaluation

Authors: Omar Hussein El Ayadi, Ali Mustafa Alkekly, Nader Ahmad Musa

Abstract:

Search and evaluate locale source of raw material which can be used as drilling fluid is one of most important economical target. Hopefully, to use Libyan clay that cost less than importing it from outside. Resistivity measurement and control is of primary concern in connection with electrical logging. The influences of resistivity utilizing Umm Arrazam clay were laboratory investigated at ambient condition (room temperature, atmospheric pressure) to fulfill the aim of the study. Several tests were carried-out on three sets of mud mixture with different densities (8.7, 9.0, and 9.3 ppg) as base mud. The resistivity of mud, mud filtrate, and mud cake were measured using resistivity- meter. Mud water losses were also measured. Several results obtained to describe the relationship between the resistivity ratios of mud filtrate to the mud, and the mud cake to mud. The summary of conclusion is that there are no great differences were obtained during comparison of resistivity and water loss of Umm Arrazam and Wyoming Clay.

Keywords: petroleum, drilling, mug, geological engineering

Procedia PDF Downloads 474
11671 Numerical Analysis of a Strainer Using Porous Media Technique

Authors: Ji-Hoon Byeon, Kwon-Hee Lee

Abstract:

Strainer filter serves to block the inflow of impurities while mixed fluid is entering or exiting the piping. The filter of the strainer has a perforated structure, so that the pressure drop and the velocity change necessarily occur when the mixed fluid passes through the filter. It is possible to predict the pressure drop and velocity change of the strainer by numerical analysis by implementing all the perforated plates. However, if the size of the perforated plate exceeds a certain size, it is difficult to perform the numerical analysis, and sometimes we cannot guarantee its accuracy. In this study, we tried to predict the pressure drop and velocity change by using the porous media technique to obtain the equivalent resistance without actual implementation of the perforation shape of the strainer. Ansys-CFX, a commercial software, is used to perform the numerical analysis. The analysis procedure is as follows. Firstly, the unit pattern of the perforated plate is modeled, and the pressure drop is analyzed by varying the velocity by symmetry of the wall surface. Secondly, since the equation for obtaining resistance is a quadratic equation of pressure having unknown velocity, the viscous resistance and the inertia resistance of the perforated plate are obtained from the relationship between pressure and speed. Thirdly, by using the calculated resistance values, the values are substituted into the flat plate implemented as a two-dimensional porous media, and the accuracy is verified by comparing the pressure drop and the velocity change. Fourthly, the pressure drop and velocity change in the whole strainer are analyzed by using the resistance values obtained on the perforated plate in the actual whole strainer model. Using the porous media technique, it is found that pressure drop and velocity change can be predicted in relatively short time without modeling the overall shape of the filter. Acknowledgements: This work was supported by the Valve Center from the Regional Innovation Center(RIC) Program of Ministry of Trade, Industry & Energy (MOTIE).

Keywords: strainer, porous media, CFD, numerical analysis

Procedia PDF Downloads 371
11670 Ecofriendly Multi-Layer Polymer Treatment for Hydrophobic and Water Repellent Porous Cotton Fabrics

Authors: Muhammad Zahid, Ilker S. Bayer, Athanassia Athanassiou

Abstract:

Fluorinated polymers having C8 chemistry (chemicals with 8 fluorinated carbon atoms) are well renowned for their excellent low surface tension and water repelling properties. However, these polymers degrade into highly toxic heavy perfluoro acids in the environment. When the C8 chemistry is reduced to C6 chemistry, this environmental concern is eliminated at the expense of reduced liquid repellent performance. In order to circumvent this, in this study, we demonstrate pre-treatment of woven cotton fabrics with a fluorinated acrylic copolymer with C6 chemistry and subsequently with a silicone polymer to render them hydrophobic. A commercial fluorinated acrylic copolymer was blended with silica nanoparticles to form hydrophobic nano-roughness on cotton fibers and a second coating layer of polydimethylsiloxane (PDMS) was applied on the fabric. A static water contact angle (for 5µl) and rolling angle (for 12.5µl) of 147°±2° and 31° were observed, respectively. Hydrostatic head measurements were also performed to better understand the performance with 26±1 cm and 2.56kPa column height and static pressure respectively. Fabrication methods (with rod coater etc.) were kept simple, reproducible, and scalable and cost efficient. Moreover, the robustness of applied coatings was also evaluated by sonication cleaning and abrasion methods. Water contact angle (WCA), water shedding angle (WSA), hydrostatic head, droplet bouncing-rolling off and prolonged staining tests were used to characterize hydrophobicity of materials. For chemical and morphological analysis, various characterization methods were used such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and scanning electron microscopy (SEM).

Keywords: fluorinated polymer, hydrophobic, polydimethylsiloxane, water contact angle

Procedia PDF Downloads 325
11669 Variation in Water Utilization of Typical Desert Shrubs in a Desert-Oasis Ecotone

Authors: Hai Zhou, Wenzhi Zhao

Abstract:

Water is one of the most important factors limiting plant growth and development in desert ecosystems. In order to understand how desert shrubs cope with variation in water sources over time, it is important to understand plant–water relations in desert-oasis ecotone. We selected the typical desert shrubs: Nitraria sibirica, Calligonum mongolicum and Haloxylon ammodendron of 5-, 10-, 20- and 40-year old as the research species, to study the seasonal variation of plant water sources and response to precipitation in the desert-oasis ecotone of Linze, Northwestern China. We examined stable isotopic ratios of oxygen (δ18O) in stem water of desert shrubs as well as in precipitation, groundwater, and soil water in different soil layers and seasons to determine water sources for the shrubs. We found that the N. sibirica and H. ammodendron of 5-, 10-year old showed significant seasonal variation characteristics of δ18O value of stem water and water sources. However, the C. mongolicum and 20- and 40-year H. ammodendron main water sources were from deep soil water and groundwater, and less response to precipitation pulse. After 22.4 mm precipitation, the contribution of shallow soil water (0-50cm) to the use of N. sibirica increased from 6.7% to 36.5%; the C. mongolicum rarely use precipitation that were about 58.29% and 23.51%, absorbed from the deep soil water and groundwater; the contribution of precipitation to use of H. ammodendron had significantly differences among the four ages. The H. ammodendron of 5- and 10-year old about 86.3% and 42.5% water sources absorbed from the shallow soil water after precipitation. However, the contribution to 20- and 40-year old plant was less than 15%. So, the precipitation was one of the main water sources for desert shrubs, but the species showed different water utilization. We conclude that the main water source of the N. sibirica and H. ammodendron of 5-, 10-year was soil water recharged by precipitation, but the deeply rooted H. ammodendron of 20‐ and 40‐year‐old and the C. mongolicum have the ability to exploit a deep and reliable water source.

Keywords: water use pattern, water resource, stable isotope, seasonal change, precipitation pulse

Procedia PDF Downloads 429
11668 Mathematical Modeling of the Fouling Phenomenon in Ultrafiltration of Latex Effluent

Authors: Amira Abdelrasoul, Huu Doan, Ali Lohi

Abstract:

An efficient and well-planned ultrafiltration process is becoming a necessity for monetary returns in the industrial settings. The aim of the present study was to develop a mathematical model for an accurate prediction of ultrafiltration membrane fouling of latex effluent applied to homogeneous and heterogeneous membranes with uniform and non-uniform pore sizes, respectively. The models were also developed for an accurate prediction of power consumption that can handle the large-scale purposes. The model incorporated the fouling attachments as well as chemical and physical factors in membrane fouling for accurate prediction and scale-up application. Both Polycarbonate and Polysulfone flat membranes, with pore sizes of 0.05 µm and a molecular weight cut-off of 60,000, respectively, were used under a constant feed flow rate and a cross-flow mode in ultrafiltration of the simulated paint effluent. Furthermore, hydrophilic ultrafilic and hydrophobic PVDF membranes with MWCO of 100,000 were used to test the reliability of the models. Monodisperse particles of 50 nm and 100 nm in diameter, and a latex effluent with a wide range of particle size distributions were utilized to validate the models. The aggregation and the sphericity of the particles indicated a significant effect on membrane fouling.

Keywords: membrane fouling, mathematical modeling, power consumption, attachments, ultrafiltration

Procedia PDF Downloads 470
11667 Sources of Water Supply and Water Quality for Local Consumption: The Case Study of Eco-Tourism Village, Suan Luang Sub- District Municipality, Ampawa District, Samut Songkram Province, Thailand

Authors: Paiboon Jeamponk, Tasanee Ponglaa, Patchapon Srisanguan

Abstract:

The aim of this research paper was based on an examination of sources of water supply and water quality for local consumption, conducted at eco-tourism villages of Suan Luang Sub- District Municipality of Amphawa District, Samut Songkram Province. The study incorporated both questionnaire and field work of water testing as the research tool and method. The sample size of 288 households was based on the population of the district, whereas the selected sample water sources were from 60 households: 30 samples were ground water and another 30 were surface water. Degree of heavy metal contamination in the water including copper, iron, manganese, zinc, cadmium and lead was investigated utilizing the Atomic Absorption- Direct Aspiration method. The findings unveiled that 96.0 percent of household water consumption was based on water supply, while the rest on canal, river and rain water. The household behaviour of consumption revealed that 47.2 percent of people routinely consumed water without boiling or filtering prior to consumption. The investigation of water supply quality found that the degree of heavy metal contamination including metal, lead, iron, copper, manganese and cadmium met the standards of the Department of Health.

Keywords: sources of water supply, water quality, water supply, Thailand

Procedia PDF Downloads 295
11666 A Study on Temperature and Drawing Speed for Diffusion Bonding Enhancement in Drawing of Hot Lined Pipes by FEM Analysis

Authors: M. T. Ahn, J. H. Park, S. H. Park, S. H. Ha

Abstract:

Diffusion bonding has been continuously studied. Temperature and pressure are the most important factors to increase the strength between diffusion bonded interfaces. Diffusion bonding is an important factor affecting the bonding strength of the lined pipe. The increase of the diffusion bonding force results in a high formability clad pipe. However, in the case of drawing, it is difficult to obtain a high pressure between materials due to a relatively small reduction in cross-section, and it is difficult to prevent elongation or to tear of material in hot drawing even if the reduction in the section is increased. In this paper, to increase the diffusion bonding force, we derive optimal temperature and pressure to suppress material stretching and realize precise thickness precision.

Keywords: diffusion bonding, temperature, pressure, drawing speed

Procedia PDF Downloads 373
11665 Structural Evolution of Na6Mn(SO4)4 from High-Pressure Synchrotron Powder X-ray Diffraction

Authors: Monalisa Pradhan, Ajana Dutta, Irshad Kariyattuparamb Abbas, Boby Joseph, T. N. Guru Row, Diptikanta Swain, Gopal K. Pradhan

Abstract:

Compounds with the Vanthoffite crystal structure having general formula Na6M(SO₄)₄ (M= Mg, Mn, Ni , Co, Fe, Cu and Zn) display a variety of intriguing physical properties intimately related to their structural arrangements. The compound Na6Mn(SO4)4 shows antiferromagnetic ordering at low temperature where the in-plane Mn-O•••O-Mn interactions facilitates antiferromagnetic ordering via a super-exchange interaction between the Mn atoms through the oxygen atoms . The inter-atomic bond distances and angles can easily be tuned by applying external pressure and can be probed using high resolution X-ray diffraction. Moreover, because the magnetic interaction among the Mn atoms are super-exchange type via Mn-O•••O-Mn path, the variation of the Mn-O•••O-Mn dihedral angle and Mn-O bond distances under high pressure inevitably affects the magnetic properties. Therefore, it is evident that high pressure studies on the magnetically ordered materials would shed light on the interplay between their structural properties and magnetic ordering. This will indeed confirm the role of buckling of the Mn-O polyhedral in understanding the origin of anti-ferromagnetism. In this context, we carried out the pressure dependent X-ray diffraction measurement in a diamond anvil cell (DAC) up to a maximum pressure of 17 GPa to study the phase transition and determine equation of state from the volume compression data. Upon increasing the pressure, we didn’t observe any new diffraction peaks or sudden discontinuity in the pressure dependences of the d values up to the maximum achieved pressure of ~17 GPa. However, it is noticed that beyond 12 GPa the a and b lattice parameters become identical while there is a discontinuity in the β value around the same pressure. This indicates a subtle transition to a pseudo-monoclinic phase. Using the third order Birch-Murnaghan equation of state (EOS) to fit the volume compression data for the entire range, we found the bulk modulus (B0) to be 44 GPa. If we consider the subtle transition at 12 GPa, we tried to fit another equation state for the volume beyond 12 GPa using the second order Birch-Murnaghan EOS. This gives a bulk modulus of ~ 34 GPa for this phase.

Keywords: mineral, structural phase transition, high pressure XRD, spectroscopy

Procedia PDF Downloads 87
11664 Field-observed Thermal Fractures during Reinjection and Its Numerical Simulation

Authors: Wen Luo, Phil J. Vardon, Anne-Catherine Dieudonne

Abstract:

One key process that partly controls the success of geothermal projects is fluid reinjection, which benefits in dealing with waste water, maintaining reservoir pressure, and supplying heat-exchange media, etc. Thus, sustaining the injectivity is of great importance for the efficiency and sustainability of geothermal production. However, the injectivity is sensitive to the reinjection process. Field experiences have illustrated that the injectivity can be damaged or improved. In this paper, the focus is on how the injectivity is improved. Since the injection pressure is far below the formation fracture pressure, hydraulic fracturing cannot be the mechanism contributing to the increase in injectivity. Instead, thermal stimulation has been identified as the main contributor to improving the injectivity. For low-enthalpy geothermal reservoirs, which are not fracture-controlled, thermal fracturing, instead of thermal shearing, is expected to be the mechanism for increasing injectivity. In this paper, field data from the sedimentary low-enthalpy geothermal reservoirs in the Netherlands were analysed to show the occurrence of thermal fracturing due to the cooling shock during reinjection. Injection data were collected and compared to show the effects of the thermal fractures on injectivity. Then, a thermo-hydro-mechanical (THM) model for the near field formation was developed and solved by finite element method to simulate the observed thermal fractures. It was then compared with the HM model, decomposed from the THM model, to illustrate the thermal effects on thermal fracturing. Finally, the effects of operational parameters, i.e. injection temperature and pressure, on the changes in injectivity were studied on the basis of the THM model. The field data analysis and simulation results illustrate that the thermal fracturing occurred during reinjection and contributed to the increase in injectivity. The injection temperature was identified as a key parameter that contributes to thermal fracturing.

Keywords: injectivity, reinjection, thermal fracturing, thermo-hydro-mechanical model

Procedia PDF Downloads 217
11663 Assessment of Water Quality Used for Irrigation: Case Study of Josepdam Irrigation Scheme

Authors: M. A. Adejumobi, J. O. Ojediran

Abstract:

The aim of irrigation is to recharge the available water in the soil. Quality of irrigation water is essential for the yield and quality of crops produced, maintenance of soil productivity and protection of the environment. The analysis of irrigation water arises as a need to know the impact of irrigation water on the yield of crops, the effect, and the necessary control measures to rectify the effect of this for optimum production and yield of crops. This study was conducted to assess the quality of irrigation water with its performance on crop planted, in Josepdam irrigation scheme Bacita, Nigeria. Field visits were undertaken to identify and locate water supply sources and collect water samples from these sources; X1 Drain, Oshin, River Niger loop and Ndafa. Laboratory experiments were then undertaken to determine the quality of raw water from these sources. The analysis was carried for various parameters namely; physical and chemical analyses after water samples have been taken from four sources. The samples were tested in laboratory. Results showed that the raw water sources shows no salinity tendencies with SAR values less than 1me/l and Ecvaules at Zero while the pH were within the recommended range by FAO, there are increase in potassium and sulphate content contamination in three of the location. From this, it is recommended that there should be proper monitoring of the scheme by conducting analysis of water and soil in the environment, preferable test should be carried out at least one year to cover the impact of seasonal variations and to determine the physical and chemical analysis of the water used for irrigation at the scheme.

Keywords: irrigation, salinity, raw water quality, scheme

Procedia PDF Downloads 430
11662 Placement of Inflow Control Valve for Horizontal Oil Well

Authors: S. Thanabanjerdsin, F. Srisuriyachai, J. Chewaroungroj

Abstract:

Drilling horizontal well is one of the most cost-effective method to exploit reservoir by increasing exposure area between well and formation. Together with horizontal well technology, intelligent completion is often co-utilized to increases petroleum production by monitoring/control downhole production. Combination of both technological results in an opportunity to lower water cresting phenomenon, a detrimental problem that does not lower only oil recovery but also cause environmental problem due to water disposal. Flow of reservoir fluid is a result from difference between reservoir and wellbore pressure. In horizontal well, reservoir fluid around the heel location enters wellbore at higher rate compared to the toe location. As a consequence, Oil-Water Contact (OWC) at the heel side of moves upward relatively faster compared to the toe side. This causes the well to encounter an early water encroachment problem. Installation of Inflow Control Valve (ICV) in particular sections of horizontal well can involve several parameters such as number of ICV, water cut constrain of each valve, length of each section. This study is mainly focused on optimization of ICV configuration to minimize water production and at the same time, to enhance oil production. A reservoir model consisting of high aspect ratio of oil bearing zone to underneath aquifer is drilled with horizontal well and completed with variation of ICV segments. Optimization of the horizontal well configuration is firstly performed by varying number of ICV, segment length, and individual preset water cut for each segment. Simulation results show that installing ICV can increase oil recovery factor up to 5% of Original Oil In Place (OOIP) and can reduce of produced water depending on ICV segment length as well as ICV parameters. For equally partitioned-ICV segment, more number of segment results in better oil recovery. However, number of segment exceeding 10 may not give a significant additional recovery. In first production period, deformation of OWC strongly depends on number of segment along the well. Higher number of segment results in smoother deformation of OWC. After water breakthrough at heel location segment, the second production period begins. Deformation of OWC is principally dominated by ICV parameters. In certain situations that OWC is unstable such as high production rate, high viscosity fluid above aquifer and strong aquifer, second production period may give wide enough window to ICV parameter to take the roll.

Keywords: horizontal well, water cresting, inflow control valve, reservoir simulation

Procedia PDF Downloads 418
11661 Sustainable Drinking Water Treatment Method Using Solar Light

Authors: Ayushi Arora

Abstract:

Solar photocatalysis has the potential to treat drinking water in a sustainable and cost effective manner. According to WHO, there should not be any colony forming units (CFU) per 100 mL present in drinking water, and as per the Central Pollution Control Board (CPCB) of India, the bathing water should have less than 500 CFU/100 mL and the maximum permissible limit is 2500 CFU/100 mL. In this study, 8 water sources near our collaborators, Indian Institute of Technology, Kharagpur, India, were analysed, and it was found that 6 out of 8 sources of water had significant coliform count in them. Two of them were chosen to be treated by solar photocatalysis a) well water which had a count of 4800 CFU/100 mL for total coliforms and was used by people for drinking purposes, and b) pond water which had a count of 92000 CFU/100 mL for total coliforms and 3000 CFU/mL for E.Coli and was used by people for washing and bathing purposes. In this study, a semiconductor-semiconductor, composite BTO-TiO2-RMSG & TiO2-SiO2 were tested for their ability to be activated under solar light and to reduce Total Coliforms and E.Coli bacteria in real world contaminated water, and it was found that both catalysts were both able to reduce the total coliform count in water by 99.7% and 98.2 % in 2 hrs respectively. They have also shown promising results in reusability tests. This study demonstrates the ability of solar photocatalysis to be used in real world drinking water treatment and will promote future advancements in this field.

Keywords: sustainable water treatment, waterpurification technologies, water policies, water pollution and environmental engineering

Procedia PDF Downloads 81
11660 Analysis of Impact Load Induced by Ultrasonic Cavitation Bubble Collapse Using Thin Film Pressure Sensors

Authors: Moiz S. Vohra, Nagalingam Arun Prasanth, Wei L. Tan, S. H. Yeo

Abstract:

The understanding of generation and collapse of acoustic cavitation bubbles are prerequisites for application of cavitation erosion. Microbubbles generated due to rapid fluctuation of pressure induced by propagation of ultrasonic wave lead to formation of high velocity microjets and or shock waves upon collapse. Due to vast application of ultrasonic, it is important to characterize and understand cavitation collapse pressure under the radiating surface at different conditions. A comparative investigation is carried out to determine impact load and dynamic pressure distribution exerted upon bubble collapse using thin film pressure sensors. Measurements were recorded at different input conditions such as amplitude, stand-off distance, insertion depth of the horn inside the liquid and pulse on-off time of acoustic vibrations. Impact force of 2.97 N is recorded at amplitude of 108 μm and stand-off distance of 1 mm from the sensor film, whereas impulsive force as low as 0.4 N is recorded at amplitude of 12 μm and stand-off distance of 5 mm from the sensor film. The results drawn from the investigation indicated that variety of impact loads can be achieved by controlling generation and collapse of bubbles, making it suitable to use for numerous application.

Keywords: ultrasonic cavitation, bubble collapse, pressure mapping sensor, impact load

Procedia PDF Downloads 339
11659 Impact of Water, Sanitation and Hygiene Interventions on Water Quality in Primary Schools of Pakistan

Authors: Jamil Ahmed, Li P. Wong, Yan P. Chua

Abstract:

The United Nation's sustainable development goals include the target to ensure access to water and sanitation for all; however, very few studies have assessed school-based drinking water in Pakistan. The purpose of this study was to characterize water quality in primary schools of Pakistan and to characterize how recent WASH interventions were associated with school water quality. We conducted a representative cross-sectional study of primary schools in the Sindh province of Pakistan. We used structured observations and structured interviews to ascertain the school’s WASH conditions. Our primary exposures of interest were the implementation of previous WASH interventions in the school and the water source type. Outcomes of interest included water quality (measured by various chemical and microbiological indicators) and water availability at the school’s primary drinking water source. We used log-binomial regression to characterize how WASH exposures were associated with water quality outcomes. We collected data from 256 schools. Groundwater was the primary drinking water source at most schools (87%). Water testing showed that 14% of the school’s water had arsenic above the WHO recommendations, and over 50% of the water samples exceeded recommendations for both lead and cadmium. A majority of the water sources (52%) had fecal coliform contamination. None of the schools had nitrate contamination (0%), and few had fluoride contamination (5%). Regression results indicated that having a recent WASH intervention at the school was not associated with either arsenic contamination (prevalence ratio=0.97; 95% CI: 0.46-2.1) or with fecal coliform contamination (PR=0.88; 95% CI: 0.67-1.17). Our assessment unveiled several water quality gaps that exist, including high heavy metal and fecal contamination. Our findings will help various stakeholders to take suitable action to improve water quality in Pakistani schools.

Keywords: WASH interventions, water quality, primary school children, heavy metals

Procedia PDF Downloads 141
11658 Evaluation of Phthalates Contents and Their Health Effects in Consumed Sachet Water Brands in Delta State, Nigeria

Authors: Edjere Oghenekohwiroro, Asibor Irabor Godwin, Uwem Bassey

Abstract:

This paper determines the presence and levels of phthalates in sachet and borehole water source in some parts of Delta State, Nigeria. Sachet and borehole water samples were collected from seven different water packaging facilities and level of phthalates determined using GC-MS instrumentation. Phthalates concentration in borehole samples varied from 0.00-0.01 (DMP), 0.06-0.20 (DEP), 0.10-0.98 (DBP), 0.21-0.36 (BEHP), 0.01-0.03 (DnOP) µg/L and (BBP) was not detectable; while sachet water varied from 0.03-0.95 (DMP), 0.16-12.45 (DEP), 0.57-3.38 (DBP), 0.00-0.03 (BBP), 0.08-0.31 (BEHP) and 0-0.03 (DnOP) µg/L. Phthalates concentration in the sachet water was higher than that of the corresponding boreholes sources and also showed significant difference (p < 0.05) between the two. Sources of these phthalate esters were the interaction between water molecules and plastic storage facilities. Although concentration of all phthalate esters analyzed were lower than the threshold limit value(TLV), over time storage of water samples in this medium can lead to substantial increase with negative effects on individuals consuming them.

Keywords: phthalate esters, borehole, sachet water, sample extraction, gas chromatography, GC-MS

Procedia PDF Downloads 244
11657 Smart Water Cities for a Sustainable Future: Defining, Necessity, and Policy Pathways for Canada's Urban Water Resilience

Authors: Sima Saadi, Carolyn Johns

Abstract:

The concept of a "Smart Water City" is emerging as a framework to address critical urban water challenges, integrating technology, data, and sustainable management practices to enhance water quality, conservation, and accessibility. This paper explores the definition of a Smart Water City, examines the pressing need for such cities in Canada, and proposes policy pathways for their development. Smart Water Cities utilize advanced monitoring systems, data analytics, and integrated water resources management to optimize water usage, anticipate and mitigate environmental impacts, and engage citizens in sustainable practices. Global examples from regions such as Europe, Asia, and Australia illustrate how Smart Water City models can transform urban water systems by enhancing resilience, improving resource efficiency, and driving economic development through job creation in environmental technology sectors. For Canada, adopting Smart Water City principles could address pressing challenges, including climate-induced water stress, aging infrastructure, and the need for equitable water access across diverse urban and rural communities. Building on Canada's existing water policies and technological expertise, it propose strategic investments in digital water infrastructure, data-driven governance, and community partnerships. Through case studies, this paper offers insights into how Canadian cities could benefit from cross-sector collaboration, policy development, and funding for smart water technology. By aligning national policy with smart urban water solutions, Canada has the potential to lead globally in sustainable water management, ensuring long-term water security and environmental stewardship for its cities and communities.

Keywords: smart water city, urban water resilience, water management technology, sustainable water infrastructure, canada water policy, smart city initiatives

Procedia PDF Downloads 9
11656 High Temperature Creep Analysis for Lower Head of Reactor Pressure Vessel

Authors: Dongchuan Su, Hai Xie, Naibin Jiang

Abstract:

Under severe accident cases, the nuclear reactor core may meltdown inside the lower head of the reactor pressure vessel (RPV). Retaining the melt pool inside the RPV is an important strategy of severe accident management. During this process, the inner wall of the lower head will be heated to high temperature of a thousand centigrade, and the outer wall is immersed in a large amount of cooling water. The material of the lower head will have serious creep damage under the high temperature and the temperature difference, and this produces a great threat to the integrity of the RPV. In this paper, the ANSYS program is employed to build the finite element method (FEM) model of the lower head, the creep phenomena is simulated under the severe accident case, the time dependent strain and stress distribution is obtained, the creep damage of the lower head is investigated, the integrity of the RPV is evaluated and the theoretical basis is provided for the optimized design and safety assessment of the RPV.

Keywords: severe accident, lower head of RPV, creep, FEM

Procedia PDF Downloads 233