Search results for: accuracy improvement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7876

Search results for: accuracy improvement

7066 The Effectiveness of Teaching Games for Understanding in Improving the Hockey Tactical Skills and State Self-Confidence among 16 Years Old Students

Authors: Wee Akina Sia Seng Lee, Shabeshan Rengasamy, Lim Boon Hooi, Chandrakalavaratharajoo, Mohd Ibrahim K. Azeez

Abstract:

This study was conducted to examine the effectiveness of Teaching Games For Understanding (TGFU) in improving the hockey tactical skills and state self-confidence among 16-year-old students. Two hundred fifty nine (259) school students were selected for the study based on the intact sampling method. One class was used as the control group (Boys=60, Girls=70), while another as the treatment group (Boys=60, Girls=69) underwent intervention with TGFU in physical education class conducted twice a week for four weeks. The Games Performance Assessment Instrument was used to observe the hockey tactical skills and The State Self-Confidence Inventory was used to determine the state of self-confidence among the students. After four weeks, ANCOVA analysis indicated the treatment groups had significant improvement in hockey tactical skills with F (1, 118) =313.37, p < .05 for school boys, and F (1, 136) =92.62, p < .05 for school girls. The Mann Whitney U test also showed the treatment groups had significant improvement in state self-confidence with U=428.50, z= -7.22, p < .05, r=.06 for school boys. ANCOVA analysis also showed the treatment group had significant improvement in state self-confidence with F (1, 136) =74.40, p < .05 for school girls. This indicates that TGFU in a 40 minute physical education class conducted twice a week for four weeks can significantly improve the hockey tactical skills and state self-confidence among 16-year-old students. The findings give new knowledge to PE teachers to implement the TGFU method as it enhances the hockey tactical skills and state self-confidence among 16-year-old students. Some recommendation was suggested for future research.

Keywords: Teaching Games For Understanding (TGFU), traditional teaching, hockey tactical skills, state self-confidence

Procedia PDF Downloads 355
7065 Applications of Out-of-Sequence Thrust Movement for Earthquake Mitigation: A Review

Authors: Rajkumar Ghosh

Abstract:

The study presents an overview of the many uses and approaches for estimating out-of-sequence thrust movement in earthquake mitigation. The study investigates how knowing and forecasting thrust movement during seismic occurrences might assist to effective earthquake mitigation measures. The review begins by discussing out-of-sequence thrust movement and its importance in earthquake mitigation strategies. It explores how typical techniques of estimating thrust movement may not capture the full complexity of seismic occurrences and emphasizes the benefits of include out-of-sequence data in the analysis. A thorough review of existing research and studies on out-of-sequence thrust movement estimates for earthquake mitigation. The study demonstrates how to estimate out-of-sequence thrust movement using multiple data sources such as GPS measurements, satellite imagery, and seismic recordings. The study also examines the use of out-of-sequence thrust movement estimates in earthquake mitigation measures. It investigates how precise calculation of thrust movement may help improve structural design, analyse infrastructure risk, and develop early warning systems. The potential advantages of using out-of-sequence data in these applications to improve the efficiency of earthquake mitigation techniques. The difficulties and limits of estimating out-of-sequence thrust movement for earthquake mitigation. It addresses data quality difficulties, modelling uncertainties, and computational complications. To address these obstacles and increase the accuracy and reliability of out-of-sequence thrust movement estimates, the authors recommend topics for additional study and improvement. The study is a helpful resource for seismic monitoring and earthquake risk assessment researchers, engineers, and policymakers, supporting innovations in earthquake mitigation measures based on a better knowledge of thrust movement dynamics.

Keywords: earthquake mitigation, out-of-sequence thrust, satellite imagery, seismic recordings, GPS measurements

Procedia PDF Downloads 87
7064 The Change of Urban Land Use/Cover Using Object Based Approach for Southern Bali

Authors: I. Gusti A. A. Rai Asmiwyati, Robert J. Corner, Ashraf M. Dewan

Abstract:

Change on land use/cover (LULC) dominantly affects spatial structure and function. It can have such impacts by disrupting social culture practice and disturbing physical elements. Thus, it has become essential to understand of the dynamics in time and space of LULC as it can be used as a critical input for developing sustainable LULC. This study was an attempt to map and monitor the LULC change in Bali Indonesia from 2003 to 2013. Using object based classification to improve the accuracy, and change detection, multi temporal land use/cover data were extracted from a set of ASTER satellite image. The overall accuracies of the classification maps of 2003 and 2013 were 86.99% and 80.36%, respectively. Built up area and paddy field were the dominant type of land use/cover in both years. Patch increase dominantly in 2003 illustrated the rapid paddy field fragmentation and the huge occurring transformation. This approach is new for the case of diverse urban features of Bali that has been growing fast and increased the classification accuracy than the manual pixel based classification.

Keywords: land use/cover, urban, Bali, ASTER

Procedia PDF Downloads 542
7063 Assessing the Influence of Station Density on Geostatistical Prediction of Groundwater Levels in a Semi-arid Watershed of Karnataka

Authors: Sakshi Dhumale, Madhushree C., Amba Shetty

Abstract:

The effect of station density on the geostatistical prediction of groundwater levels is of critical importance to ensure accurate and reliable predictions. Monitoring station density directly impacts the accuracy and reliability of geostatistical predictions by influencing the model's ability to capture localized variations and small-scale features in groundwater levels. This is particularly crucial in regions with complex hydrogeological conditions and significant spatial heterogeneity. Insufficient station density can result in larger prediction uncertainties, as the model may struggle to adequately represent the spatial variability and correlation patterns of the data. On the other hand, an optimal distribution of monitoring stations enables effective coverage of the study area and captures the spatial variability of groundwater levels more comprehensively. In this study, we investigate the effect of station density on the predictive performance of groundwater levels using the geostatistical technique of Ordinary Kriging. The research utilizes groundwater level data collected from 121 observation wells within the semi-arid Berambadi watershed, gathered over a six-year period (2010-2015) from the Indian Institute of Science (IISc), Bengaluru. The dataset is partitioned into seven subsets representing varying sampling densities, ranging from 15% (12 wells) to 100% (121 wells) of the total well network. The results obtained from different monitoring networks are compared against the existing groundwater monitoring network established by the Central Ground Water Board (CGWB). The findings of this study demonstrate that higher station densities significantly enhance the accuracy of geostatistical predictions for groundwater levels. The increased number of monitoring stations enables improved interpolation accuracy and captures finer-scale variations in groundwater levels. These results shed light on the relationship between station density and the geostatistical prediction of groundwater levels, emphasizing the importance of appropriate station densities to ensure accurate and reliable predictions. The insights gained from this study have practical implications for designing and optimizing monitoring networks, facilitating effective groundwater level assessments, and enabling sustainable management of groundwater resources.

Keywords: station density, geostatistical prediction, groundwater levels, monitoring networks, interpolation accuracy, spatial variability

Procedia PDF Downloads 61
7062 A Phishing Email Detection Approach Using Machine Learning Techniques

Authors: Kenneth Fon Mbah, Arash Habibi Lashkari, Ali A. Ghorbani

Abstract:

Phishing e-mails are a security issue that not only annoys online users, but has also resulted in significant financial losses for businesses. Phishing advertisements and pornographic e-mails are difficult to detect as attackers have been becoming increasingly intelligent and professional. Attackers track users and adjust their attacks based on users’ attractions and hot topics that can be extracted from community news and journals. This research focuses on deceptive Phishing attacks and their variants such as attacks through advertisements and pornographic e-mails. We propose a framework called Phishing Alerting System (PHAS) to accurately classify e-mails as Phishing, advertisements or as pornographic. PHAS has the ability to detect and alert users for all types of deceptive e-mails to help users in decision making. A well-known email dataset has been used for these experiments and based on previously extracted features, 93.11% detection accuracy is obtainable by using J48 and KNN machine learning techniques. Our proposed framework achieved approximately the same accuracy as the benchmark while using this dataset.

Keywords: phishing e-mail, phishing detection, anti phishing, alarm system, machine learning

Procedia PDF Downloads 342
7061 Age–Related Changes of the Sella Turcica Morphometry in Adults Older Than 20-25 Years

Authors: Yu. I. Pigolkin, M. A. Garcia Corro

Abstract:

Age determination of unknown dead bodies in forensic personal identification is a complicated process which involves the application of numerous methods and techniques. Skeletal remains are less exposed to influences of environmental factors. In order to enhance the accuracy of forensic age estimation additional properties of bones correlating with age are required to be revealed. Material and Methods: Dimensional examination of the sella turcica was carried out on cadavers with the cranium opened by a circular vibrating saw. The sample consisted of a total of 90 Russian subjects, ranging in age from two months and 87 years. Results: The tendency of dimensional variations throughout life was detected. There were no observed gender differences in the morphometry of the sella turcica. The shared use of the sella turcica depth and length values revealed the possibility to categorize an examined sample in a certain age period. Conclusions: Based on the results of existing methods of age determination, the morphometry of the sella turcica can be an additional characteristic, amplifying the received values, and accordingly, increasing the accuracy of forensic biological age diagnosis.

Keywords: age–related changes in bone structures, forensic personal identification, sella turcica morphometry, body identification

Procedia PDF Downloads 275
7060 The Effect of Balance Training on Stable and Unstable Surfaces under Cognitive Dual-Task Condition on the Two Directions of Body Sway, Functional Balance and Fear of Fall in Non-Fallers Older Adults

Authors: Elham Azimzadeh, Fahimeh Khorshidi, Alireza Farsi

Abstract:

Balance impairment and fear of falling in older adults may reduce their quality of life. Reactive balance training could improve rapid postural responses and fall prevention in the elderly during daily tasks. Performing postural training and simultaneously cognitive dual tasks could be similar to the daily circumstances. Purpose: This study aimed to determine the effect of balance training on stable and unstable surfaces under dual cognitive task conditions on postural control and fear of falling in the elderly. Methods: Thirty non-fallers of older adults (65-75 years) were randomly assigned to two training groups: stable-surface (n=10), unstable-surface (n=10), or a control group (n=10). The intervention groups underwent six weeks of balance training either on a stable (balance board) or an unstable (wobble board) surface while performing a cognitive dual task. The control group received no balance intervention. COP displacements in the anterioposterior (AP) and mediolateral (ML) directions using a computerized balance board, functional balance using TUG, and fear of falling using FES-I were measured in all participants before and after the interventions. Summary of Results: Mixed ANOVA (3 groups * 2 times) with repeated measures and post hoc test showed a significant improvement in both intervention groups in AP index (F= 11/652, P= 0/0002) and functional balance (F= 9/961, P= 0/0001). However, the unstable surface training group had more improvement. However, the fear of falling significantly improved after training on an unstable surface (p= 0/035). All groups had no significant improvement in the ML index (p= 0/817). In the present study, there was an improvement in the AP index after balance training. Conclusion: Unstable surface training may reduce reaction time in posterior ankle muscle activity. Furthermore, focusing attention on cognitive tasks can lead to maintaining balance unconsciously. Most of the daily activities need attention distribution among several activities. So, balance training concurrent to a dual cognitive task is challenging and more similar to the real world. According to the specificity of the training principle, it may improve functional independence and fall prevention in the elderly.

Keywords: cognitive dual task, elderly, fear of falling, postural control, unstable surface

Procedia PDF Downloads 63
7059 Virtual Chemistry Laboratory as Pre-Lab Experiences: Stimulating Student's Prediction Skill

Authors: Yenni Kurniawati

Abstract:

Students Prediction Skill in chemistry experiments is an important skill for pre-service chemistry students to stimulate students reflective thinking at each stage of many chemistry experiments, qualitatively and quantitatively. A Virtual Chemistry Laboratory was designed to give students opportunities and times to practicing many kinds of chemistry experiments repeatedly, everywhere and anytime, before they do a real experiment. The Virtual Chemistry Laboratory content was constructed using the Model of Educational Reconstruction and developed to enhance students ability to predicted the experiment results and analyzed the cause of error, calculating the accuracy and precision with carefully in using chemicals. This research showed students changing in making a decision and extremely beware with accuracy, but still had a low concern in precision. It enhancing students level of reflective thinking skill related to their prediction skill 1 until 2 stage in average. Most of them could predict the characteristics of the product in experiment, and even the result will going to be an error. In addition, they take experiments more seriously and curiously about the experiment results. This study recommends for a different subject matter to provide more opportunities for students to learn about other kinds of chemistry experiments design.

Keywords: virtual chemistry laboratory, chemistry experiments, prediction skill, pre-lab experiences

Procedia PDF Downloads 340
7058 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul

Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini

Abstract:

The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.

Keywords: decision tree, breast cancer, probability, data mining

Procedia PDF Downloads 140
7057 Community Activism for Sustainable Forest Management in Nepal: Lessons fromTarpakha Community Forest

Authors: Prem Bahadur Giri

Abstract:

The nationalization of forests during the early 1960s had become counterproductive for the conservation of forests in Nepal. Realizing this fact, the Government of Nepal initiated a paradigm shift from a government-controlled forestry system to people’s direct participation in managing forestry, conceptualizing a community forest approach in the early 1980s. The community forestry approach is expected to promote sustainable forest management, restoring degraded forests to enhance the forest condition on the one hand, and on the other, improvement of livelihoods, particularly of low-income people and forest-dependent communities, as well as promoting community ownership of a forest. As a result, the establishment of community forests started and had taken faster momentum in Nepal. Of the total land in Nepal, forest occupies 6.5 million hectares which are around 45 percent of the forest area. Of the total forest area, 1.8 million hectares have been handed over to community management. A total of 19,361 ‘community forest users groups’ are already created to manage the community forest. To streamline the governance of community forests, the enactment of ‘The Forest Act 1993’ provides a clear legal basis for managing community forests in Nepal. This article is based on an in-depth study taking the case of Tarpakha Community Forest (TCF) located in Siranchok Rural Municipality of Gorkha District in Nepal. It mainly discusses the extent to which the TCF is able to achieve the twin objectives of this community forest for catalyzing socio-economic improvement of the targeted community and conservation of the forest. The primary information was generated through in-depth interviews along with group discussions with members, the management committee, and other relevant stakeholders. The findings reveal that there is a significant improvement in the regeneration of the forest and also changes in the socio-economic status of the local community. However, coordination with local municipalities and forest governing entities is still weak.

Keywords: community forest, socio-economic benefit, sustainable forest management, Nepal

Procedia PDF Downloads 96
7056 Optimized Deep Learning-Based Facial Emotion Recognition System

Authors: Erick C. Valverde, Wansu Lim

Abstract:

Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.

Keywords: deep learning, face detection, facial emotion recognition, network optimization methods

Procedia PDF Downloads 120
7055 A Comparative Analysis of Classification Models with Wrapper-Based Feature Selection for Predicting Student Academic Performance

Authors: Abdullah Al Farwan, Ya Zhang

Abstract:

In today’s educational arena, it is critical to understand educational data and be able to evaluate important aspects, particularly data on student achievement. Educational Data Mining (EDM) is a research area that focusing on uncovering patterns and information in data from educational institutions. Teachers, if they are able to predict their students' class performance, can use this information to improve their teaching abilities. It has evolved into valuable knowledge that can be used for a wide range of objectives; for example, a strategic plan can be used to generate high-quality education. Based on previous data, this paper recommends employing data mining techniques to forecast students' final grades. In this study, five data mining methods, Decision Tree, JRip, Naive Bayes, Multi-layer Perceptron, and Random Forest with wrapper feature selection, were used on two datasets relating to Portuguese language and mathematics classes lessons. The results showed the effectiveness of using data mining learning methodologies in predicting student academic success. The classification accuracy achieved with selected algorithms lies in the range of 80-94%. Among all the selected classification algorithms, the lowest accuracy is achieved by the Multi-layer Perceptron algorithm, which is close to 70.45%, and the highest accuracy is achieved by the Random Forest algorithm, which is close to 94.10%. This proposed work can assist educational administrators to identify poor performing students at an early stage and perhaps implement motivational interventions to improve their academic success and prevent educational dropout.

Keywords: classification algorithms, decision tree, feature selection, multi-layer perceptron, Naïve Bayes, random forest, students’ academic performance

Procedia PDF Downloads 169
7054 Developing a Product Circularity Index with an Emphasis on Longevity, Repairability, and Material Efficiency

Authors: Lina Psarra, Manogj Sundaresan, Purjeet Sutar

Abstract:

In response to the global imperative for sustainable solutions, this article proposes the development of a comprehensive circularity index applicable to a wide range of products across various industries. The absence of a consensus on using a universal metric to assess circularity performance presents a significant challenge in prioritizing and effectively managing sustainable initiatives. This circularity index serves as a quantitative measure to evaluate the adherence of products, processes, and systems to the principles of a circular economy. Unlike traditional distinct metrics such as recycling rates or material efficiency, this index considers the entire lifecycle of a product in one single metric, also incorporating additional factors such as reusability, scarcity of materials, reparability, and recyclability. Through a systematic approach and by reviewing existing metrics and past methodologies, this work aims to address this gap by formulating a circularity index that can be applied to diverse product portfolio and assist in comparing the circularity of products on a scale of 0%-100%. Project objectives include developing a formula, designing and implementing a pilot tool based on the developed Product Circularity Index (PCI), evaluating the effectiveness of the formula and tool using real product data, and assessing the feasibility of integration into various sustainability initiatives. The research methodology involves an iterative process of comprehensive research, analysis, and refinement where key steps include defining circularity parameters, collecting relevant product data, applying the developed formula, and testing the tool in a pilot phase to gather insights and make necessary adjustments. Major findings of the study indicate that the PCI provides a robust framework for evaluating product circularity across various dimensions. The Excel-based pilot tool demonstrated high accuracy and reliability in measuring circularity, and the database proved instrumental in supporting comprehensive assessments. The PCI facilitated the identification of key areas for improvement, enabling more informed decision-making towards circularity and benchmarking across different products, essentially assisting towards better resource management. In conclusion, the development of the Product Circularity Index represents a significant advancement in global sustainability efforts. By providing a standardized metric, the PCI empowers companies and stakeholders to systematically assess product circularity, track progress, identify improvement areas, and make informed decisions about resource management. This project contributes to the broader discourse on sustainable development by offering a practical approach to enhance circularity within industrial systems, thus paving the way towards a more resilient and sustainable future.

Keywords: circular economy, circular metrics, circularity assessment, circularity tool, sustainable product design, product circularity index

Procedia PDF Downloads 30
7053 Investigation a New Approach "AGM" to Solve of Complicate Nonlinear Partial Differential Equations at All Engineering Field and Basic Science

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Davood Domiri Danji

Abstract:

In this conference, our aims are accuracy, capabilities and power at solving of the complicated non-linear partial differential. Our purpose is to enhance the ability to solve the mentioned nonlinear differential equations at basic science and engineering field and similar issues with a simple and innovative approach. As we know most of engineering system behavior in practical are nonlinear process (especially basic science and engineering field, etc.) and analytical solving (no numeric) these problems are difficult, complex, and sometimes impossible like (Fluids and Gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure an innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical method (Runge-Kutta 4th). Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear partial differential equations, with help of that there is no difficulty for solving all nonlinear differential equations. Advantages and ability of this method (AGM) as follow: (a) Non-linear Differential equations (ODE, PDE) are directly solvable by this method. (b) In this method (AGM), most of the time, without any dimensionless procedure, we can solve equation(s) by any boundary or initial condition number. (c) AGM method always is convergent in boundary or initial condition. (d) Parameters of exponential, Trigonometric and Logarithmic of the existent in the non-linear differential equation with AGM method no needs Taylor expand which are caused high solve precision. (e) AGM method is very flexible in the coding system, and can solve easily varieties of the non-linear differential equation at high acceptable accuracy. (f) One of the important advantages of this method is analytical solving with high accuracy such as partial differential equation in vibration in solids, waves in water and gas, with minimum initial and boundary condition capable to solve problem. (g) It is very important to present a general and simple approach for solving most problems of the differential equations with high non-linearity in engineering sciences especially at civil engineering, and compare output with numerical method (Runge-Kutta 4th) and Exact solutions.

Keywords: new approach, AGM, sets of coupled nonlinear differential equation, exact solutions, numerical

Procedia PDF Downloads 465
7052 Prediction and Analysis of Human Transmembrane Transporter Proteins Based on SCM

Authors: Hui-Ling Huang, Tamara Vasylenko, Phasit Charoenkwan, Shih-Hsiang Chiu, Shinn-Ying Ho

Abstract:

The knowledge of the human transporters is still limited due to technically demanding procedure of crystallization for the structural characterization of transporters by spectroscopic methods. It is desirable to develop bioinformatics tools for effective analysis of available sequences in order to identify human transmembrane transporter proteins (HMTPs). This study proposes a scoring card method (SCM) based method for predicting HMTPs. We estimated a set of propensity scores of dipeptides to be HMTPs using SCM from the training dataset (HTS732) consisting of 366 HMTPs and 366 non-HMTPs. SCM using the estimated propensity scores of 20 amino acids and 400 dipeptides -as HMTPs, has a training accuracy of 87.63% and a test accuracy of 66.46%. The five top-ranked dipeptides include LD, NV, LI, KY, and MN with scores 996, 992, 989, 987, and 985, respectively. Five amino acids with the highest propensity scores are Ile, Phe, Met, Gly, and Leu, that hydrophobic residues are mostly highly-scored. Furthermore, obtained propensity scores were used to analyze physicochemical properties of human transporters.

Keywords: dipeptide composition, physicochemical property, human transmembrane transporter proteins, human transmembrane transporters binding propensity, scoring card method

Procedia PDF Downloads 370
7051 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach

Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta

Abstract:

Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.

Keywords: support vector machines, decision tree, random forest

Procedia PDF Downloads 42
7050 KCBA, A Method for Feature Extraction of Colonoscopy Images

Authors: Vahid Bayrami Rad

Abstract:

In recent years, the use of artificial intelligence techniques, tools, and methods in processing medical images and health-related applications has been highlighted and a lot of research has been done in this regard. For example, colonoscopy and diagnosis of colon lesions are some cases in which the process of diagnosis of lesions can be improved by using image processing and artificial intelligence algorithms, which help doctors a lot. Due to the lack of accurate measurements and the variety of injuries in colonoscopy images, the process of diagnosing the type of lesions is a little difficult even for expert doctors. Therefore, by using different software and image processing, doctors can be helped to increase the accuracy of their observations and ultimately improve their diagnosis. Also, by using automatic methods, the process of diagnosing the type of disease can be improved. Therefore, in this paper, a deep learning framework called KCBA is proposed to classify colonoscopy lesions which are composed of several methods such as K-means clustering, a bag of features and deep auto-encoder. Finally, according to the experimental results, the proposed method's performance in classifying colonoscopy images is depicted considering the accuracy criterion.

Keywords: colorectal cancer, colonoscopy, region of interest, narrow band imaging, texture analysis, bag of feature

Procedia PDF Downloads 57
7049 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan

Abstract:

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Keywords: data fusion, Dempster-Shafer theory, data mining, event detection

Procedia PDF Downloads 411
7048 Selection of Optimal Reduced Feature Sets of Brain Signal Analysis Using Heuristically Optimized Deep Autoencoder

Authors: Souvik Phadikar, Nidul Sinha, Rajdeep Ghosh

Abstract:

In brainwaves research using electroencephalogram (EEG) signals, finding the most relevant and effective feature set for identification of activities in the human brain is a big challenge till today because of the random nature of the signals. The feature extraction method is a key issue to solve this problem. Finding those features that prove to give distinctive pictures for different activities and similar for the same activities is very difficult, especially for the number of activities. The performance of a classifier accuracy depends on this quality of feature set. Further, more number of features result in high computational complexity and less number of features compromise with the lower performance. In this paper, a novel idea of the selection of optimal feature set using a heuristically optimized deep autoencoder is presented. Using various feature extraction methods, a vast number of features are extracted from the EEG signals and fed to the autoencoder deep neural network. The autoencoder encodes the input features into a small set of codes. To avoid the gradient vanish problem and normalization of the dataset, a meta-heuristic search algorithm is used to minimize the mean square error (MSE) between encoder input and decoder output. To reduce the feature set into a smaller one, 4 hidden layers are considered in the autoencoder network; hence it is called Heuristically Optimized Deep Autoencoder (HO-DAE). In this method, no features are rejected; all the features are combined into the response of responses of the hidden layer. The results reveal that higher accuracy can be achieved using optimal reduced features. The proposed HO-DAE is also compared with the regular autoencoder to test the performance of both. The performance of the proposed method is validated and compared with the other two methods recently reported in the literature, which reveals that the proposed method is far better than the other two methods in terms of classification accuracy.

Keywords: autoencoder, brainwave signal analysis, electroencephalogram, feature extraction, feature selection, optimization

Procedia PDF Downloads 114
7047 A Local Invariant Generalized Hough Transform Method for Integrated Circuit Visual Positioning

Authors: Wei Feilong

Abstract:

In this study, an local invariant generalized Houghtransform (LI-GHT) method is proposed for integrated circuit (IC) visual positioning. The original generalized Hough transform (GHT) is robust to external noise; however, it is not suitable for visual positioning of IC chips due to the four-dimensionality (4D) of parameter space which leads to the substantial storage requirement and high computational complexity. The proposed LI-GHT method can reduce the dimensionality of parameter space to 2D thanks to the rotational invariance of local invariant geometric feature and it can estimate the accuracy position and rotation angle of IC chips in real-time under noise and blur influence. The experiment results show that the proposed LI-GHT can estimate position and rotation angle of IC chips with high accuracy and fast speed. The proposed LI-GHT algorithm was implemented in IC visual positioning system of radio frequency identification (RFID) packaging equipment.

Keywords: Integrated Circuit Visual Positioning, Generalized Hough Transform, Local invariant Generalized Hough Transform, ICpacking equipment

Procedia PDF Downloads 266
7046 Improving Access and Quality of Patient Information Resources for Orthognathic Treatment: A Quality Improvement Project

Authors: Evelyn Marie Richmond, Andrew McBride, Chris Johnston, John Marley

Abstract:

Background: Good quality patient information resources for orthognathic treatment help to reinforce information delivered during the initial consultation and help patients make informed decisions about their care. The Consultant Orthodontists and a Dental Core Trainee noted limited patient engagement with the British Orthodontic Society (BOS) 'Your Jaw Surgery' online resources and that the existing BOS patient information leaflet (PIL) could be customised and developed to meet local requirements. Aim: The quality improvement project (QIP) aimed to improve patients' understanding of orthognathic treatment by ensuring at least 90% of patients had read the new in-house patient information leaflet (PIL) and a minimum of 50% of patients had accessed the British Orthodontic Society (BOS) 'Your Jaw Surgery' online resources before attending the joint orthognathic multidisciplinary clinic by June 2023. Methods: The QIP was undertaken in the orthodontic department of the School of Dentistry, Belfast. Data was collected prospectively during a 6-month period from January 2023 to June 2023 over 3 Plan, Do, Study, Act (PDSA) cycles. Suitable patients were identified at consultant orthodontic new patient clinics. Following initial consultation for orthognathic treatment, patients were contacted to complete a patient questionnaire. Design: The change ideas were a poster with a QR code directing patients to the BOS 'Your Jaw Surgery' website in consultation areas and a new in-house PIL with a QR code directing patients to the BOS 'Your Jaw Surgery' website. Results: In PDSA cycle 1, 86.7% of patients were verbally directed to the BOS 'Your Jaw Surgery' website, and 53.3% accessed the online resources after their initial consultation. Although 100% of patients reported reading the existing PIL, only 64.3% felt it discussed the risks of orthognathic treatment in sufficient detail. By PDSA cycle 3, 100% of patients reported being directed to the BOS 'Your Jaw Surgery' website, however, only 58.3% engaged with the website. 100% of patients who read the new PIL felt that it discussed the risks of orthognathic treatment in sufficient detail. Conclusion: The slight improvement in access to the BOS 'Your Jaw Surgery' website shows that patients do not necessarily choose to access information online despite its availability. The uptake of the new PIL was greater than reported patient engagement with the BOS 'Your Jaw Surgery' website, which indicates patients still value written information despite the availability of online resources.

Keywords: orthognathic surgery, patient information resources, quality improvement project, risks

Procedia PDF Downloads 62
7045 Amblyopia and Eccentric Fixation

Authors: Kristine Kalnica-Dorosenko, Aiga Svede

Abstract:

Amblyopia or 'lazy eye' is impaired or dim vision without obvious defect or change in the eye. It is often associated with abnormal visual experience, most commonly strabismus, anisometropia or both, and form deprivation. The main task of amblyopia treatment is to ameliorate etiological factors to create a clear retinal image and, to ensure the participation of the amblyopic eye in the visual process. The treatment of amblyopia and eccentric fixation is usually associated with problems in the therapy. Eccentric fixation is present in around 44% of all patients with amblyopia and in 30% of patients with strabismic amblyopia. In Latvia, amblyopia is carefully treated in various clinics, but eccentricity diagnosis is relatively rare. Conflict which has developed relating to the relationship between the visual disorder and the degree of eccentric fixation in amblyopia should to be rethoughted, because it has an important bearing on the cause and treatment of amblyopia, and the role of the eccentric fixation in this case. Visuoscopy is the most frequently used method for determination of eccentric fixation. With traditional visuoscopy, a fixation target is projected onto the patient retina, and the examiner asks to look straight directly at the center of the target. An optometrist then observes the point on the macula used for fixation. This objective test provides clinicians with direct observation of the fixation point of the eye. It requires patients to voluntarily fixate the target and assumes the foveal reflex accurately demarcates the center of the foveal pit. In the end, by having a very simple method to evaluate fixation, it is possible to indirectly evaluate treatment improvement, as eccentric fixation is always associated with reduced visual acuity. So, one may expect that if eccentric fixation in amlyopic eye is found with visuoscopy, then visual acuity should be less than 1.0 (in decimal units). With occlusion or another amblyopia therapy, one would expect both visual acuity and fixation to improve simultaneously, that is fixation would become more central. Consequently, improvement in fixation pattern by treatment is an indirect measurement of improvement of visual acuity. Evaluation of eccentric fixation in the child may be helpful in identifying amblyopia in children prior to measurement of visual acuity. This is very important because the earlier amblyopia is diagnosed – the better the chance of improving visual acuity.

Keywords: amblyopia, eccentric fixation, visual acuity, visuoscopy

Procedia PDF Downloads 159
7044 Digital Image Correlation: Metrological Characterization in Mechanical Analysis

Authors: D. Signore, M. Ferraiuolo, P. Caramuta, O. Petrella, C. Toscano

Abstract:

The Digital Image Correlation (DIC) is a newly developed optical technique that is spreading in all engineering sectors because it allows the non-destructive estimation of the entire surface deformation without any contact with the component under analysis. These characteristics make the DIC very appealing in all the cases the global deformation state is to be known without using strain gages, which are the most used measuring device. The DIC is applicable to any material subjected to distortion caused by either thermal or mechanical load, allowing to obtain high-definition mapping of displacements and deformations. That is why in the civil and the transportation industry, DIC is very useful for studying the behavior of metallic materials as well as of composite materials. DIC is also used in the medical field for the characterization of the local strain field of the vascular tissues surface subjected to uniaxial tensile loading. DIC can be carried out in the two dimension mode (2D DIC) if a single camera is used or in a three dimension mode (3D DIC) if two cameras are involved. Each point of the test surface framed by the cameras can be associated with a specific pixel of the image, and the coordinates of each point are calculated knowing the relative distance between the two cameras together with their orientation. In both arrangements, when a component is subjected to a load, several images related to different deformation states can be are acquired through the cameras. A specific software analyzes the images via the mutual correlation between the reference image (obtained without any applied load) and those acquired during the deformation giving the relative displacements. In this paper, a metrological characterization of the digital image correlation is performed on aluminum and composite targets both in static and dynamic loading conditions by comparison between DIC and strain gauges measures. In the static test, interesting results have been obtained thanks to an excellent agreement between the two measuring techniques. In addition, the deformation detected by the DIC is compliant with the result of a FEM simulation. In the dynamic test, the DIC was able to follow with a good accuracy the periodic deformation of the specimen giving results coherent with the ones given by FEM simulation. In both situations, it was seen that the DIC measurement accuracy depends on several parameters such as the optical focusing, the parameters chosen to perform the mutual correlation between the images and, finally, the reference points on image to be analyzed. In the future, the influence of these parameters will be studied, and a method to increase the accuracy of the measurements will be developed in accordance with the requirements of the industries especially of the aerospace one.

Keywords: accuracy, deformation, image correlation, mechanical analysis

Procedia PDF Downloads 311
7043 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang

Abstract:

Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.

Keywords: CNN, classification, deep learning, GAN, Resnet50

Procedia PDF Downloads 89
7042 Improvement in Safety Profile of Semecarpus Anacardium Linn by Shodhana: An Ayurvedic Purification Method

Authors: Umang H. Gajjar, K. M. Khambholja, R. K. Patel

Abstract:

Semecarpus anacardium shows the presence of bioflavonoids, phenolic compounds, bhilawanols, minerals, vitamins and amino acids. Detoxified S. anacardium and its oils are considered to have anti-inflammatory properties and used in nervous debility, neuritis, rheumatism and leprous modules. S. anacardium if used without purification causes toxic skin inflammation problem because it contains toxic phenolic oil. During this Shodhana Process - An ayurvedic purification method, toxic phenolic oil was removed, have marked effect on the concentration of the phytoconstituent & antioxidant activity of S. anacardium. Total phenolic content decreased up to 70 % (from 28.9 %w/w to 8.94 %w/w), while there is a negligible effect on the concentration of total flavonoid (7.51 %w/w to 7.43 %w/w) and total carbohydrate (0.907 %w/w to 0.853 % w/w) content. IC50& EC50 value of extract of S. anacardium before and after purification are 171.7 & 314.3 while EC50values are 280.μg/ml & 304. μg/ml, shows that antioxidant activity of S. anacardium is decreased but the safety profile of the drug is increased as the toxic phenolic oil was removed during Shodhana - An ayurvedic purification method.

Keywords: Semecarpus anacardium, Shodhana process, safety profile, improvement

Procedia PDF Downloads 257
7041 Extraction of Urban Land Features from TM Landsat Image Using the Land Features Index and Tasseled Cap Transformation

Authors: R. Bouhennache, T. Bouden, A. A. Taleb, A. Chaddad

Abstract:

In this paper we propose a method to map the urban areas. The method uses an arithmetic calculation processed from the land features indexes and Tasseled cap transformation TC of multi spectral Thematic Mapper Landsat TM image. For this purpose the derived indexes image from the original image such SAVI the soil adjusted vegetation index, UI the urban Index, and EBBI the enhanced built up and bareness index were staked to form a new image and the bands were uncorrelated, also the Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) supervised classification approaches were first applied on the new image TM data using the reference spectra of the spectral library and subsequently the four urban, vegetation, water and soil land cover categories were extracted with their accuracy assessment.The urban features were represented using a logic calculation applied to the brightness, UI-SAVI, NDBI-greenness and EBBI- brightness data sets. The study applied to Blida and mentioned that the urban features can be mapped with an accuracy ranging from 92 % to 95%.

Keywords: EBBI, SAVI, Tasseled Cap Transformation, UI

Procedia PDF Downloads 484
7040 A Robust Optimization Method for Service Quality Improvement in Health Care Systems under Budget Uncertainty

Authors: H. Ashrafi, S. Ebrahimi, H. Kamalzadeh

Abstract:

With the development of business competition, it is important for healthcare providers to improve their service qualities. In order to improve service quality of a clinic, four important dimensions are defined: tangibles, responsiveness, empathy, and reliability. Moreover, there are several service stages in hospitals such as financial screening and examination. One of the most challenging limitations for improving service quality is budget which impressively affects the service quality. In this paper, we present an approach to address budget uncertainty and provide guidelines for service resource allocation. In this paper, a service quality improvement approach is proposed which can be adopted to multistage service processes to improve service quality, while controlling the costs. A multi-objective function based on the importance of each area and dimension is defined to link operational variables to service quality dimensions. The results demonstrate that our approach is not ultra-conservative and it shows the actual condition very well. Moreover, it is shown that different strategies can affect the number of employees in different stages.

Keywords: allocation, budget uncertainty, healthcare resource, service quality assessment, robust optimization

Procedia PDF Downloads 185
7039 Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP) for Recovering Signal

Authors: Israa Sh. Tawfic, Sema Koc Kayhan

Abstract:

Given a large sparse signal, great wishes are to reconstruct the signal precisely and accurately from lease number of measurements as possible as it could. Although this seems possible by theory, the difficulty is in built an algorithm to perform the accuracy and efficiency of reconstructing. This paper proposes a new proved method to reconstruct sparse signal depend on using new method called Least Support Matching Pursuit (LS-OMP) merge it with the theory of Partial Knowing Support (PSK) given new method called Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP). The new methods depend on the greedy algorithm to compute the support which depends on the number of iterations. So to make it faster, the PKLS-OMP adds the idea of partial knowing support of its algorithm. It shows the efficiency, simplicity, and accuracy to get back the original signal if the sampling matrix satisfies the Restricted Isometry Property (RIP). Simulation results also show that it outperforms many algorithms especially for compressible signals.

Keywords: compressed sensing, lest support orthogonal matching pursuit, partial knowing support, restricted isometry property, signal reconstruction

Procedia PDF Downloads 244
7038 Improvement of Sandy Clay Soils with the Addition of Rice Husk Ash and Expanded Polystyrene Beads

Authors: Alvaro Quino, Roger Trejo, Gary Duran, Jordy Viso

Abstract:

This article presents a study on the lightening and improvement of properties of soil extracted in the province of Talara in the department of Piura -Peru, to be used in filling in the construction of embankments for roads. This soft soil has a high percentage of elastic settlement and consolidation settlement. Currently, there are different methods that seek to mitigate the impact of this problem, which have achieved favorable results. As a contribution to these investigations, we propose the use of two lightening materials to be used in the filling of embankments; these materials are expanded polystyrene beads (EPS) and rice husk ash (RHA). Favorable results were obtained, such as a reduction of 14.34% of the volumetric weight, so the settlement will be reduced. In addition, it is observed that as the RHA dosage increases, the shear resistance increases. In this article, soil mechanics tests were performed to determine the effectiveness of this method in lightening and improving properties for the soil under study.

Keywords: sandy clay soils, rice husk ash, expanded polystyrene, soft soils

Procedia PDF Downloads 172
7037 Rituximab Therapy for Musculoskeletal Involvement in Systemic Sclerosis

Authors: Liudmila Garzanova, Lidia Ananyeva, Olga Koneva, Olga Ovsyannikova, Oxana Desinova, Mayya Starovoytova, Rushana Shayahmetova, Anna Khelkovskaya-Sergeeva

Abstract:

Objectives. There is very few data on changes of the musculoskeletal manifestations (artritis, arthralgia, muscle weakness, etc.) in systemic sclerosis (SSc) on rituximab (RTX) therapy. The aim of our study was to assess the severity of the musculoskeletal involvement in SSc patients (pts) and its changes during RTX therapy. Methods. Our study included 103 pts with SSc. The mean followup period was 12.6±10.7 months. The mean age was 47±12.9 years, female-87 pts (84%), the diffuse cutaneous subset of the disease had 55 pts (53%). The mean disease duration was 6.2±5.5 years. All pts had interstitial lung disease (ILD) and were positive for ANA, 67% of them were positive for antitopoisomerase-1. All patients received prednisolone at a dose of 11.3±4.5 mg/day, immunosuppressants at inclusion received 47% of them. Pts received RTX due to the ineffectiveness of previous therapy for ILD. The cumulative mean dose of RTX was 1.7±0.6 grams. Arthritis was observed in 22 pts (21%), arthralgias in 47 pts (46%). Muscle weakness was observed in 17 pts (17%). Tendon friction rubs was established in 7 pts (7%). The results at baseline and at the end of the follow up are presented in the form of mean values. Results. There was an improvement of all outcome parameters and musculoskeletal manifestations on RTX therapy. There was a decrease in the number of pts with arthritis from 22 (21%) to 10 (9%), a decrease in the number of pts with arthralgias from 47 (46%) to 31 (30%). The number of pts with muscle weakness decreased from 17 (17%) to 7 (7%). The number of pts with tendon friction rubs decreased from 7 (7%) to 3 (3%). The creatine phosphokinase decreased from 365.5±186 to 70.8±50.4 (p=0.00006). The C-reactive protein (CRP) decreased from 23.2±31.3 to 8.62±7.4 (p=0.001). The dose of prednisolone was reduced from 11.3±4.5 to 9.8±3.5 mg/day (p=0.0004). Conclusion. In our study, musculoskeletal involvement was detected in almost half of the patients with SSc-ILD. There was an improvement of musculoskeletal manifestations despite a small cumulative dose of RTX. We also managed to reduce the dose of glucocorticosteroids. The improvement of musculoskeletal manifestations was accompanied by a decrease in laboratory parameters - creatine phosphokinase and CRP. RTX is effective option for treatment of musculoskeletal manifestations in SSc.

Keywords: arthritis, musculoskeletal involvement, systemic sclerosis, rituximab

Procedia PDF Downloads 82