Search results for: analog signal processing
4354 KCBA, A Method for Feature Extraction of Colonoscopy Images
Authors: Vahid Bayrami Rad
Abstract:
In recent years, the use of artificial intelligence techniques, tools, and methods in processing medical images and health-related applications has been highlighted and a lot of research has been done in this regard. For example, colonoscopy and diagnosis of colon lesions are some cases in which the process of diagnosis of lesions can be improved by using image processing and artificial intelligence algorithms, which help doctors a lot. Due to the lack of accurate measurements and the variety of injuries in colonoscopy images, the process of diagnosing the type of lesions is a little difficult even for expert doctors. Therefore, by using different software and image processing, doctors can be helped to increase the accuracy of their observations and ultimately improve their diagnosis. Also, by using automatic methods, the process of diagnosing the type of disease can be improved. Therefore, in this paper, a deep learning framework called KCBA is proposed to classify colonoscopy lesions which are composed of several methods such as K-means clustering, a bag of features and deep auto-encoder. Finally, according to the experimental results, the proposed method's performance in classifying colonoscopy images is depicted considering the accuracy criterion.Keywords: colorectal cancer, colonoscopy, region of interest, narrow band imaging, texture analysis, bag of feature
Procedia PDF Downloads 574353 A Visual Inspection System for Automotive Sheet Metal Chasis Parts Produced with Cold-Forming Method
Authors: İmren Öztürk Yılmaz, Abdullah Yasin Bilici, Yasin Atalay Candemir
Abstract:
The system consists of 4 main elements: motion system, image acquisition system, image processing software, and control interface. The parts coming out of the production line to enter the image processing system with the conveyor belt at the end of the line. The 3D scanning of the produced part is performed with the laser scanning system integrated into the system entry side. With the 3D scanning method, it is determined at what position and angle the parts enter the system, and according to the data obtained, parameters such as part origin and conveyor speed are calculated with the designed software, and the robot is informed about the position where it will take part. The robot, which receives the information, takes the produced part on the belt conveyor and shows it to high-resolution cameras for quality control. Measurement processes are carried out with a maximum error of 20 microns determined by the experiments.Keywords: quality control, industry 4.0, image processing, automated fault detection, digital visual inspection
Procedia PDF Downloads 1134352 PWM Harmonic Injection and Frequency-Modulated Triangular Carrier to Improve the Lives of the Transformers
Authors: Mario J. Meco-Gutierrez, Francisco Perez-Hidalgo, Juan R. Heredia-Larrubia, Antonio Ruiz-Gonzalez, Francisco Vargas-Merino
Abstract:
More and more applications power inverters connected to transformers, for example, the connection facilities to the power grid renewable generation. It is well known that the quality of signal power inverters it is not a pure sine. The harmonic content produced negative effects, one of which is the heating of electrical machines and therefore, affects the life of the machines. The decrease of life of transformers can be calculated by Arrhenius or Montsinger equation. Analyzing this expression any (long-term) decrease of a transformer temperature for 6º C - 7º C means doubles its life-expectancy. Methodologies: This work presents the technique of pulse width modulation (PWM) with an injection of harmonic and triangular frequency carrier modulated in frequency. This technique is used to improve the quality of the output voltage signal of the power inverters controlled PWM. The proposed technique increases in the fundamental term and a significant reduction in low order harmonics with the same commutations per time that control sine PWM. To achieve this, the modulating wave is compared to a triangular carrier with variable frequency over the period of the modulator. Therefore, it is, advantageous for the modulating signal to have a large amount of sinusoidal “information” in the areas of greater sampling. A triangular signal with a frequency that varies over the modulator’s period is used as a carrier, for obtaining more samples in the area with the greatest slope. A power inverter controlled by PWM proposed technique is connected to a transformer. Results: In order to verify the derived thermal parameters under different operation conditions, another ambient and loading scenario is involved for a further verification, which was sampled from the same power transformer. Temperatures of different parts of the transformer will be exposed for each PWM control technique analyzed. An assessment of the temperature be done with different techniques PWM control and hence the life of the transformer is calculated for each technique. Conclusion: This paper analyzes such as transformer heating produced by this technique and compared with other forms of PWM control. In it can be seen as a reduction the harmonic content produces less heat transformer and therefore, an increase in the life of the transformer.Keywords: heating, power-inverter, PWM, transformer
Procedia PDF Downloads 4124351 Technical Aspects of Closing the Loop in Depth-of-Anesthesia Control
Authors: Gorazd Karer
Abstract:
When performing a diagnostic procedure or surgery in general anesthesia (GA), a proper introduction and dosing of anesthetic agents are one of the main tasks of the anesthesiologist. However, depth of anesthesia (DoA) also seems to be a suitable process for closed-loop control implementation. To implement such a system, one must be able to acquire the relevant signals online and in real-time, as well as stream the calculated control signal to the infusion pump. However, during a procedure, patient monitors and infusion pumps are purposely unable to connect to an external (possibly medically unapproved) device for safety reasons, thus preventing closed-loop control. The paper proposes a conceptual solution to the aforementioned problem. First, it presents some important aspects of contemporary clinical practice. Next, it introduces the closed-loop-control-system structure and the relevant information flow. Focusing on transferring the data from the patient to the computer, it presents a non-invasive image-based system for signal acquisition from a patient monitor for online depth-of-anesthesia assessment. Furthermore, it introduces a UDP-based communication method that can be used for transmitting the calculated anesthetic inflow to the infusion pump. The proposed system is independent of a medical device manufacturer and is implemented in Matlab-Simulink, which can be conveniently used for DoA control implementation. The proposed scheme has been tested in a simulated GA setting and is ready to be evaluated in an operating theatre. However, the proposed system is only a step towards a proper closed-loop control system for DoA, which could routinely be used in clinical practice.Keywords: closed-loop control, depth of anesthesia (DoA), modeling, optical signal acquisition, patient state index (PSi), UDP communication protocol
Procedia PDF Downloads 2174350 Testing the Impact of Formal Interpreting Training on Working Memory Capacity: Evidence from Turkish-English Student-Interpreters
Authors: Elena Antonova Unlu, Cigdem Sagin Simsek
Abstract:
The research presents two studies examining the impact of formal interpreting training (FIT) on Working Memory Capacity (WMC) of student-interpreters. In Study 1, the storage and processing capacities of the working memory (WM) of last-year student-interpreters were compared with those of last-year Foreign Language Education (FLE) students. In Study 2, the impact of FIT on the WMC of student-interpreters was examined via comparing their results on WM tasks at the beginning and the end of their FIT. In both studies, Digit Span Task (DST) and Reading Span Task (RST) were utilized for testing storage and processing capacities of WM. The results of Study 1 revealed that the last-year student-interpreters outperformed the control groups on the RST but not on the DST. The findings of Study 2 were consistent with Study 1 showing that after FIT, the student-interpreters performed better on the RST but not on the DST. Our findings can be considered as evidence supporting the view that FIT has a beneficial effect not only on the interpreting skills of student-interpreters but also on the central executive and processing capacity of their WM.Keywords: working memory capacity, formal interpreting training, student-interpreters, cross-sectional and longitudinal data
Procedia PDF Downloads 2064349 Implementation of a Method of Crater Detection Using Principal Component Analysis in FPGA
Authors: Izuru Nomura, Tatsuya Takino, Yuji Kageyama, Shin Nagata, Hiroyuki Kamata
Abstract:
We propose a method of crater detection from the image of the lunar surface captured by the small space probe. We use the principal component analysis (PCA) to detect craters. Nevertheless, considering severe environment of the space, it is impossible to use generic computer in practice. Accordingly, we have to implement the method in FPGA. This paper compares FPGA and generic computer by the processing time of a method of crater detection using principal component analysis.Keywords: crater, PCA, eigenvector, strength value, FPGA, processing time
Procedia PDF Downloads 5554348 A Controlled Natural Language Assisted Approach for the Design and Automated Processing of Service Level Agreements
Authors: Christopher Schwarz, Katrin Riegler, Erwin Zinser
Abstract:
The management of outsourcing relationships between IT service providers and their customers proofs to be a critical issue that has to be stipulated by means of Service Level Agreements (SLAs). Since service requirements differ from customer to customer, SLA content and language structures vary largely, standardized SLA templates may not be used and an automated processing of SLA content is not possible. Hence, SLA management is usually a time-consuming and inefficient manual process. For overcoming these challenges, this paper presents an innovative and ITIL V3-conform approach for automated SLA design and management using controlled natural language in enterprise collaboration portals. The proposed novel concept is based on a self-developed controlled natural language that follows a subject-predicate-object approach to specify well-defined SLA content structures that act as templates for customized contracts and support automated SLA processing. The derived results eventually enable IT service providers to automate several SLA request, approval and negotiation processes by means of workflows and business rules within an enterprise collaboration portal. The illustrated prototypical realization gives evidence of the practical relevance in service-oriented scenarios as well as the high flexibility and adaptability of the presented model. Thus, the prototype enables the automated creation of well defined, customized SLA documents, providing a knowledge representation that is both human understandable and machine processable.Keywords: automated processing, controlled natural language, knowledge representation, information technology outsourcing, service level management
Procedia PDF Downloads 4324347 Study on the Dynamic Characteristics Change of Welded Beam Due to Vibration Aging
Authors: S. H. Bae, D. W. Cho, W. B. Jeong, J. R. Cho
Abstract:
Fatigue fracture of an aluminum welded structure is a phenomenon frequently occurring from pores in a weld. In order to grasp the state of the welded structure in operation in real time, the acceleration signal of the structure is measured. At this time, the vibration characteristic of the signal according to the fatigue load is an important parameter of the state diagnosis. This paper was an experimental study on the variation of vibration characteristics of welded beams with vibration aging (especially bending vibration). First simple beams were produced according to welding conditions. Each beam was vibrated and measured beam's PSD (power spectral density) according to the degree of aging. Also, modal testing was conducted to compare the transfer functions of welded beams. Testing result shows that the natural frequencies of the beam changed with the vibration aging due to the change of stiffness in welding part and its stiffness was estimated by the finite element method.Keywords: modal testing, natural frequency, vibration aging, welded structure
Procedia PDF Downloads 4834346 Enhancement of Mechanical Properties for Al-Mg-Si Alloy Using Equal Channel Angular Pressing
Authors: W. H. El Garaihy, A. Nassef, S. Samy
Abstract:
Equal channel angular pressing (ECAP) of commercial Al-Mg-Si alloy was conducted using two strain rates. The ECAP processing was conducted at room temperature and at 250 °C. Route A was adopted up to a total number of four passes in the present work. Structural evolution of the aluminum alloy discs was investigated before and after ECAP processing using optical microscopy (OM). Following ECAP, simple compression tests and Vicker’s hardness were performed. OM micrographs showed that, the average grain size of the as-received Al-Mg-Si disc tends to be larger than the size of the ECAP processed discs. Moreover, significant difference in the grain morphologies of the as-received and processed discs was observed. Intensity of deformation was observed via the alignment of the Al-Mg-Si consolidated particles (grains) in the direction of shear, which increased with increasing the number of passes via ECAP. Increasing the number of passes up to 4 resulted in increasing the grains aspect ratio up to ~5. It was found that the pressing temperature has a significant influence on the microstructure, Hv-values, and compressive strength of the processed discs. Hardness measurements demonstrated that 1-pass resulted in increase of Hv-value by 42% compared to that of the as-received alloy. 4-passes of ECAP processing resulted in additional increase in the Hv-value. A similar trend was observed for the yield and compressive strength. Experimental data of the Hv-values demonstrated that there is a lack of any significant dependence on the processing strain rate.Keywords: Al-Mg-Si alloy, equal channel angular pressing, grain refinement, severe plastic deformation
Procedia PDF Downloads 4354345 Statistical Tools for SFRA Diagnosis in Power Transformers
Authors: Rahul Srivastava, Priti Pundir, Y. R. Sood, Rajnish Shrivastava
Abstract:
For the interpretation of the signatures of sweep frequency response analysis(SFRA) of transformer different types of statistical techniques serves as an effective tool for doing either phase to phase comparison or sister unit comparison. In this paper with the discussion on SFRA several statistics techniques like cross correlation coefficient (CCF), root square error (RSQ), comparative standard deviation (CSD), Absolute difference, mean square error(MSE),Min-Max ratio(MM) are presented through several case studies. These methods require sample data size and spot frequencies of SFRA signatures that are being compared. The techniques used are based on power signal processing tools that can simplify result and limits can be created for the severity of the fault occurring in the transformer due to several short circuit forces or due to ageing. The advantages of using statistics techniques for analyzing of SFRA result are being indicated through several case studies and hence the results are obtained which determines the state of the transformer.Keywords: absolute difference (DABS), cross correlation coefficient (CCF), mean square error (MSE), min-max ratio (MM-ratio), root square error (RSQ), standard deviation (CSD), sweep frequency response analysis (SFRA)
Procedia PDF Downloads 6974344 Damage Identification Using Experimental Modal Analysis
Authors: Niladri Sekhar Barma, Satish Dhandole
Abstract:
Damage identification in the context of safety, nowadays, has become a fundamental research interest area in the field of mechanical, civil, and aerospace engineering structures. The following research is aimed to identify damage in a mechanical beam structure and quantify the severity or extent of damage in terms of loss of stiffness, and obtain an updated analytical Finite Element (FE) model. An FE model is used for analysis, and the location of damage for single and multiple damage cases is identified numerically using the modal strain energy method and mode shape curvature method. Experimental data has been acquired with the help of an accelerometer. Fast Fourier Transform (FFT) algorithm is applied to the measured signal, and subsequently, post-processing is done in MEscopeVes software. The two sets of data, the numerical FE model and experimental results, are compared to locate the damage accurately. The extent of the damage is identified via modal frequencies using a mixed numerical-experimental technique. Mode shape comparison is performed by Modal Assurance Criteria (MAC). The analytical FE model is adjusted by the direct method of model updating. The same study has been extended to some real-life structures such as plate and GARTEUR structures.Keywords: damage identification, damage quantification, damage detection using modal analysis, structural damage identification
Procedia PDF Downloads 1164343 Broadband Ultrasonic and Rheological Characterization of Liquids Using Longitudinal Waves
Authors: M. Abderrahmane Mograne, Didier Laux, Jean-Yves Ferrandis
Abstract:
Rheological characterizations of complex liquids like polymer solutions present an important scientific interest for a lot of researchers in many fields as biology, food industry, chemistry. In order to establish master curves (elastic moduli vs frequency) which can give information about microstructure, classical rheometers or viscometers (such as Couette systems) are used. For broadband characterization of the sample, temperature is modified in a very large range leading to equivalent frequency modifications applying the Time Temperature Superposition principle. For many liquids undergoing phase transitions, this approach is not applicable. That is the reason, why the development of broadband spectroscopic methods around room temperature becomes a major concern. In literature many solutions have been proposed but, to our knowledge, there is no experimental bench giving the whole rheological characterization for frequencies about a few Hz (Hertz) to many MHz (Mega Hertz). Consequently, our goal is to investigate in a nondestructive way in very broadband frequency (A few Hz – Hundreds of MHz) rheological properties using longitudinal ultrasonic waves (L waves), a unique experimental bench and a specific container for the liquid: a test tube. More specifically, we aim to estimate the three viscosities (longitudinal, shear and bulk) and the complex elastic moduli (M*, G* and K*) respectively longitudinal, shear and bulk moduli. We have decided to use only L waves conditioned in two ways: bulk L wave in the liquid or guided L waves in the tube test walls. In this paper, we will present first results for very low frequencies using the ultrasonic tracking of a falling ball in the test tube. This will lead to the estimation of shear viscosity from a few mPa.s to a few Pa.s (Pascal second). Corrections due to the small dimensions of the tube will be applied and discussed regarding the size of the falling ball. Then the use of bulk L wave’s propagation in the liquid and the development of a specific signal processing in order to assess longitudinal velocity and attenuation will conduct to the longitudinal viscosity evaluation in the MHz frequency range. At last, the first results concerning the propagation, the generation and the processing of guided compressional waves in the test tube walls will be discussed. All these approaches and results will be compared to standard methods available and already validated in our lab.Keywords: nondestructive measurement for liquid, piezoelectric transducer, ultrasonic longitudinal waves, viscosities
Procedia PDF Downloads 2654342 Dairy Value Chain: Assessing the Inter Linkage of Dairy Farm and Small-Scale Dairy Processing in Tigray: Case Study of Mekelle City
Authors: Weldeabrha Kiros Kidanemaryam, DepaTesfay Kelali Gidey, Yikaalo Welu Kidanemariam
Abstract:
Dairy services are considered as sources of income, employment, nutrition and health for smallholder rural and urban farmers. The main objective of this study is to assess the interlinkage of dairy farms and small-scale dairy processing in Mekelle, Tigray. To achieve the stated objective, a descriptive research approach was employed where data was collected from 45 dairy farmers and 40 small-scale processors and analyzed by calculating the mean values and percentages. Findings show that the dairy business in the study area is characterized by a shortage of feed and water for the farm. The dairy farm is dominated by breeds of hybrid type, followed by the so called ‘begait’. Though the farms have access to medication and vaccination for the cattle, they fell short of hygiene practices, reliable shade for the cattle and separate space for the claves. The value chain at the milk production stage is characterized by a low production rate, selling raw milk without adding value and a very meager traditional processing practice. Furthermore, small-scale milk processors are characterized by collecting milk from farmers and producing cheese, butter, ghee and sour milk. They do not engage in modern milk processing like pasteurized milk, yogurt and table butter. Most small-scale milk processors are engaged in traditional production systems. Additionally, the milk consumption and marketing part of the chain is dominated by the informal market (channel), where market problems, lack of skill and technology, shortage of loans and weak policy support are being faced as the main challenges. Based on the findings, recommendations and future research areas are forwarded.Keywords: value-chain, dairy, milk production, milk processing
Procedia PDF Downloads 324341 Mobile Robot Manipulator Kinematics Motion Control Analysis with MATLAB/Simulink
Authors: Wayan Widhiada, Cok Indra Partha, Gusti Ngurah Nitya Santhiarsa
Abstract:
The purpose of this paper is to investigate the sophistication of the use of Proportional Integral and Derivative Control to control the kinematic motion of the mobile robot manipulator. Simulation and experimental methods will be used to investigate the sophistication of PID control to control the mobile robot arm in the collection and placement of several kinds of objects quickly, accurately and correctly. Mathematical modeling will be done by utilizing the integration of Solidworks and MATLAB / Simmechanics software. This method works by converting the physical model file into the xml file. This method is easy, fast and accurate done in modeling and design robotics. The automatic control design of this robot manipulator will be validated in simulations and experimental in control labs as evidence that the mobile robot manipulator gripper control design can achieve the best performance such as the error signal is lower than 5%, small overshoot and get steady signal response as quickly.Keywords: control analysis, kinematics motion, mobile robot manipulator, performance
Procedia PDF Downloads 4104340 Correlation Analysis between Sensory Processing Sensitivity (SPS), Meares-Irlen Syndrome (MIS) and Dyslexia
Authors: Kaaryn M. Cater
Abstract:
Students with sensory processing sensitivity (SPS), Meares-Irlen Syndrome (MIS) and dyslexia can become overwhelmed and struggle to thrive in traditional tertiary learning environments. An estimated 50% of tertiary students who disclose learning related issues are dyslexic. This study explores the relationship between SPS, MIS and dyslexia. Baseline measures will be analysed to establish any correlation between these three minority methods of information processing. SPS is an innate sensitivity trait found in 15-20% of the population and has been identified in over 100 species of animals. Humans with SPS are referred to as Highly Sensitive People (HSP) and the measure of HSP is a 27 point self-test known as the Highly Sensitive Person Scale (HSPS). A 2016 study conducted by the author established base-line data for HSP students in a tertiary institution in New Zealand. The results of the study showed that all participating HSP students believed the knowledge of SPS to be life-changing and useful in managing life and study, in addition, they believed that all tutors and in-coming students should be given information on SPS. MIS is a visual processing and perception disorder that is found in approximately 10% of the population and has a variety of symptoms including visual fatigue, headaches and nausea. One way to ease some of these symptoms is through the use of colored lenses or overlays. Dyslexia is a complex phonological based information processing variation present in approximately 10% of the population. An estimated 50% of dyslexics are thought to have MIS. The study exploring possible correlations between these minority forms of information processing is due to begin in February 2017. An invitation will be extended to all first year students enrolled in degree programmes across all faculties and schools within the institution. An estimated 900 students will be eligible to participate in the study. Participants will be asked to complete a battery of on-line questionnaires including the Highly Sensitive Person Scale, the International Dyslexia Association adult self-assessment and the adapted Irlen indicator. All three scales have been used extensively in literature and have been validated among many populations. All participants whose score on any (or some) of the three questionnaires suggest a minority method of information processing will receive an invitation to meet with a learning advisor, and given access to counselling services if they choose. Meeting with a learning advisor is not mandatory, and some participants may choose not to receive help. Data will be collected using the Question Pro platform and base-line data will be analysed using correlation and regression analysis to identify relationships and predictors between SPS, MIS and dyslexia. This study forms part of a larger three year longitudinal study and participants will be required to complete questionnaires at annual intervals in subsequent years of the study until completion of (or withdrawal from) their degree. At these data collection points, participants will be questioned on any additional support received relating to their minority method(s) of information processing. Data from this study will be available by April 2017.Keywords: dyslexia, highly sensitive person (HSP), Meares-Irlen Syndrome (MIS), minority forms of information processing, sensory processing sensitivity (SPS)
Procedia PDF Downloads 2454339 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence
Authors: Muhammad Bilal Shaikh
Abstract:
Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.Keywords: multimodal AI, computer vision, NLP, mineral processing, mining
Procedia PDF Downloads 684338 Systematic Literature Review of Therapeutic Use of Autonomous Sensory Meridian Response (ASMR) and Short-Term ASMR Auditory Training Trial
Authors: Christine H. Cubelo
Abstract:
This study consists of 2-parts: a systematic review of current publications on the therapeutic use of autonomous sensory meridian response (ASMR) and a within-subjects auditory training trial using ASMR videos. The main intent is to explore ASMR as potentially therapeutically beneficial for those with atypical sensory processing. Many hearing-related disorders and mood or anxiety symptoms overlap with symptoms of sensory processing issues. For this reason, inclusion and exclusion criteria of the systematic review were generated in an effort to produce optimal search outcomes and avoid overly confined criteria that would limit yielded results. Criteria for inclusion in the review for Part 1 are (1) adult participants diagnosed with hearing loss or atypical sensory processing, (2) inclusion of measures related to ASMR as a treatment method, and (3) published between 2000 and 2022. A total of 1,088 publications were found in the preliminary search, and a total of 13 articles met the inclusion criteria. A total of 14 participants completed the trial and post-trial questionnaire. Of all responses, 64.29% agreed that the duration of auditory training sessions was reasonable. In addition, 71.43% agreed that the training improved their perception of music. Lastly, 64.29% agreed that the training improved their perception of a primary talker when there are other talkers or background noises present.Keywords: autonomous sensory meridian response, auditory training, atypical sensory processing, hearing loss, hearing aids
Procedia PDF Downloads 554337 Detection and Classification of Myocardial Infarction Using New Extracted Features from Standard 12-Lead ECG Signals
Authors: Naser Safdarian, Nader Jafarnia Dabanloo
Abstract:
In this paper we used four features i.e. Q-wave integral, QRS complex integral, T-wave integral and total integral as extracted feature from normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our research we focused on detection and localization of MI in standard ECG. We use the Q-wave integral and T-wave integral because this feature is important impression in detection of MI. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI. Because these methods have good accuracy for classification of normal and abnormal signals. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 80% for accuracy in test data for localization and over 95% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve accuracy of classification by adding more features in this method. A simple method based on using only four features which extracted from standard ECG is presented which has good accuracy in MI localization.Keywords: ECG signal processing, myocardial infarction, features extraction, pattern recognition
Procedia PDF Downloads 4564336 Iris Cancer Detection System Using Image Processing and Neural Classifier
Authors: Abdulkader Helwan
Abstract:
Iris cancer, so called intraocular melanoma is a cancer that starts in the iris; the colored part of the eye that surrounds the pupil. There is a need for an accurate and cost-effective iris cancer detection system since the available techniques used currently are still not efficient. The combination of the image processing and artificial neural networks has a great efficiency for the diagnosis and detection of the iris cancer. Image processing techniques improve the diagnosis of the cancer by enhancing the quality of the images, so the physicians diagnose properly. However, neural networks can help in making decision; whether the eye is cancerous or not. This paper aims to develop an intelligent system that stimulates a human visual detection of the intraocular melanoma, so called iris cancer. The suggested system combines both image processing techniques and neural networks. The images are first converted to grayscale, filtered, and then segmented using prewitt edge detection algorithm to detect the iris, sclera circles and the cancer. The principal component analysis is used to reduce the image size and for extracting features. Those features are considered then as inputs for a neural network which is capable of deciding if the eye is cancerous or not, throughout its experience adopted by many training iterations of different normal and abnormal eye images during the training phase. Normal images are obtained from a public database available on the internet, “Mile Research”, while the abnormal ones are obtained from another database which is the “eyecancer”. The experimental results for the proposed system show high accuracy 100% for detecting cancer and making the right decision.Keywords: iris cancer, intraocular melanoma, cancerous, prewitt edge detection algorithm, sclera
Procedia PDF Downloads 5034335 An Image Enhancement Method Based on Curvelet Transform for CBCT-Images
Authors: Shahriar Farzam, Maryam Rastgarpour
Abstract:
Image denoising plays extremely important role in digital image processing. Enhancement of clinical image research based on Curvelet has been developed rapidly in recent years. In this paper, we present a method for image contrast enhancement for cone beam CT (CBCT) images based on fast discrete curvelet transforms (FDCT) that work through Unequally Spaced Fast Fourier Transform (USFFT). These transforms return a table of Curvelet transform coefficients indexed by a scale parameter, an orientation and a spatial location. Accordingly, the coefficients obtained from FDCT-USFFT can be modified in order to enhance contrast in an image. Our proposed method first uses a two-dimensional mathematical transform, namely the FDCT through unequal-space fast Fourier transform on input image and then applies thresholding on coefficients of Curvelet to enhance the CBCT images. Consequently, applying unequal-space fast Fourier Transform leads to an accurate reconstruction of the image with high resolution. The experimental results indicate the performance of the proposed method is superior to the existing ones in terms of Peak Signal to Noise Ratio (PSNR) and Effective Measure of Enhancement (EME).Keywords: curvelet transform, CBCT, image enhancement, image denoising
Procedia PDF Downloads 3004334 Exploring the Potential of Replika: An AI Chatbot for Mental Health Support
Authors: Nashwah Alnajjar
Abstract:
This research paper provides an overview of Replika, an AI chatbot application that uses natural language processing technology to engage in conversations with users. The app was developed to provide users with a virtual AI friend who can converse with them on various topics, including mental health. This study explores the experiences of Replika users using quantitative research methodology. A survey was conducted with 12 participants to collect data on their demographics, usage patterns, and experiences with the Replika app. The results showed that Replika has the potential to play a role in mental health support and well-being.Keywords: Replika, chatbot, mental health, artificial intelligence, natural language processing
Procedia PDF Downloads 864333 Waste Derived from Refinery and Petrochemical Plants Activities: Processing of Oil Sludge through Thermal Desorption
Authors: Anna Bohers, Emília Hroncová, Juraj Ladomerský
Abstract:
Oil sludge with its main characteristic of high acidity is a waste product generated from the operation of refinery and petrochemical plants. Former refinery and petrochemical plant - Petrochema Dubová is present in Slovakia as well. Its activities was to process the crude oil through sulfonation and adsorption technology for production of lubricating and special oils, synthetic detergents and special white oils for cosmetic and medical purposes. Seventy years ago – period, when this historical acid sludge burden has been created – comparing to the environmental awareness the production was in preference. That is the reason why, as in many countries, also in Slovakia a historical environmental burden is present until now – 229 211 m3 of oil sludge in the middle of the National Park of Nízke Tatry mountain chain. Neither one of tried treatment methods – bio or non-biologic one - was proved as suitable for processing or for recovery in the reason of different factors admission: i.e. strong aggressivity, difficulty with handling because of its sludgy and liquid state et sim. As a potential solution, also incineration was tested, but it was not proven as a suitable method, as the concentration of SO2 in combustion gases was too high, and it was not possible to decrease it under the acceptable value of 2000 mg.mn-3. That is the reason why the operation of incineration plant has been terminated, and the acid sludge landfills are present until nowadays. The objective of this paper is to present a new possibility of processing and valorization of acid sludgy-waste. The processing of oil sludge was performed through the effective separation - thermal desorption technology, through which it is possible to split the sludgy material into the matrix (soil, sediments) and organic contaminants. In order to boost the efficiency in the processing of acid sludge through thermal desorption, the work will present the possibility of application of an original technology – Method of Blowing Decomposition for recovering of organic matter into technological lubricating oil.Keywords: hazardous waste, oil sludge, remediation, thermal desorption
Procedia PDF Downloads 2004332 Graph-Oriented Summary for Optimized Resource Description Framework Graphs Streams Processing
Authors: Amadou Fall Dia, Maurras Ulbricht Togbe, Aliou Boly, Zakia Kazi Aoul, Elisabeth Metais
Abstract:
Existing RDF (Resource Description Framework) Stream Processing (RSP) systems allow continuous processing of RDF data issued from different application domains such as weather station measuring phenomena, geolocation, IoT applications, drinking water distribution management, and so on. However, processing window phase often expires before finishing the entire session and RSP systems immediately delete data streams after each processed window. Such mechanism does not allow optimized exploitation of the RDF data streams as the most relevant and pertinent information of the data is often not used in a due time and almost impossible to be exploited for further analyzes. It should be better to keep the most informative part of data within streams while minimizing the memory storage space. In this work, we propose an RDF graph summarization system based on an explicit and implicit expressed needs through three main approaches: (1) an approach for user queries (SPARQL) in order to extract their needs and group them into a more global query, (2) an extension of the closeness centrality measure issued from Social Network Analysis (SNA) to determine the most informative parts of the graph and (3) an RDF graph summarization technique combining extracted user query needs and the extended centrality measure. Experiments and evaluations show efficient results in terms of memory space storage and the most expected approximate query results on summarized graphs compared to the source ones.Keywords: centrality measures, RDF graphs summary, RDF graphs stream, SPARQL query
Procedia PDF Downloads 2034331 SNR Classification Using Multiple CNNs
Authors: Thinh Ngo, Paul Rad, Brian Kelley
Abstract:
Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.Keywords: classification, CNN, deep learning, prediction, SNR
Procedia PDF Downloads 1344330 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks
Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul
Abstract:
Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50
Procedia PDF Downloads 1284329 Regression-Based Approach for Development of a Cuff-Less Non-Intrusive Cardiovascular Health Monitor
Authors: Pranav Gulati, Isha Sharma
Abstract:
Hypertension and hypotension are known to have repercussions on the health of an individual, with hypertension contributing to an increased probability of risk to cardiovascular diseases and hypotension resulting in syncope. This prompts the development of a non-invasive, non-intrusive, continuous and cuff-less blood pressure monitoring system to detect blood pressure variations and to identify individuals with acute and chronic heart ailments, but due to the unavailability of such devices for practical daily use, it becomes difficult to screen and subsequently regulate blood pressure. The complexities which hamper the steady monitoring of blood pressure comprises of the variations in physical characteristics from individual to individual and the postural differences at the site of monitoring. We propose to develop a continuous, comprehensive cardio-analysis tool, based on reflective photoplethysmography (PPG). The proposed device, in the form of an eyewear captures the PPG signal and estimates the systolic and diastolic blood pressure using a sensor positioned near the temporal artery. This system relies on regression models which are based on extraction of key points from a pair of PPG wavelets. The proposed system provides an edge over the existing wearables considering that it allows for uniform contact and pressure with the temporal site, in addition to minimal disturbance by movement. Additionally, the feature extraction algorithms enhance the integrity and quality of the extracted features by reducing unreliable data sets. We tested the system with 12 subjects of which 6 served as the training dataset. For this, we measured the blood pressure using a cuff based BP monitor (Omron HEM-8712) and at the same time recorded the PPG signal from our cardio-analysis tool. The complete test was conducted by using the cuff based blood pressure monitor on the left arm while the PPG signal was acquired from the temporal site on the left side of the head. This acquisition served as the training input for the regression model on the selected features. The other 6 subjects were used to validate the model by conducting the same test on them. Results show that the developed prototype can robustly acquire the PPG signal and can therefore be used to reliably predict blood pressure levels.Keywords: blood pressure, photoplethysmograph, eyewear, physiological monitoring
Procedia PDF Downloads 2774328 A Fast Convergence Subband BSS Structure
Authors: Salah Al-Din I. Badran, Samad Ahmadi, Ismail Shahin
Abstract:
A blind source separation method is proposed; in this method we use a non-uniform filter bank and a novel normalisation. This method provides a reduced computational complexity and increased convergence speed comparing to the full-band algorithm. Recently, adaptive sub-band scheme has been recommended to solve two problems: reduction of computational complexity and increase the convergence speed of the adaptive algorithm for correlated input signals. In this work the reduction in computational complexity is achieved with the use of adaptive filters of orders less than the full-band adaptive filters, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each sub-band than the input signal at full bandwidth, and can promote better rates of convergence.Keywords: blind source separation, computational complexity, subband, convergence speed, mixture
Procedia PDF Downloads 5554327 Cascade Control for Pressure Calibration by Fieldbus Communication System
Authors: Chatchaval Pornpatkul, Wipawan Suksathid
Abstract:
This paper is to study and control the pressure of the water inside the open tank using a cascade control with the communication in the process by fieldbus system for the pressure calibration. The plant model is to be used in experiments to control the level and flow process of the water by using Syscon program to create functions. We used to control by Intouch runtime program to create the graphic display on the screen. In this case we used PI control the level and the flow process of water in the open tank in the range of 0 – 10 L/m. The output signal of the level and the flow transmitter are the digital standard signal by fieldbus system. And all information displayed on the computer with the communication between the computer and plant model can be communication to each other through just one cable pair. And in this paper, the PI tuning, we used calculate by Ziegler-Nichols reaction curve method to control the plant model by PI controller.Keywords: cascade control, fieldbus system, pressure calibration, microelectronics systems
Procedia PDF Downloads 4594326 Efficient Antenna Array Beamforming with Robustness against Random Steering Mismatch
Authors: Ju-Hong Lee, Ching-Wei Liao, Kun-Che Lee
Abstract:
This paper deals with the problem of using antenna sensors for adaptive beamforming in the presence of random steering mismatch. We present an efficient adaptive array beamformer with robustness to deal with the considered problem. The robustness of the proposed beamformer comes from the efficient designation of the steering vector. Using the received array data vector, we construct an appropriate correlation matrix associated with the received array data vector and a correlation matrix associated with signal sources. Then, the eigenvector associated with the largest eigenvalue of the constructed signal correlation matrix is designated as an appropriate estimate of the steering vector. Finally, the adaptive weight vector required for adaptive beamforming is obtained by using the estimated steering vector and the constructed correlation matrix of the array data vector. Simulation results confirm the effectiveness of the proposed method.Keywords: adaptive beamforming, antenna array, linearly constrained minimum variance, robustness, steering vector
Procedia PDF Downloads 1994325 The Lubrication Regimes Recognition of a Pressure-Fed Journal Bearing by Time and Frequency Domain Analysis of Acoustic Emission Signals
Authors: S. Hosseini, M. Ahmadi Najafabadi, M. Akhlaghi
Abstract:
The health of the journal bearings is very important in preventing unforeseen breakdowns in rotary machines, and poor lubrication is one of the most important factors for producing the bearing failures. Hydrodynamic lubrication (HL), mixed lubrication (ML), and boundary lubrication (BL) are three regimes of a journal bearing lubrication. This paper uses acoustic emission (AE) measurement technique to correlate features of the AE signals to the three lubrication regimes. The transitions from HL to ML based on operating factors such as rotating speed, load, inlet oil pressure by time domain and time-frequency domain signal analysis techniques are detected, and then metal-to-metal contacts between sliding surfaces of the journal and bearing are identified. It is found that there is a significant difference between theoretical and experimental operating values that are obtained for defining the lubrication regions.Keywords: acoustic emission technique, pressure fed journal bearing, time and frequency signal analysis, metal-to-metal contact
Procedia PDF Downloads 155