Search results for: Competitive Intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2815

Search results for: Competitive Intelligence

2005 The Impact of the AEC to Influence the Direction of Politics in Thailand

Authors: Jiraporn Weenuttranon

Abstract:

The ASEAN Economic Community (AEC) shall be the goal of regional economic integration among ASEAN countries. The goal of establishing AEC is to transform the region into a single market and production base with a highly competitive advantage to make it a stable and prosperous region. However, with the wild range of economic conditions in each country, the implementation of its objectives under the limited resources available in the past showed the weakness of the region. For this reason, the group of countries in the region should allocate its rich potential of the region by collaborating effectively.

Keywords: impact, AEC, influence, direction, politics, Thailand

Procedia PDF Downloads 345
2004 Recognition of International Internships for Students at European Level

Authors: Tiron-Tudor Adriana, Ciolomic Ioana, Farcas Teodora

Abstract:

The mission of a business school is to train students for business careers in which practical skills- based on theoretical knowledge- are needed. These skills include a thorough knowledge of languages, creative skills, and well-founded professional and practical knowledge. With those skills, the graduates are highly competitive in the labour market. The paper objective is to disseminate the results of an international project by revealing how a HEI are prepared for higher vocational training course leading to professional diplomas.

Keywords: vocational education, business schools, international projects, HEI

Procedia PDF Downloads 410
2003 Data Analytics in Energy Management

Authors: Sanjivrao Katakam, Thanumoorthi I., Antony Gerald, Ratan Kulkarni, Shaju Nair

Abstract:

With increasing energy costs and its impact on the business, sustainability today has evolved from a social expectation to an economic imperative. Therefore, finding methods to reduce cost has become a critical directive for Industry leaders. Effective energy management is the only way to cut costs. However, Energy Management has been a challenge because it requires a change in old habits and legacy systems followed for decades. Today exorbitant levels of energy and operational data is being captured and stored by Industries, but they are unable to convert these structured and unstructured data sets into meaningful business intelligence. It must be noted that for quick decisions, organizations must learn to cope with large volumes of operational data in different formats. Energy analytics not only helps in extracting inferences from these data sets, but also is instrumental in transformation from old approaches of energy management to new. This in turn assists in effective decision making for implementation. It is the requirement of organizations to have an established corporate strategy for reducing operational costs through visibility and optimization of energy usage. Energy analytics play a key role in optimization of operations. The paper describes how today energy data analytics is extensively used in different scenarios like reducing operational costs, predicting energy demands, optimizing network efficiency, asset maintenance, improving customer insights and device data insights. The paper also highlights how analytics helps transform insights obtained from energy data into sustainable solutions. The paper utilizes data from an array of segments such as retail, transportation, and water sectors.

Keywords: energy analytics, energy management, operational data, business intelligence, optimization

Procedia PDF Downloads 364
2002 Designing of Tooling Solution for Material Handling in Highly Automated Manufacturing System

Authors: Muhammad Umair, Yuri Nikolaev, Denis Artemov, Ighor Uzhinsky

Abstract:

A flexible manufacturing system is an integral part of a smart factory of industry 4.0 in which every machine is interconnected and works autonomously. Robots are in the process of replacing humans in every industrial sector. As the cyber-physical-system (CPS) and artificial intelligence (AI) are advancing, the manufacturing industry is getting more dependent on computers than human brains. This modernization has boosted the production with high quality and accuracy and shifted from classic production to smart manufacturing systems. However, material handling for such automated productions is a challenge and needs to be addressed with the best possible solution. Conventional clamping systems are designed for manual work and not suitable for highly automated production systems. Researchers and engineers are trying to find the most economical solution for loading/unloading and transportation workpieces from a warehouse to a machine shop for machining operations and back to the warehouse without human involvement. This work aims to propose an advanced multi-shape tooling solution for highly automated manufacturing systems. The currently obtained result shows that it could function well with automated guided vehicles (AGVs) and modern conveyor belts. The proposed solution is following requirements to be automation-friendly, universal for different part geometry and production operations. We used a bottom-up approach in this work, starting with studying different case scenarios and their limitations and finishing with the general solution.

Keywords: artificial intelligence, cyber physics system, Industry 4.0, material handling, smart factory, flexible manufacturing system

Procedia PDF Downloads 132
2001 Static Relaxation of Glass Fiber Reinforced Pipes

Authors: Mohammed Y. Abdellah, Mohamed K. Hassan, A. F. Mohamed, Shadi M. Munshi, A. M. Hashem

Abstract:

Pips made from glass fiber reinforced polymer has competitive role in petroleum industry. The need of evaluating the mechanical behavior of (GRP) pipes is essential objects. Stress relaxation illustrates how polymers relieve stress under constant strain. Static relaxation test is carried out at room temperature. The material gives poor static relaxation strength, two loading cycles have been observed for the tested specimen.

Keywords: GRP, sandwich composite material, static relaxation, stress relief

Procedia PDF Downloads 625
2000 Analysing the Creative Evolution of the Beatles

Authors: David Mason-Cox

Abstract:

Existing academic analyses of The Beatles cover a huge array of topics. This research explores one clear but multifaceted aspect of The Beatles: the development of their creativity. While its importance cannot be underestimated, a thorough appraisal of the roots of the group’s individual and collective artistic blossoming deserves more attention. This paper investigates the mechanisms that caused or enabled the group to eventually exert such an immense and long-lasting influence on popular music and culture. It suggests that the artistic inspiration of Astrid Kirchherr during their time in Hamburg may be much more far-reaching than has previously been credited. It further addresses the effect of the confluence of conditions and events which essentially ‘hot-housed’ the four working-class Liverpudlians, providing them with the incentives and the means to far exceed their apparent potential. Thirdly, it looks at the competitive nature of The Beatles, both as a group and as individuals, and how that competitive streak sparked them to improve as musicians, songwriters, and showmen. In viewing these triggers through the lens of creative theory, the research attempts to analyse what made The Beatles’ innovative ascendancy so extraordinary and why creativity can be misunderstood. This then is the tale of impressionable youths from post-war austerity Britain; the lure of an artist with strong aesthetic sensibilities in an exotic locale, the media boom of the early 1960s, the machinations of the music business, the national grief in the US following Kennedy’s assassination, and, finally the resilience and determination of four young men who were prepared to take advantage of every opportunity to prove, and improve, themselves -the harbingers of a new creative paradigm. This paper is part of a broader study which also examines how their growth toward artistic maturity informs The Beatles’ significance and impact on the culture and the counterculture during the 1960s and beyond. It will eventually combine critical textual analysis with a series of interviews of musicians, other creatives, and intellectuals. These will be conducted to advance the existing erudition and to develop a more accurate understanding of the group’s cultural influence upon real-world individuals.

Keywords: artistic influence, Beatles, competition, creative theory, new creative paradigm

Procedia PDF Downloads 101
1999 The Protection of Artificial Intelligence (AI)-Generated Creative Works Through Authorship: A Comparative Analysis Between the UK and Nigerian Copyright Experience to Determine Lessons to Be Learnt from the UK

Authors: Esther Ekundayo

Abstract:

The nature of AI-generated works makes it difficult to identify an author. Although, some scholars have suggested that all the players involved in its creation should be allocated authorship according to their respective contribution. From the programmer who creates and designs the AI to the investor who finances the AI and to the user of the AI who most likely ends up creating the work in question. While others suggested that this issue may be resolved by the UK computer-generated works (CGW) provision under Section 9(3) of the Copyright Designs and Patents Act 1988. However, under the UK and Nigerian copyright law, only human-created works are recognised. This is usually assessed based on their originality. This simply means that the work must have been created as a result of its author’s creative and intellectual abilities and not copied. Such works are literary, dramatic, musical and artistic works and are those that have recently been a topic of discussion with regards to generative artificial intelligence (Generative AI). Unlike Nigeria, the UK CDPA recognises computer-generated works and vests its authorship with the human who made the necessary arrangement for its creation . However, making necessary arrangement in the case of Nova Productions Ltd v Mazooma Games Ltd was interpreted similarly to the traditional authorship principle, which requires the skills of the creator to prove originality. Although, some recommend that computer-generated works complicates this issue, and AI-generated works should enter the public domain as authorship cannot be allocated to AI itself. Additionally, the UKIPO recognising these issues in line with the growing AI trend in a public consultation launched in the year 2022, considered whether computer-generated works should be protected at all and why. If not, whether a new right with a different scope and term of protection should be introduced. However, it concluded that the issue of computer-generated works would be revisited as AI was still in its early stages. Conversely, due to the recent developments in this area with regards to Generative AI systems such as ChatGPT, Midjourney, DALL-E and AIVA, amongst others, which can produce human-like copyright creations, it is therefore important to examine the relevant issues which have the possibility of altering traditional copyright principles as we know it. Considering that the UK and Nigeria are both common law jurisdictions but with slightly differing approaches to this area, this research, therefore, seeks to answer the following questions by comparative analysis: 1)Who is the author of an AI-generated work? 2)Is the UK’s CGW provision worthy of emulation by the Nigerian law? 3) Would a sui generis law be capable of protecting AI-generated works and its author under both jurisdictions? This research further examines the possible barriers to the implementation of the new law in Nigeria, such as limited technical expertise and lack of awareness by the policymakers, amongst others.

Keywords: authorship, artificial intelligence (AI), generative ai, computer-generated works, copyright, technology

Procedia PDF Downloads 97
1998 Improving Cleanability by Changing Fish Processing Equipment Design

Authors: Lars A. L. Giske, Ola J. Mork, Emil Bjoerlykhaug

Abstract:

The design of fish processing equipment greatly impacts how easy the cleaning process for the equipment is. This is a critical issue in fish processing, as cleaning of fish processing equipment is a task that is both costly and time consuming, in addition to being very important with regards to product quality. Even more, poorly cleaned equipment could in the worst case lead to contaminated product from which consumers could get ill. This paper will elucidate how equipment design changes could improve the work for the cleaners and saving money for the fish processing facilities by looking at a case for product design improvements. The design of fish processing equipment largely determines how easy it is to clean. “Design for cleaning” is the new hype in the industry and equipment where the ease of cleaning is prioritized gets a competitive advantage over equipment in which design for cleaning has not been prioritized. Design for cleaning is an important research area for equipment manufacturers. SeaSide AS is doing continuously improvements in the design of their products in order to gain a competitive advantage. The focus in this paper will be conveyors for internal logistic and a product called the “electro stunner” will be studied with regards to “Design for cleaning”. Often together with SeaSide’s customers, ideas for new products or product improvements are sketched out, 3D-modelled, discussed, revised, built and delivered. Feedback from the customers is taken into consideration, and the product design is revised once again. This loop was repeated multiple times, and led to new product designs. The new designs sometimes also cause the manufacturing processes to change (as in going from bolted to welded connections). Customers report back that the concrete changes applied to products by SeaSide has resulted in overall more easily cleaned equipment. These changes include, but are not limited to; welded connections (opposed to bolted connections), gaps between contact faces, opening up structures to allow cleaning “inside” equipment, and generally avoiding areas in which humidity and water may gather and build up. This is important, as there will always be bacteria in the water which will grow if the area never dries up. The work of creating more cleanable design is still ongoing, and will “never” be finished as new designs and new equipment will have their own challenges.

Keywords: cleaning, design, equipment, fish processing, innovation

Procedia PDF Downloads 237
1997 Impact of Research-Informed Teaching and Case-Based Teaching on Memory Retention and Recall in University Students

Authors: Durvi Yogesh Vagani

Abstract:

This research paper explores the effectiveness of Research-informed teaching and Case-based teaching in enhancing the retention and recall of memory during discussions among university students. Additionally, it investigates the impact of using Artificial Intelligence (AI) tools on the quality of research conducted by students and its correlation with better recollection. The study hypothesizes that Case-based teaching will lead to greater recall and storage of information. The research gap in the use of AI in educational settings, particularly with actual participants, is addressed by leveraging a multi-method approach. The hypothesis is that the use of AI, such as ChatGPT and Bard, would lead to better retention and recall of information. Before commencing the study, participants' attention levels and IQ were assessed using the Digit Span Test and the Wechsler Adult Intelligence Scale, respectively, to ensure comparability among participants. Subsequently, participants were divided into four conditions, each group receiving identical information presented in different formats based on their assigned condition. Following this, participants engaged in a group discussion on the given topic. Their responses were then evaluated against a checklist. Finally, participants completed a brief test to measure their recall ability after the discussion. Preliminary findings suggest that students who utilize AI tools for learning demonstrate improved grasping of information and are more likely to integrate relevant information into discussions compared to providing extraneous details. Furthermore, Case-based teaching fosters greater attention and recall during discussions, while Research-informed teaching leads to greater knowledge for application. By addressing the research gap in AI application in education, this study contributes to a deeper understanding of effective teaching methodologies and the role of technology in student learning outcomes. The implication of the present research is to tailor teaching methods based on the subject matter. Case-based teaching facilitates application-based teaching, and research-based teaching can be beneficial for theory-heavy topics. Integrating AI in education. Combining AI with research-based teaching may optimize instructional strategies and deepen learning experiences. This research suggests tailoring teaching methods in psychology based on subject matter. Case-based teaching suits practical subjects, facilitating application, while research-based teaching aids understanding of theory-heavy topics. Integrating AI in education could enhance learning outcomes, offering detailed information tailored to students' needs.

Keywords: artificial intelligence, attention, case-based teaching, memory recall, memory retention, research-informed teaching

Procedia PDF Downloads 30
1996 Artificial Intelligence-Generated Previews of Hyaluronic Acid-Based Treatments

Authors: Ciro Cursio, Giulia Cursio, Pio Luigi Cursio, Luigi Cursio

Abstract:

Communication between practitioner and patient is of the utmost importance in aesthetic medicine: as of today, images of previous treatments are the most common tool used by doctors to describe and anticipate future results for their patients. However, using photos of other people often reduces the engagement of the prospective patient and is further limited by the number and quality of pictures available to the practitioner. Pre-existing work solves this issue in two ways: 3D scanning of the area with manual editing of the 3D model by the doctor or automatic prediction of the treatment by warping the image with hand-written parameters. The first approach requires the manual intervention of the doctor, while the second approach always generates results that aren’t always realistic. Thus, in one case, there is significant manual work required by the doctor, and in the other case, the prediction looks artificial. We propose an AI-based algorithm that autonomously generates a realistic prediction of treatment results. For the purpose of this study, we focus on hyaluronic acid treatments in the facial area. Our approach takes into account the individual characteristics of each face, and furthermore, the prediction system allows the patient to decide which area of the face she wants to modify. We show that the predictions generated by our system are realistic: first, the quality of the generated images is on par with real images; second, the prediction matches the actual results obtained after the treatment is completed. In conclusion, the proposed approach provides a valid tool for doctors to show patients what they will look like before deciding on the treatment.

Keywords: prediction, hyaluronic acid, treatment, artificial intelligence

Procedia PDF Downloads 114
1995 Design and Implementation of Low-code Model-building Methods

Authors: Zhilin Wang, Zhihao Zheng, Linxin Liu

Abstract:

This study proposes a low-code model-building approach that aims to simplify the development and deployment of artificial intelligence (AI) models. With an intuitive way to drag and drop and connect components, users can easily build complex models and integrate multiple algorithms for training. After the training is completed, the system automatically generates a callable model service API. This method not only lowers the technical threshold of AI development and improves development efficiency but also enhances the flexibility of algorithm integration and simplifies the deployment process of models. The core strength of this method lies in its ease of use and efficiency. Users do not need to have a deep programming background and can complete the design and implementation of complex models with a simple drag-and-drop operation. This feature greatly expands the scope of AI technology, allowing more non-technical people to participate in the development of AI models. At the same time, the method performs well in algorithm integration, supporting many different types of algorithms to work together, which further improves the performance and applicability of the model. In the experimental part, we performed several performance tests on the method. The results show that compared with traditional model construction methods, this method can make more efficient use, save computing resources, and greatly shorten the model training time. In addition, the system-generated model service interface has been optimized for high availability and scalability, which can adapt to the needs of different application scenarios.

Keywords: low-code, model building, artificial intelligence, algorithm integration, model deployment

Procedia PDF Downloads 30
1994 Business Model Innovation and Firm Performance: Exploring Moderation Effects

Authors: Mohammad-Ali Latifi, Harry Bouwman

Abstract:

Changes in the business environment accelerated dramatically over the last decades as a result of changes in technology, regulation, market, and competitors’ behavior. Firms need to change the way they do business in order to survive or maintain their growth. Innovating business model (BM) can create competitive advantages and enhance firm performance. However, many companies fail to achieve expected outcomes in practice, mostly due to irreversible fundamental changes in key components of the company’s BM. This leads to more ambiguity, uncertainty, and risks associated with business performance. However, the relationship among BM Innovation, moderating factors, and the firm’s overall performance is by and large ignored in the current literature. In this study, we identified twenty moderating factors from our comprehensive literature review. We categorized these factors based on two criteria regarding the extent to which: the moderating factors can be controlled and managed by firms, and they are generic or specific changes to the firms. This leads to four moderation groups. The first group is BM implementation, which includes management support, employees’ commitment, employees’ skills, communication, detailed plan. The second group is called BM practices, which consists of BM tooling, BM experimentation, the scope of change, speed of change, degree of novelty. The third group is Firm characteristics, including firm size, age, and ownership. The last group is called Industry characteristics, which considers the industry sector, competitive intensity, industry life cycle, environmental dynamism, high-tech vs. low-tech industry. Through collecting data from 508 European small and medium-sized enterprises (SMEs) and using the structural equation modeling technique, the developed moderation model was examined. Results revealed that all factors highlighted through these four groups moderate the relation between BMI and firm performance significantly. Particularly, factors related to BM-Implementation and BM-Practices are more manageable and would potentially improve firm overall performance. We believe that this result is more important for researchers and practitioners since the possibility of working on factors in Firm characteristics and Industry characteristics groups are limited, and the firm can hardly control and manage them to improve the performance of BMI efforts.

Keywords: business model innovation, firm performance, implementation, moderation

Procedia PDF Downloads 120
1993 Opinion Mining to Extract Community Emotions on Covid-19 Immunization Possible Side Effects

Authors: Yahya Almurtadha, Mukhtar Ghaleb, Ahmed M. Shamsan Saleh

Abstract:

The world witnessed a fierce attack from the Covid-19 virus, which affected public life socially, economically, healthily and psychologically. The world's governments tried to confront the pandemic by imposing a number of precautionary measures such as general closure, curfews and social distancing. Scientists have also made strenuous efforts to develop an effective vaccine to train the immune system to develop antibodies to combat the virus, thus reducing its symptoms and limiting its spread. Artificial intelligence, along with researchers and medical authorities, has accelerated the vaccine development process through big data processing and simulation. On the other hand, one of the most important negatives of the impact of Covid 19 was the state of anxiety and fear due to the blowout of rumors through social media, which prompted governments to try to reassure the public with the available means. This study aims to proposed using Sentiment Analysis (AKA Opinion Mining) and deep learning as efficient artificial intelligence techniques to work on retrieving the tweets of the public from Twitter and then analyze it automatically to extract their opinions, expression and feelings, negatively or positively, about the symptoms they may feel after vaccination. Sentiment analysis is characterized by its ability to access what the public post in social media within a record time and at a lower cost than traditional means such as questionnaires and interviews, not to mention the accuracy of the information as it comes from what the public expresses voluntarily.

Keywords: deep learning, opinion mining, natural language processing, sentiment analysis

Procedia PDF Downloads 171
1992 Dynamic Capabilities and Disorganization: A Conceptual Exploration

Authors: Dinuka Herath, Shelley Harrington

Abstract:

This paper prompts debate about whether disorganization can be positioned as a mechanism that facilitates the creation and enactment of important dynamic capabilities within an organization. This particular article is a conceptual exploration of the link between dynamic capabilities and disorganization and presents the case for agent-based modelling as a viable methodological tool which can be used to explore this link. Dynamic capabilities are those capabilities that an organization needs to sustain competitive advantage in complex environments. Disorganization is the process of breaking down restrictive organizational structures and routines that commonly reside in organizations in order to increase organizational performance. In the 20th century, disorganization was largely viewed as an undesirable phenomenon within an organization. However, the concept of disorganization has been revitalized and garnered research interest in the recent years due to studies which demonstrate some of the advantages of disorganization to an organization. Furthermore, recent Agent-based simulation studies have shown the capability of disorganization to be managed and argue for disorganization to be viewed as an enabler of organizational productivity. Given the natural state of disorganization and resulting fear this can create, this paper argues that instead of trying to ‘correct’ disorganization, it should be actively encouraged to have functional purpose. The study of dynamic capabilities emerged as a result of heightened dynamism and consequentially the very nature of dynamism denotes a level of fluidity and flexibility, something which this paper argues many organizations do not truly foster due to a constrained commitment to organization and order. We argue in this paper that the very state of disorganization is a state that should be encouraged to develop dynamic capabilities needed to not only deal with the complexities of the modern business environment but also to sustain competitive success. The significance of this paper stems from the fact that both dynamic capabilities and disorganization are two concepts that are gaining prominence in their respective academic genres. Despite the attention each concept has received individually, no conceptual link has been established to depict how they actually interact with each other. We argue that the link between these two concepts present a novel way of looking at organizational performance. By doing so, we explore the potential of these two concepts working in tandem in order to increase organizational productivity which has significant implications for both academics and practitioners alike.

Keywords: agent-based modelling, disorganization, dynamic capabilities, performance

Procedia PDF Downloads 317
1991 “A Watched Pot Never Boils.” Exploring the Impact of Job Autonomy on Organizational Commitment among New Employees: A Comprehensive Study of How Empowerment and Independence Influence Workplace Loyalty and Engagement in Early Career Stages

Authors: Atnafu Ashenef Wondim

Abstract:

In today’s highly competitive business environment, employees are considered a source of competitive advantage. Researchers have looked into job autonomy's effect on organizational commitment and declared superior organizational performance strongly depends on the effort and commitment of employees. The purpose of this study was to explore the relationship between job autonomy and organizational commitment from newcomer’s point of view. The mediation role of employee engagement (physical, emotional, and cognitive) was also examined in the case of Ethiopian Commercial Banks. An exploratory survey research design with mixed-method approach that included partial least squares structural equation modeling and Fuzzy-Set Qualitative Comparative Analysis technique were using to address the sample size of 348 new employees. In-depth interviews with purposive and convenientsampling techniques are conducted with new employees (n=43). The results confirmed that job autonomy had positive, significant direct effects on physical engagement, emotional engagement, and cognitive engagement (path coeffs. = 0.874, 0.931, and 0.893).The results showed thatthe employee engagement driver, physical engagement, had a positive significant influence on affective commitment (path coeff. = 0.187) and normative commitment (path coeff. = 0.512) but no significant effect on continuance commitment. Employee engagement partially mediates the relationship between job autonomy and organizational commitment, which means supporting the indirect effects of job autonomy on affective, continuance, and normative commitment through physical engagement. The findings of this study add new perspectives by positioning it within a complex organizational African setting and by expanding the job autonomy and organizational commitment literature, which will benefit future research. Much of the literature on job autonomy and organizational commitment has been conducted within a well-established organizational business context in Western developed countries.The findings lead to fresh information on job autonomy and organizational commitment implementation enablers that can assist in the formulation of a better policy/strategy to efficiently adopt job autonomy and organizational commitment.

Keywords: employee engagement, job autonomy, organizational commitment, social exchange theory

Procedia PDF Downloads 30
1990 Understanding Organizational Capabilities and Dynamic Capabilities in the Context of Micro Enterprises: A Research Agenda

Authors: G. Gurkan Inan, Umit S. Bititci

Abstract:

Purpose of this study is to understand development of organizational capabilities in micro enterprises. Organizational capabilities underpin companies` competitive advantages as well as their ability to respond internal and external change. Current literature is focused on mainly large enterprises, with some interest on SMEs. However there is little research attempting to understand the applicability of organizational capability theories on micro enterprises. In this paper we propose a research framework and a research agenda for addressing this gap.

Keywords: micro enterprises, organizational capabilities, dynamic capabilities, management

Procedia PDF Downloads 452
1989 Competitiveness of Animation Industry: The Case of Thailand

Authors: T. Niracharapa

Abstract:

The research studied and examined the competitiveness of the animation industry in Thailand. Data were collected based on articles, related reports and websites, news, research, and interviews of key persons from both public and private sectors. The diamond model was used to analyze the study. The major factor driving the Thai animation industry forward includes a quality workforce, their creativity and strong associations. However, discontinuity in government support, infrastructure, marketing, IP creation and financial constraints were factors keeping the Thai animation industry less competitive in the global market.

Keywords: animation, competitiveness, government, Thailand, market

Procedia PDF Downloads 444
1988 Web-Based Decision Support Systems and Intelligent Decision-Making: A Systematic Analysis

Authors: Serhat Tüzün, Tufan Demirel

Abstract:

Decision Support Systems (DSS) have been investigated by researchers and technologists for more than 35 years. This paper analyses the developments in the architecture and software of these systems, provides a systematic analysis for different Web-based DSS approaches and Intelligent Decision-making Technologies (IDT), with the suggestion for future studies. Decision Support Systems literature begins with building model-oriented DSS in the late 1960s, theory developments in the 1970s, and the implementation of financial planning systems and Group DSS in the early and mid-80s. Then it documents the origins of Executive Information Systems, online analytic processing (OLAP) and Business Intelligence. The implementation of Web-based DSS occurred in the mid-1990s. With the beginning of the new millennia, intelligence is the main focus on DSS studies. Web-based technologies are having a major impact on design, development and implementation processes for all types of DSS. Web technologies are being utilized for the development of DSS tools by leading developers of decision support technologies. Major companies are encouraging its customers to port their DSS applications, such as data mining, customer relationship management (CRM) and OLAP systems, to a web-based environment. Similarly, real-time data fed from manufacturing plants are now helping floor managers make decisions regarding production adjustment to ensure that high-quality products are produced and delivered. Web-based DSS are being employed by organizations as decision aids for employees as well as customers. A common usage of Web-based DSS has been to assist customers configure product and service according to their needs. These systems allow individual customers to design their own products by choosing from a menu of attributes, components, prices and delivery options. The Intelligent Decision-making Technologies (IDT) domain is a fast growing area of research that integrates various aspects of computer science and information systems. This includes intelligent systems, intelligent technology, intelligent agents, artificial intelligence, fuzzy logic, neural networks, machine learning, knowledge discovery, computational intelligence, data science, big data analytics, inference engines, recommender systems or engines, and a variety of related disciplines. Innovative applications that emerge using IDT often have a significant impact on decision-making processes in government, industry, business, and academia in general. This is particularly pronounced in finance, accounting, healthcare, computer networks, real-time safety monitoring and crisis response systems. Similarly, IDT is commonly used in military decision-making systems, security, marketing, stock market prediction, and robotics. Even though lots of research studies have been conducted on Decision Support Systems, a systematic analysis on the subject is still missing. Because of this necessity, this paper has been prepared to search recent articles about the DSS. The literature has been deeply reviewed and by classifying previous studies according to their preferences, taxonomy for DSS has been prepared. With the aid of the taxonomic review and the recent developments over the subject, this study aims to analyze the future trends in decision support systems.

Keywords: decision support systems, intelligent decision-making, systematic analysis, taxonomic review

Procedia PDF Downloads 279
1987 Artificial Intelligence in Bioscience: The Next Frontier

Authors: Parthiban Srinivasan

Abstract:

With recent advances in computational power and access to enough data in biosciences, artificial intelligence methods are increasingly being used in drug discovery research. These methods are essentially a series of advanced statistics based exercises that review the past to indicate the likely future. Our goal is to develop a model that accurately predicts biological activity and toxicity parameters for novel compounds. We have compiled a robust library of over 150,000 chemical compounds with different pharmacological properties from literature and public domain databases. The compounds are stored in simplified molecular-input line-entry system (SMILES), a commonly used text encoding for organic molecules. We utilize an automated process to generate an array of numerical descriptors (features) for each molecule. Redundant and irrelevant descriptors are eliminated iteratively. Our prediction engine is based on a portfolio of machine learning algorithms. We found Random Forest algorithm to be a better choice for this analysis. We captured non-linear relationship in the data and formed a prediction model with reasonable accuracy by averaging across a large number of randomized decision trees. Our next step is to apply deep neural network (DNN) algorithm to predict the biological activity and toxicity properties. We expect the DNN algorithm to give better results and improve the accuracy of the prediction. This presentation will review all these prominent machine learning and deep learning methods, our implementation protocols and discuss these techniques for their usefulness in biomedical and health informatics.

Keywords: deep learning, drug discovery, health informatics, machine learning, toxicity prediction

Procedia PDF Downloads 357
1986 Chatbots and the Future of Globalization: Implications of Businesses and Consumers

Authors: Shoury Gupta

Abstract:

Chatbots are a rapidly growing technological trend that has revolutionized the way businesses interact with their customers. With the advancements in artificial intelligence, chatbots can now mimic human-like conversations and provide instant and efficient responses to customer inquiries. In this research paper, we aim to explore the implications of chatbots on the future of globalization for both businesses and consumers. The paper begins by providing an overview of the current state of chatbots in the global market and their growth potential in the future. The focus is on how chatbots have become a valuable tool for businesses looking to expand their global reach, especially in areas with high population density and language barriers. With chatbots, businesses can engage with customers in different languages and provide 24/7 customer service support, creating a more accessible and convenient customer experience. The paper then examines the impact of chatbots on cross-cultural communication and how they can help bridge communication gaps between businesses and consumers from different cultural backgrounds. Chatbots can potentially facilitate cross-cultural communication by offering real-time translations, voice recognition, and other innovative features that can help users communicate effectively across different languages and cultures. By providing more accessible and inclusive communication channels, chatbots can help businesses reach new markets and expand their customer base, making them more competitive in the global market. However, the paper also acknowledges that there are potential drawbacks associated with chatbots. For instance, chatbots may not be able to address complex customer inquiries that require human input. Additionally, chatbots may perpetuate biases if they are programmed with certain stereotypes or assumptions about different cultures. These drawbacks may have significant implications for businesses and consumers alike. To explore the implications of chatbots on the future of globalization in greater detail, the paper provides a thorough review of existing literature and case studies. The review covers topics such as the benefits of chatbots for businesses and consumers, the potential drawbacks of chatbots, and how businesses can mitigate any risks associated with chatbot use. The paper also discusses the ethical considerations associated with chatbot use, such as privacy concerns and the need to ensure that chatbots do not discriminate against certain groups of people. The ethical implications of chatbots are particularly important given the potential for chatbots to be used in sensitive areas such as healthcare and financial services. Overall, this research paper provides a comprehensive analysis of chatbots and their implications for the future of globalization. By exploring both the potential benefits and drawbacks of chatbot use, the paper aims to provide insights into how businesses and consumers can leverage this technology to achieve greater global reach and improve cross-cultural communication. Ultimately, the paper concludes that chatbots have the potential to be a powerful tool for businesses looking to expand their global footprint and improve their customer experience, but that care must be taken to mitigate any risks associated with their use.

Keywords: chatbots, conversational AI, globalization, businesses

Procedia PDF Downloads 97
1985 The Importance of Visual Communication in Artificial Intelligence

Authors: Manjitsingh Rajput

Abstract:

Visual communication plays an important role in artificial intelligence (AI) because it enables machines to understand and interpret visual information, similar to how humans do. This abstract explores the importance of visual communication in AI and emphasizes the importance of various applications such as computer vision, object emphasis recognition, image classification and autonomous systems. In going deeper, with deep learning techniques and neural networks that modify visual understanding, In addition to AI programming, the abstract discusses challenges facing visual interfaces for AI, such as data scarcity, domain optimization, and interpretability. Visual communication and other approaches, such as natural language processing and speech recognition, have also been explored. Overall, this abstract highlights the critical role that visual communication plays in advancing AI capabilities and enabling machines to perceive and understand the world around them. The abstract also explores the integration of visual communication with other modalities like natural language processing and speech recognition, emphasizing the critical role of visual communication in AI capabilities. This methodology explores the importance of visual communication in AI development and implementation, highlighting its potential to enhance the effectiveness and accessibility of AI systems. It provides a comprehensive approach to integrating visual elements into AI systems, making them more user-friendly and efficient. In conclusion, Visual communication is crucial in AI systems for object recognition, facial analysis, and augmented reality, but challenges like data quality, interpretability, and ethics must be addressed. Visual communication enhances user experience, decision-making, accessibility, and collaboration. Developers can integrate visual elements for efficient and accessible AI systems.

Keywords: visual communication AI, computer vision, visual aid in communication, essence of visual communication.

Procedia PDF Downloads 95
1984 Don't Just Guess and Slip: Estimating Bayesian Knowledge Tracing Parameters When Observations Are Scant

Authors: Michael Smalenberger

Abstract:

Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate and even exceed some benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. A common facet of many ITS is their use of Bayesian Knowledge Tracing (BKT) to estimate parameters necessary for the implementation of the artificial intelligence component, and for the probability of mastery of a knowledge component relevant to the ITS. While various techniques exist to estimate these parameters and probability of mastery, none directly and reliably ask the user to self-assess these. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course for which detailed transaction-level observations were recorded, and users were also routinely asked direct questions that would lead to such a self-assessment. Comparisons were made between these self-assessed values and those obtained using commonly used estimation techniques. Our findings show that such self-assessments are particularly relevant at the early stages of ITS usage while transaction level data are scant. Once a user’s transaction level data become available after sufficient ITS usage, these can replace the self-assessments in order to eliminate the identifiability problem in BKT. We discuss how these findings are relevant to the number of exercises necessary to lead to mastery of a knowledge component, the associated implications on learning curves, and its relevance to instruction time.

Keywords: Bayesian Knowledge Tracing, Intelligent Tutoring System, in vivo study, parameter estimation

Procedia PDF Downloads 172
1983 Centrality and Patent Impact: Coupled Network Analysis of Artificial Intelligence Patents Based on Co-Cited Scientific Papers

Authors: Xingyu Gao, Qiang Wu, Yuanyuan Liu, Yue Yang

Abstract:

In the era of the knowledge economy, the relationship between scientific knowledge and patents has garnered significant attention. Understanding the intricate interplay between the foundations of science and technological innovation has emerged as a pivotal challenge for both researchers and policymakers. This study establishes a coupled network of artificial intelligence patents based on co-cited scientific papers. Leveraging centrality metrics from network analysis offers a fresh perspective on understanding the influence of information flow and knowledge sharing within the network on patent impact. The study initially obtained patent numbers for 446,890 granted US AI patents from the United States Patent and Trademark Office’s artificial intelligence patent database for the years 2002-2020. Subsequently, specific information regarding these patents was acquired using the Lens patent retrieval platform. Additionally, a search and deduplication process was performed on scientific non-patent references (SNPRs) using the Web of Science database, resulting in the selection of 184,603 patents that cited 37,467 unique SNPRs. Finally, this study constructs a coupled network comprising 59,379 artificial intelligence patents by utilizing scientific papers co-cited in patent backward citations. In this network, nodes represent patents, and if patents reference the same scientific papers, connections are established between them, serving as edges within the network. Nodes and edges collectively constitute the patent coupling network. Structural characteristics such as node degree centrality, betweenness centrality, and closeness centrality are employed to assess the scientific connections between patents, while citation count is utilized as a quantitative metric for patent influence. Finally, a negative binomial model is employed to test the nonlinear relationship between these network structural features and patent influence. The research findings indicate that network structural features such as node degree centrality, betweenness centrality, and closeness centrality exhibit inverted U-shaped relationships with patent influence. Specifically, as these centrality metrics increase, patent influence initially shows an upward trend, but once these features reach a certain threshold, patent influence starts to decline. This discovery suggests that moderate network centrality is beneficial for enhancing patent influence, while excessively high centrality may have a detrimental effect on patent influence. This finding offers crucial insights for policymakers, emphasizing the importance of encouraging moderate knowledge flow and sharing to promote innovation when formulating technology policies. It suggests that in certain situations, data sharing and integration can contribute to innovation. Consequently, policymakers can take measures to promote data-sharing policies, such as open data initiatives, to facilitate the flow of knowledge and the generation of innovation. Additionally, governments and relevant agencies can achieve broader knowledge dissemination by supporting collaborative research projects, adjusting intellectual property policies to enhance flexibility, or nurturing technology entrepreneurship ecosystems.

Keywords: centrality, patent coupling network, patent influence, social network analysis

Procedia PDF Downloads 54
1982 International Entrepreneurial Orientation and Institutionalism: The Effect on International Performance for Latin American SMEs

Authors: William Castillo, Hugo Viza, Arturo Vargas

Abstract:

The Pacific Alliance is a trade bloc that is composed of four emerging economies: Chile, Colombia, Peru, and Mexico. These economies have gained macroeconomic stability in the past decade and as a consequence present future economic progress. Under this positive scenario, international business firms have flourished. However, the literature in this region has been widely unexamined. Therefore, it is critical to fill this theoretical gap, especially considering that Latin America is starting to become a global player and it possesses a different institutional context than developed markets. This paper analyzes the effect of international entrepreneurial orientation and institutionalism on international performance, for the Pacific Alliance small-to-medium enterprises (SMEs). The literature considers international entrepreneurial orientation to be a powerful managerial capability – along the resource based view- that firms can leverage to obtain a satisfactory international performance. Thereby, obtaining a competitive advantage through the correct allocation of key resources to exploit the capabilities here involved. Entrepreneurial Orientation is defined around five factors: innovation, proactiveness, risk-taking, competitive aggressiveness, and autonomy. Nevertheless, the institutional environment – both local and foreign, adversely affects International Performance; this is especially the case for emerging markets with uncertain scenarios. In this way, the study analyzes an Entrepreneurial Orientation, key endogenous variable of international performance, and Institutionalism, an exogenous variable. The survey data consists of Pacific Alliance SMEs that have foreign operations in at least another country in the trade bloc. Findings are still in an ongoing research process. Later, the study will undertake a structural equation modeling (SEM) using the variance-based partial least square estimation procedure. The software that is going to be used is the SmartPLS. This research contributes to the theoretical discussion of a largely postponed topic: SMEs in Latin America, that has had limited academic research. Also, it has practical implication for decision-makers and policy-makers, providing insights into what is behind international performance.

Keywords: institutional theory, international entrepreneurial orientation, international performance, SMEs, Pacific Alliance

Procedia PDF Downloads 248
1981 Evaluation of National Research Motivation Evolution with Improved Social Influence Network Theory Model: A Case Study of Artificial Intelligence

Authors: Yating Yang, Xue Zhang, Chengli Zhao

Abstract:

In the increasingly interconnected global environment brought about by globalization, it is crucial for countries to timely grasp the development motivations in relevant research fields of other countries and seize development opportunities. Motivation, as the intrinsic driving force behind actions, is abstract in nature, making it difficult to directly measure and evaluate. Drawing on the ideas of social influence network theory, the research motivations of a country can be understood as the driving force behind the development of its science and technology sector, which is simultaneously influenced by both the country itself and other countries/regions. In response to this issue, this paper improves upon Friedkin's social influence network theory and applies it to motivation description, constructing a dynamic alliance network and hostile network centered around the United States and China, as well as a sensitivity matrix, to remotely assess the changes in national research motivations under the influence of international relations. Taking artificial intelligence as a case study, the research reveals that the motivations of most countries/regions are declining, gradually shifting from a neutral attitude to a negative one. The motivation of the United States is hardly influenced by other countries/regions and remains at a high level, while the motivation of China has been consistently increasing in recent years. By comparing the results with real data, it is found that this model can reflect, to some extent, the trends in national motivations.

Keywords: influence network theory, remote assessment, relation matrix, dynamic sensitivity matrix

Procedia PDF Downloads 68
1980 Lung HRCT Pattern Classification for Cystic Fibrosis Using a Convolutional Neural Network

Authors: Parisa Mansour

Abstract:

Cystic fibrosis (CF) is one of the most common autosomal recessive diseases among whites. It mostly affects the lungs, causing infections and inflammation that account for 90% of deaths in CF patients. Because of this high variability in clinical presentation and organ involvement, investigating treatment responses and evaluating lung changes over time is critical to preventing CF progression. High-resolution computed tomography (HRCT) greatly facilitates the assessment of lung disease progression in CF patients. Recently, artificial intelligence was used to analyze chest CT scans of CF patients. In this paper, we propose a convolutional neural network (CNN) approach to classify CF lung patterns in HRCT images. The proposed network consists of two convolutional layers with 3 × 3 kernels and maximally connected in each layer, followed by two dense layers with 1024 and 10 neurons, respectively. The softmax layer prepares a predicted output probability distribution between classes. This layer has three exits corresponding to the categories of normal (healthy), bronchitis and inflammation. To train and evaluate the network, we constructed a patch-based dataset extracted from more than 1100 lung HRCT slices obtained from 45 CF patients. Comparative evaluation showed the effectiveness of the proposed CNN compared to its close peers. Classification accuracy, average sensitivity and specificity of 93.64%, 93.47% and 96.61% were achieved, indicating the potential of CNNs in analyzing lung CF patterns and monitoring lung health. In addition, the visual features extracted by our proposed method can be useful for automatic measurement and finally evaluation of the severity of CF patterns in lung HRCT images.

Keywords: HRCT, CF, cystic fibrosis, chest CT, artificial intelligence

Procedia PDF Downloads 65
1979 Weakly Solving Kalah Game Using Artificial Intelligence and Game Theory

Authors: Hiba El Assibi

Abstract:

This study aims to weakly solve Kalah, a two-player board game, by developing a start-to-finish winning strategy using an optimized Minimax algorithm with Alpha-Beta Pruning. In weakly solving Kalah, our focus is on creating an optimal strategy from the game's beginning rather than analyzing every possible position. The project will explore additional enhancements like symmetry checking and code optimizations to speed up the decision-making process. This approach is expected to give insights into efficient strategy formulation in board games and potentially help create games with a fair distribution of outcomes. Furthermore, this research provides a unique perspective on human versus Artificial Intelligence decision-making in strategic games. By comparing the AI-generated optimal moves with human choices, we can explore how seemingly advantageous moves can, in the long run, be harmful, thereby offering a deeper understanding of strategic thinking and foresight in games. Moreover, this paper discusses the evaluation of our strategy against existing methods, providing insights on performance and computational efficiency. We also discuss the scalability of our approach to the game, considering different board sizes (number of pits and stones) and rules (different variations) and studying how that affects performance and complexity. The findings have potential implications for the development of AI applications in strategic game planning, enhancing our understanding of human cognitive processes in game settings, and offer insights into creating balanced and engaging game experiences.

Keywords: minimax, alpha beta pruning, transposition tables, weakly solving, game theory

Procedia PDF Downloads 55
1978 Permeability Prediction Based on Hydraulic Flow Unit Identification and Artificial Neural Networks

Authors: Emad A. Mohammed

Abstract:

The concept of hydraulic flow units (HFU) has been used for decades in the petroleum industry to improve the prediction of permeability. This concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir rock quality index (RQI). Both indices are based on reservoir porosity and permeability of core samples. It is assumed that core samples with similar FZI values belong to the same HFU. Thus, after dividing the porosity-permeability data based on the HFU, transformations can be done in order to estimate the permeability from the porosity. The conventional practice is to use the power law transformation using conventional HFU where percentage of error is considerably high. In this paper, neural network technique is employed as a soft computing transformation method to predict permeability instead of power law method to avoid higher percentage of error. This technique is based on HFU identification where Amaefule et al. (1993) method is utilized. In this regard, Kozeny and Carman (K–C) model, and modified K–C model by Hasan and Hossain (2011) are employed. A comparison is made between the two transformation techniques for the two porosity-permeability models. Results show that the modified K-C model helps in getting better results with lower percentage of error in predicting permeability. The results also show that the use of artificial intelligence techniques give more accurate prediction than power law method. This study was conducted on a heterogeneous complex carbonate reservoir in Oman. Data were collected from seven wells to obtain the permeability correlations for the whole field. The findings of this study will help in getting better estimation of permeability of a complex reservoir.

Keywords: permeability, hydraulic flow units, artificial intelligence, correlation

Procedia PDF Downloads 136
1977 Novel Aspects of Merger Control Pertaining to Nascent Acquisition: An Analytical Legal Research

Authors: Bhargavi G. Iyer, Ojaswi Bhagat

Abstract:

It is often noted that the value of a novel idea lies in its successful implementation. However, successful implementation requires the nurturing and encouragement of innovation. Nascent competitors are a true representation of innovation in any given industry. A nascent competitor is an entity whose prospective innovation poses a future threat to an incumbent dominant competitor. While a nascent competitor benefits in several ways, it is also exposed significantly and is at greater risk of facing the brunt of exclusionary practises and abusive conduct by dominant incumbent competitors in the industry. This research paper aims to explore the risks and threats faced by nascent competitors and analyse the benefits they accrue as well as the advantages they proffer to the economy; through an analytical, critical study. In such competitive market environments, a rise of the acquisitions of nascent competitors by the incumbent dominants is observed. Therefore, this paper will examine the dynamics of nascent acquisition. Further, this paper hopes to specifically delve into the role of antitrust bodies in regulating nascent acquisition. This paper also aspires to deal with the question how to distinguish harmful from harmless acquisitions in order to facilitate ideal enforcement practice. This paper proposes mechanisms of scrutiny in order to ensure healthy market practises and efficient merger control in the context of nascent acquisitions. Taking into account the scope and nature of the topic, as well as the resources available and accessible, a combination of the methods of doctrinal research and analytical research were employed, utilising secondary sources in order to assess and analyse the subject of research. While legally evaluating the Killer Acquisition theory and the Nascent Potential Acquisition theory, this paper seeks to critically survey the precedents and instances of nascent acquisitions. In addition to affording a compendious account of the legislative framework and regulatory mechanisms in the United States, the United Kingdom, and the European Union; it hopes to suggest an internationally practicable legal foundation for domestic legislation and enforcement to adopt. This paper hopes to appreciate the complexities and uncertainties with respect to nascent acquisitions and attempts to suggest viable and plausible policy measures in antitrust law. It additionally attempts to examine the effects of such nascent acquisitions upon the consumer and the market economy. This paper weighs the argument of shifting the evidentiary burden on to the merging parties in order to improve merger control and regulation and expounds on its discovery of the strengths and weaknesses of the approach. It is posited that an effective combination of factual, legal, and economic analysis of both the acquired and acquiring companies possesses the potential to improve ex post and ex ante merger review outcomes involving nascent companies; thus, preventing anti-competitive practises. This paper concludes with an analysis of the possibility and feasibility of industry-specific identification of anti-competitive nascent acquisitions and implementation of measures accordingly.

Keywords: acquisition, antitrust law, exclusionary practises merger control, nascent competitor

Procedia PDF Downloads 161
1976 Virtual Metering and Prediction of Heating, Ventilation, and Air Conditioning Systems Energy Consumption by Using Artificial Intelligence

Authors: Pooria Norouzi, Nicholas Tsang, Adam van der Goes, Joseph Yu, Douglas Zheng, Sirine Maleej

Abstract:

In this study, virtual meters will be designed and used for energy balance measurements of an air handling unit (AHU). The method aims to replace traditional physical sensors in heating, ventilation, and air conditioning (HVAC) systems with simulated virtual meters. Due to the inability to manage and monitor these systems, many HVAC systems have a high level of inefficiency and energy wastage. Virtual meters are implemented and applied in an actual HVAC system, and the result confirms the practicality of mathematical sensors for alternative energy measurement. While most residential buildings and offices are commonly not equipped with advanced sensors, adding, exploiting, and monitoring sensors and measurement devices in the existing systems can cost thousands of dollars. The first purpose of this study is to provide an energy consumption rate based on available sensors and without any physical energy meters. It proves the performance of virtual meters in HVAC systems as reliable measurement devices. To demonstrate this concept, mathematical models are created for AHU-07, located in building NE01 of the British Columbia Institute of Technology (BCIT) Burnaby campus. The models will be created and integrated with the system’s historical data and physical spot measurements. The actual measurements will be investigated to prove the models' accuracy. Based on preliminary analysis, the resulting mathematical models are successful in plotting energy consumption patterns, and it is concluded confidently that the results of the virtual meter will be close to the results that physical meters could achieve. In the second part of this study, the use of virtual meters is further assisted by artificial intelligence (AI) in the HVAC systems of building to improve energy management and efficiency. By the data mining approach, virtual meters’ data is recorded as historical data, and HVAC system energy consumption prediction is also implemented in order to harness great energy savings and manage the demand and supply chain effectively. Energy prediction can lead to energy-saving strategies and considerations that can open a window in predictive control in order to reach lower energy consumption. To solve these challenges, the energy prediction could optimize the HVAC system and automates energy consumption to capture savings. This study also investigates AI solutions possibility for autonomous HVAC efficiency that will allow quick and efficient response to energy consumption and cost spikes in the energy market.

Keywords: virtual meters, HVAC, artificial intelligence, energy consumption prediction

Procedia PDF Downloads 105