Search results for: non-linear approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15080

Search results for: non-linear approach

6890 The Power House of Mind: Determination of Action

Authors: Sheetla Prasad

Abstract:

The focus issue of this article is to determine the mechanism of mind with geometrical analysis of human face. Research paradigm has been designed for study of spatial dynamic of face and it was found that different shapes of face have their own function for determine the action of mind. The functional ratio (FR) of face has determined the behaviour operation of human beings. It is not based on the formulistic approach of prediction but scientific dogmatism and mathematical analysis is the root of the prediction of behaviour. For analysis, formulae were developed and standardized. It was found that human psyche is designed in three forms; manipulated, manifested and real psyche. Functional output of the psyche has been determined by degree of energy flow in the psyche and reserve energy for future. Face is the recipient and transmitter of energy but distribution and control is the possible by mind. Mind directs behaviour. FR indicates that the face is a power house of energy and as per its geometrical domain force of behaviours has been designed and actions are possible in the nature of individual. The impact factor of this study is the promotion of human capital for job fitness objective and minimization of criminalization in society.

Keywords: functional ratio, manipulated psyche, manifested psyche, real psyche

Procedia PDF Downloads 455
6889 Polymer Recycling by Biomaterial and Its Application in Grease Formulation

Authors: Amitkumar Barot, Vijaykumar Sinha

Abstract:

There is growing interest in the development of new materials based on recycled polymers from plastic waste, and also in the field of lubricants much effort has been spent on substitution of petro-based raw materials by natural-based renewable ones. This is due to the facts of depleting fossil fuels and due to strict environmental laws. In relevance to this, new technique for the formulation of grease that combines the chemical recycling of poly (ethylene terephthalate) PET with the use of castor oil (CO) has been developed. Comparison to diols used in chemical recycling of PET, castor oil is renewable, easily available, environmentally friendly, economically cheaper and hence sustainability indeed. The process parameters like CO concentration and temperature were altered, and further, the influences of the process parameters have been studied in order to establish technically and commercially viable process. Further thereby formed depolymerized product find an application as base oil in the formulation of grease. A depolymerized product has been characterized by various chemical and instrumental methods, while formulated greases have been evaluated for its tribological properties. The grease formulated using this new environmentally friendly approach presents applicative properties similar, and in some cases superior, compared to those of a commercial grease obtained from non-renewable resources.

Keywords: castor oil, grease formulation, recycling, sustainability

Procedia PDF Downloads 224
6888 A Model-Reference Sliding Mode for Dual-Stage Actuator Servo Control in HDD

Authors: S. Sonkham, U. Pinsopon, W. Chatlatanagulchai

Abstract:

This paper presents a method of sliding mode control (SMC) designing and developing for the servo system in a dual-stage actuator (DSA) hard disk drive. Mathematical modelling of hard disk drive actuators is obtained, extracted from measuring frequency response of the voice-coil motor (VCM) and PZT micro-actuator separately. Matlab software tools are used for mathematical model estimation and also for controller design and simulation. A model-reference approach for tracking requirement is selected as a proposed technique. The simulation results show that performance of a model-reference SMC controller design in DSA servo control can be satisfied in the tracking error, as well as keeping the positioning of the head within the boundary of +/-5% of track width under the presence of internal and external disturbance. The overall results of model-reference SMC design in DSA are met per requirement specifications and significant reduction in %off track is found when compared to the single-state actuator (SSA).

Keywords: hard disk drive, dual-stage actuator, track following, hdd servo control, sliding mode control, model-reference, tracking control

Procedia PDF Downloads 369
6887 Hypercomplex Dynamics and Turbulent Flows in Sobolev and Besov Functional Spaces

Authors: Romulo Damasclin Chaves dos Santos, Jorge Henrique de Oliveira Sales

Abstract:

This paper presents a rigorous study of advanced functional spaces, with a focus on Sobolev and Besov spaces, to investigate key aspects of fluid dynamics, including the regularity of solutions to the Navier-Stokes equations, hypercomplex bifurcations, and turbulence. We offer a comprehensive analysis of Sobolev embedding theorems in fractional spaces and apply bifurcation theory within quaternionic dynamical systems to better understand the complex behaviors in fluid systems. Additionally, the research delves into energy dissipation mechanisms in turbulent flows through the framework of Besov spaces. Key mathematical tools, such as interpolation theory, Littlewood-Paley decomposition, and energy cascade models, are integrated to develop a robust theoretical approach to these problems. By addressing challenges related to the existence and smoothness of solutions, this work contributes to the ongoing exploration of the open Navier-Stokes problem, providing new insights into the intricate relationship between fluid dynamics and functional spaces.

Keywords: navier-stokes equations, hypercomplex bifurcations, turbulence, sobolev and besov space

Procedia PDF Downloads 25
6886 Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models

Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt

Abstract:

Producing faulty products can be costly for manufacturing companies and wastes resources. To reduce scrap rates in manufacturing, process parameters can be optimized using machine learning. Thus far, research mainly focused on optimizing specific processes using traditional algorithms. To develop a framework that enables real-time optimization based on a predictive model for an arbitrary production process, this study explores the application of reinforcement learning (RL) in this field. Based on a thorough review of literature about RL and process parameter optimization, a model based on maximum a posteriori policy optimization that can handle both numerical and categorical parameters is proposed. A case study compares the model to state–of–the–art traditional algorithms and shows that RL can find optima of similar quality while requiring significantly less time. These results are confirmed in a large-scale validation study on data sets from both production and other fields. Finally, multiple ways to improve the model are discussed.

Keywords: reinforcement learning, production process optimization, evolutionary algorithms, policy optimization, actor critic approach

Procedia PDF Downloads 103
6885 Glucose Monitoring System Using Machine Learning Algorithms

Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe

Abstract:

The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.

Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning

Procedia PDF Downloads 209
6884 A Novel Solution Methodology for Transit Route Network Design Problem

Authors: Ghada Moussa, Mamoud Owais

Abstract:

Transit Route Network Design Problem (TrNDP) is the most important component in Transit planning, in which the overall cost of the public transportation system highly depends on it. The main purpose of this study is to develop a novel solution methodology for the TrNDP, which goes beyond pervious traditional sophisticated approaches. The novelty of the solution methodology, adopted in this paper, stands on the deterministic operators which are tackled to construct bus routes. The deterministic manner of the TrNDP solution relies on using linear and integer mathematical formulations that can be solved exactly with their standard solvers. The solution methodology has been tested through Mandl’s benchmark network problem. The test results showed that the methodology developed in this research is able to improve the given network solution in terms of number of constructed routes, direct transit service coverage, transfer directness and solution reliability. Although the set of routes resulted from the methodology would stand alone as a final efficient solution for TrNDP, it could be used as an initial solution for meta-heuristic procedures to approach global optimal. Based on the presented methodology, a more robust network optimization tool would be produced for public transportation planning purposes.

Keywords: integer programming, transit route design, transportation, urban planning

Procedia PDF Downloads 281
6883 Human Trafficking in Your Backyard: Know the Signs and How to Help

Authors: Jessie Fazel, Kristen Smith

Abstract:

Human trafficking is a multi-billion-dollar criminal industry that affects 24.9 million people around the world. There are several different types of trafficking, the most common being sex trafficking, labor trafficking, and domestic servitude. Survival sex is common in the pediatric population, as they engage in sex for food, a place to sleep, or other basic needs. Statistics show that health care workers are at a unique advantage to help identify victims and get them the help they need, as 88% of trafficked victims encounter a health care worker while being trafficked. Unfortunately, victims don’t usually self-identify that they are being trafficked and the situations they face can vary dramatically. It is imperative to remember that traditional red flags are not always present in the pediatric population. Risk factors and red flags with their history and physical exam are one of the best indicators that health care providers need to be vigilant in looking at. There are numerous barriers for disclosure in the healthcare setting. Periods of time before and after disclosure are often emotionally difficult and could be dangerous for the victim. It is extremely important to have a plan in place for intervention if the victim does disclose trafficking. A trauma informed approach to medical and mental health interventions, that focus on safety, are vital in this population. This is happening where you live and you can make a difference in their lives.

Keywords: human trafficking, public health, emergency medicine, sexual health

Procedia PDF Downloads 41
6882 Sliding Mode Control of Variable Speed Wind Energy Conversion Systems

Authors: Zine Souhila Rached, Mazari Benyounes Bouzid, Mohamed Amine, Allaoui Tayeb

Abstract:

Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, its high cost is a major constraint, especially on the less windy sites. The purpose of wind energy systems is to maximize energy efficiency, and extract maximum power from the wind speed. In other words, having a power coefficient is maximum and therefore the maximum power point tracking. In this case, the MPPT control becomes important.To realize this control, strategy conventional proportional and integral (PI) controller is usually used. However, this strategy cannot achieve better performance. This paper proposes a robust control of a turbine which optimizes its production, that is improve the quality and energy efficiency, namely, a strategy of sliding mode control. The proposed sliding mode control strategy presents attractive features such as robustness to parametric uncertainties of the turbine; the proposed sliding mode control approach has been simulated on three-blade wind turbine. The simulation result under Matlab\Simulink has validated the performance of the proposed MPPT strategy.

Keywords: wind turbine, maximum power point tracking, sliding mode, energy conversion systems

Procedia PDF Downloads 615
6881 A Literature Review on Development of a Forecast Supported Approach for the Continuous Pre-Planning of Required Transport Capacity for the Design of Sustainable Transport Chains

Authors: Georg Brunnthaller, Sandra Stein, Wilfried Sihn

Abstract:

Logistics service providers are facing increasing volatility concerning future transport demand. Short-term planning horizons and planning uncertainties lead to reduced capacity utilisation and increasing empty mileage. To overcome these challenges, a model is proposed to continuously pre-plan future transport capacity in order to redesign and adjust the intermodal fleet accordingly. It is expected that the model will enable logistics service providers to organise more economically and ecologically sustainable transport chains in a more flexible way. To further describe such planning aspects, this paper gives a structured literature review on transport planning problems. The focus is on strategic and tactical planning levels, comprising relevant fleet-sizing-, network-design- and choice-of-carriers-problems. Models and their developed solution techniques are presented and the literature review is concluded with an outlook to our future research objectives

Keywords: choice of transport mode, fleet-sizing, freight transport planning, multimodal, review, service network design

Procedia PDF Downloads 367
6880 The BETA Module in Action: An Empirical Study on Enhancing Entrepreneurial Skills through Kearney's and Bloom's Guiding Principles

Authors: Yen Yen Tan, Lynn Lam, Cynthia Lam, Angela Koh, Edwin Seng

Abstract:

Entrepreneurial education plays a crucial role in nurturing future innovators and change-makers. Over time, significant progress has been made in refining instructional approaches to develop the necessary skills among learners effectively. Two highly valuable frameworks, Kearney's "4 Principles of Entrepreneurial Pedagogy" and Bloom's "Three Domains of Learning," serve as guiding principles in entrepreneurial education. Kearney's principles align with experiential and student-centric learning, which are crucial for cultivating an entrepreneurial mindset. The potential synergies between these frameworks hold great promise for enhancing entrepreneurial acumen among students. However, despite this potential, their integration remains largely unexplored. This study aims to bridge this gap by building upon the Business Essentials through Action (BETA) module and investigating its contributions to nurturing the entrepreneurial mindset. This study employs a quasi-experimental mixed-methods approach, combining quantitative and qualitative elements to ensure comprehensive and insightful data. A cohort of 235 students participated, with 118 enrolled in the BETA module and 117 in a traditional curriculum. Their Personal Entrepreneurial Competencies (PECs) were assessed before admission (pre-Y1) and one year into the course (post-Y1) using a comprehensive 55-item PEC questionnaire, enabling measurement of critical traits such as opportunity-seeking, persistence, and risk-taking. Rigorous computations of individual entrepreneurial competencies and overall PEC scores were performed, including a correction factor to mitigate potential self-assessment bias. The orchestration of Kearney's principles and Bloom's domains within the BETA module necessitates a granular examination. Here, qualitative revelations surface, courtesy of structured interviews aligned with contemporary research methodologies. These interviews act as a portal, ushering us into the transformative journey undertaken by students. Meanwhile, the study pivots to explore the BETA module's influence on students' entrepreneurial competencies from the vantage point of faculty members. A symphony of insights emanates from intimate focus group discussions featuring six dedicated lecturers, who share their perceptions, experiences, and reflective narratives, illuminating the profound impact of pedagogical practices embedded within the BETA module. Preliminary findings from ongoing data analysis indicate promising results, showcasing a substantial improvement in entrepreneurial skills among students participating in the BETA module. This study promises not only to elevate students' entrepreneurial competencies but also to illuminate the broader canvas of applicability for Kearney's principles and Bloom's domains. The dynamic interplay of quantitative analyses, proffering precise competency metrics, and qualitative revelations, delving into the nuanced narratives of transformative journeys, engenders a holistic understanding of this educational endeavour. Through a rigorous quasi-experimental mixed-methods approach, this research aims to establish the BETA module's effectiveness in fostering entrepreneurial acumen among students at Singapore Polytechnic, thereby contributing valuable insights to the broader discourse on educational methodologies.

Keywords: entrepreneurial education, experiential learning, pedagogical frameworks, innovative competencies

Procedia PDF Downloads 69
6879 Enhancing the Implementation Strategy of Simultaneous Operations (SIMOPS) for the Major Turnaround at Pertamina Plaju Refinery

Authors: Fahrur Rozi, Daniswara Krisna Prabatha, Latief Zulfikar Chusaini

Abstract:

Amidst the backdrop of Pertamina Plaju Refinery, which stands as the oldest and historically less technologically advanced among Pertamina's refineries, lies a unique challenge. Originally integrating facilities established by Shell in 1904 and Stanvac (originally Standard Oil) in 1926, the primary challenge at Plaju Refinery does not solely revolve around complexity; instead, it lies in ensuring reliability, considering its operational history of over a century. After centuries of existence, Plaju Refinery has never undergone a comprehensive major turnaround encompassing all its units. The usual practice involves partial turnarounds that are sequentially conducted across its primary, secondary, and tertiary units (utilities and offsite). However, a significant shift is on the horizon. In the Q-IV of 2023, the refinery embarks on its first-ever major turnaround since its establishment. This decision was driven by the alignment of maintenance timelines across various units. Plaju Refinery's major turnaround was scheduled for October-November 2023, spanning 45 calendar days, with the objective of enhancing the operational reliability of all refinery units. The extensive job list for this turnaround encompasses 1583 tasks across 18 units/areas, involving approximately 9000 contracted workers. In this context, the Strategy of Simultaneous Operations (SIMOPS) execution emerges as a pivotal tool to optimize time efficiency and ensure safety. A Hazard Effect Management Process (HEMP) has been employed to assess the risk ratings of each task within the turnaround. Out of the tasks assessed, 22 are deemed high-risk and necessitate mitigation. The SIMOPS approach serves as a preventive measure against potential incidents. It is noteworthy that every turnaround period at Pertamina Plaju Refinery involves SIMOPS-related tasks. In this context, enhancing the implementation strategy of "Simultaneous Operations (SIMOPS)" becomes imperative to minimize the occurrence of incidents. At least four improvements have been introduced in the enhancement process for the major turnaround at Refinery Plaju. The first improvement involves conducting systematic risk assessment and potential hazard mitigation studies for SIMOPS tasks before task execution, as opposed to the previous on-site approach. The second improvement includes the completion of SIMOPS Job Mitigation and Work Matrices Sheets, which was often neglected in the past. The third improvement emphasizes comprehensive awareness to workers/contractors regarding potential hazards and mitigation strategies for SIMOPS tasks before and during the major turnaround. The final improvement is the introduction of a daily program for inspecting and observing work in progress for SIMOPS tasks. Prior to these improvements, there was no established program for monitoring ongoing activities related to SIMOPS tasks during the turnaround. This study elucidates the steps taken to enhance SIMOPS within Pertamina, drawing from the experiences of Plaju Refinery as a guide. A real actual case study will be provided from our experience in the operational unit. In conclusion, these efforts are essential for the success of the first-ever major turnaround at Plaju Refinery, with the SIMOPS strategy serving as a central component. Based on these experiences, enhancements have been made to Pertamina's official Internal Guidelines for Executing SIMOPS Risk Mitigation, benefiting all Pertamina units.

Keywords: process safety management, turn around, oil refinery, risk assessment

Procedia PDF Downloads 82
6878 Employed Mothers’ Narratives of Caring for their Children with Autism ( second submission for Mumbai)

Authors: Sharlene Fernandes

Abstract:

Literature has shed light on the challenges of mothers of children with ASD, one of which involves sacrificing their professional jobs to fulfill the demands of their caregiving roles. However, the voices of the mothers who pursue employment along with caregiving roles have been overlooked. This study aimed to address this issue by exploring the narratives of Employed Mothers of Children with Autism Spectrum Disorder using the Narrative approach to inquiry. Through the view of Feminist Standpoint Theory, this study attempted to understand the role of sociocultural and systemic factors in shaping the lives of mothers. By employing the theoretical lens of Ethics of Care, this study explored how mothers balance care with their employment responsibilities, which are expected to be balanced seamlessly. Through narrative interviews, the study addressed the mothers' narratives on navigating work and caregiving, delving into their interpretations regarding expectations of care. The study gained valuable insights into the nuanced dynamics of employment, caregiving, and gender roles among mothers of children with Autism in the Indian context, implicating the urgent need for organizational policies, enhanced support systems, better quality therapeutic services, and inclusive school developments.

Keywords: Autism Spectrum Disorder, Caregivers, Employed Mothers, India, Narratives

Procedia PDF Downloads 19
6877 Towards a Large Scale Deep Semantically Analyzed Corpus for Arabic: Annotation and Evaluation

Authors: S. Alansary, M. Nagi

Abstract:

This paper presents an approach of conducting semantic annotation of Arabic corpus using the Universal Networking Language (UNL) framework. UNL is intended to be a promising strategy for providing a large collection of semantically annotated texts with formal, deep semantics rather than shallow. The result would constitute a semantic resource (semantic graphs) that is editable and that integrates various phenomena, including predicate-argument structure, scope, tense, thematic roles and rhetorical relations, into a single semantic formalism for knowledge representation. The paper will also present the Interactive Analysis​ tool for automatic semantic annotation (IAN). In addition, the cornerstone of the proposed methodology which are the disambiguation and transformation rules, will be presented. Semantic annotation using UNL has been applied to a corpus of 20,000 Arabic sentences representing the most frequent structures in the Arabic Wikipedia. The representation, at different linguistic levels was illustrated starting from the morphological level passing through the syntactic level till the semantic representation is reached. The output has been evaluated using the F-measure. It is 90% accurate. This demonstrates how powerful the formal environment is, as it enables intelligent text processing and search.

Keywords: semantic analysis, semantic annotation, Arabic, universal networking language

Procedia PDF Downloads 583
6876 Speech Rhythm Variation in Languages and Dialects: F0, Natural and Inverted Speech

Authors: Imen Ben Abda

Abstract:

Languages have been classified into different rhythm classes. 'Stress-timed' languages are exemplified by English, 'syllable-timed' languages by French and 'mora-timed' languages by Japanese. However, to our best knowledge, acoustic studies have not been unanimous in strictly establishing which rhythm category a given language belongs to and failed to show empirical evidence for isochrony. Perception seems to be a good approach to categorize languages into different rhythm classes. This study, within the scope of experimental phonetics, includes an account of different perceptual experiments using cues from natural and inverted speech, as well as pitch extracted from speech data. It is an attempt to categorize speech rhythm over a large set of Arabic (Tunisian, Algerian, Lebanese and Moroccan) and English dialects (Welsh, Irish, Scottish and Texan) as well as other languages such as Chinese, Japanese, French, and German. Listeners managed to classify the different languages and dialects into different rhythm classes using suprasegmental cues mainly rhythm and pitch (F0). They also perceived rhythmic differences even among languages and dialects belonging to the same rhythm class. This may show that there are different subclasses within very broad rhythmic typologies.

Keywords: F0, inverted speech, mora-timing, rhythm variation, stress-timing, syllable-timing

Procedia PDF Downloads 531
6875 Perception-Oriented Model Driven Development for Designing Data Acquisition Process in Wireless Sensor Networks

Authors: K. Indra Gandhi

Abstract:

Wireless Sensor Networks (WSNs) have always been characterized for application-specific sensing, relaying and collection of information for further analysis. However, software development was not considered as a separate entity in this process of data collection which has posed severe limitations on the software development for WSN. Software development for WSN is a complex process since the components involved are data-driven, network-driven and application-driven in nature. This implies that there is a tremendous need for the separation of concern from the software development perspective. A layered approach for developing data acquisition design based on Model Driven Development (MDD) has been proposed as the sensed data collection process itself varies depending upon the application taken into consideration. This work focuses on the layered view of the data acquisition process so as to ease the software point of development. A metamodel has been proposed that enables reusability and realization of the software development as an adaptable component for WSN systems. Further, observing users perception indicates that proposed model helps in improving the programmer's productivity by realizing the collaborative system involved.

Keywords: data acquisition, model-driven development, separation of concern, wireless sensor networks

Procedia PDF Downloads 439
6874 Multimodal Direct Neural Network Positron Emission Tomography Reconstruction

Authors: William Whiteley, Jens Gregor

Abstract:

In recent developments of direct neural network based positron emission tomography (PET) reconstruction, two prominent architectures have emerged for converting measurement data into images: 1) networks that contain fully-connected layers; and 2) networks that primarily use a convolutional encoder-decoder architecture. In this paper, we present a multi-modal direct PET reconstruction method called MDPET, which is a hybrid approach that combines the advantages of both types of networks. MDPET processes raw data in the form of sinograms and histo-images in concert with attenuation maps to produce high quality multi-slice PET images (e.g., 8x440x440). MDPET is trained on a large whole-body patient data set and evaluated both quantitatively and qualitatively against target images reconstructed with the standard PET reconstruction benchmark of iterative ordered subsets expectation maximization. The results show that MDPET outperforms the best previously published direct neural network methods in measures of bias, signal-to-noise ratio, mean absolute error, and structural similarity.

Keywords: deep learning, image reconstruction, machine learning, neural network, positron emission tomography

Procedia PDF Downloads 118
6873 Short Text Classification for Saudi Tweets

Authors: Asma A. Alsufyani, Maram A. Alharthi, Maha J. Althobaiti, Manal S. Alharthi, Huda Rizq

Abstract:

Twitter is one of the most popular microblogging sites that allows users to publish short text messages called 'tweets'. Increasing the number of accounts to follow (followings) increases the number of tweets that will be displayed from different topics in an unclassified manner in the timeline of the user. Therefore, it can be a vital solution for many Twitter users to have their tweets in a timeline classified into general categories to save the user’s time and to provide easy and quick access to tweets based on topics. In this paper, we developed a classifier for timeline tweets trained on a dataset consisting of 3600 tweets in total, which were collected from Saudi Twitter and annotated manually. We experimented with the well-known Bag-of-Words approach to text classification, and we used support vector machines (SVM) in the training process. The trained classifier performed well on a test dataset, with an average F1-measure equal to 92.3%. The classifier has been integrated into an application, which practically proved the classifier’s ability to classify timeline tweets of the user.

Keywords: corpus creation, feature extraction, machine learning, short text classification, social media, support vector machine, Twitter

Procedia PDF Downloads 160
6872 Student Perceptions of Defense Acquisition University Courses: An Explanatory Data Collection Approach

Authors: Melissa C. LaDuke

Abstract:

The overarching purpose of this study was to determine the relationship between the current format of online delivery for Defense Acquisition University (DAU) courses and Air Force Acquisition (AFA) personnel participation. AFA personnel (hereafter named “student”) were particularly of interest, as they have been mandated to take anywhere from 3 to 30 online courses to earn various DAU specialization certifications. Participants in this qualitative case study were AFA personnel who pursued DAU certifications in science and technology management, program/contract management, and other related fields. Air Force personnel were interviewed about their experiences with online courses. The data gathered were analyzed and grouped into 12 major themes. The themes tied into the theoretical framework and spoke to either teacher-centered or student-centered educational practices within Defense Acquisitions University. Based on the results of the data analysis, various factors contributed to student perceptions of DAU courses, including the online course construct and relevance to their job. The analysis also found students want to learn the information presented but would like to be able to apply the information learned in meaningful ways.

Keywords: educational theory, computer-based training, interview, student perceptions, online course design, teacher positionality

Procedia PDF Downloads 109
6871 Unity in Diversity: Exploring the Psychological Processes and Mechanisms of the Sense of Community for the Chinese Nation in Ethnic Inter-embedded Communities

Authors: Jiamin Chen, Liping Yang

Abstract:

In 2007, sociologist Putnam proposed a pessimistic forecast in the United States' "Social Capital Community Benchmark Survey," suggesting that "ethnic diversity would challenge social unity and undermine social cohesion." If this pessimistic assumption were proven true, it would indicate a risk of division in diverse societies. China, with 56 ethnic groups, is a multi-ethnic country. On May 26, 2014, General Secretary Xi Jinping proposed "building ethnically inter-embedded communities to promote deeper development in interactions, exchanges, and integration among ethnic groups." Researchers unanimously agree that ethnic inter-embedded communities can serve as practical arenas and pathways for solidifying the sense of the Chinese national community However, there is no research providing evidence that ethnic inter-embedded communities can foster the sense of the Chinese national community, and the influencing factors remain unclear. This study adopts a constructivist grounded theory research approach. Convenience sampling and snowball sampling were used in the study. Data were collected in three communities in Kunming City. Twelve individuals were eventually interviewed, and the transcribed interviews totaled 187,000 words. The research has obtained ethical approval from the Ethics Committee of Nanjing Normal University (NNU202310030). The research analyzed the data and constructed theories, employing strategies such as coding, constant comparison, and theoretical sampling. The study found that: firstly, ethnic inter-embedded communities exhibit characteristics of diversity, including ethnic diversity, cultural diversity, and linguistic diversity. Diversity has positive functions, including increased opportunities for contact, promoting self-expansion, and increasing happiness; negative functions of diversity include highlighting ethnic differences, causing ethnic conflicts, and reminding of ethnic boundaries. Secondly, individuals typically engage in interactions within the community using active embedding and passive embedding strategies. Active embedding strategies include maintaining openness, focusing on similarities, and pro-diversity beliefs, which can increase external group identification, intergroup relational identity, and promote ethnic integration. Individuals using passive embedding strategies tend to focus on ethnic stereotypes, perceive stigmatization of their own ethnic group, and adopt an authoritarian-oriented approach to interactions, leading to a perception of more identity threats and ultimately rejecting ethnic integration. Thirdly, the commonality of the Chinese nation is reflected in the 56 ethnic groups as an "identity community" and "interest community," and both active and passive embedding paths affect individual understanding of the commonality of the Chinese nation. Finally, community work and environment can influence the embedding process. The research constructed a social psychological process and mechanism model for solidifying sense of the Chinese national community in ethnic inter-embedded communities. Based on this theoretical model, future research can conduct more micro-level psychological mechanism tests and intervention studies to enhance Chinese national cohesion.

Keywords: diversity, sense of the chinese national community, ethnic inter-embedded communities, ethnic group

Procedia PDF Downloads 42
6870 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study

Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis

Abstract:

An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electromechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.

Keywords: concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT

Procedia PDF Downloads 258
6869 Improving Machine Learning Translation of Hausa Using Named Entity Recognition

Authors: Aishatu Ibrahim Birma, Aminu Tukur, Abdulkarim Abbass Gora

Abstract:

Machine translation plays a vital role in the Field of Natural Language Processing (NLP), breaking down language barriers and enabling communication across diverse communities. In the context of Hausa, a widely spoken language in West Africa, mainly in Nigeria, effective translation systems are essential for enabling seamless communication and promoting cultural exchange. However, due to the unique linguistic characteristics of Hausa, accurate translation remains a challenging task. The research proposes an approach to improving the machine learning translation of Hausa by integrating Named Entity Recognition (NER) techniques. Named entities, such as person names, locations, organizations, and dates, are critical components of a language's structure and meaning. Incorporating NER into the translation process can enhance the quality and accuracy of translations by preserving the integrity of named entities and also maintaining consistency in translating entities (e.g., proper names), and addressing the cultural references specific to Hausa. The NER will be incorporated into Neural Machine Translation (NMT) for the Hausa to English Translation.

Keywords: machine translation, natural language processing (NLP), named entity recognition (NER), neural machine translation (NMT)

Procedia PDF Downloads 51
6868 An Analytical and Inductive Study of the Aspect and Impact of the Prophetic Traditions in Understating Quran and Its Interpretation

Authors: Zabihur Rahman

Abstract:

In present day we see in our surroundings and in different societies of the world an uprising approach of understanding Quran without the help of Hadith and Sunnah. As they believe that ‘Quran is sufficient for our guidance’. They do not give any preference to Prophetic traditions (Hadith and Sunnah), to understand or realize the actual meaning and purpose of the reveling of Quranic verses. Based on the afore mentioned idea we are going to pin point an analytical and inductive study of tafsir Ahkâm-ul Qu’ran by: Ibn-ul Arabi al-Mâliki. In this study we are trying to show the importance of Hadith and Sunnah in interpretation and understanding of Quran by presenting various examples from tafsir Ahkâm-ul Quran. This book is for being an important source in the relative filed of Ahkam-ul Quran we are going to highlight the method of Ibn-ul Arabi in dealing with Quranic verses in the light of Hadith. Furthermore, the impact of quoting different types of hadith in Tefsir is also taken into account. Besides, while citing these Prophetic traditions it is also inevitable to kept in view the sciences of hadith and its application on the context in order to orientate the proper meaning. The study also includes the scrutiny of these narrations by their chain of narrators and text to ensure the perfection of these prophetic traditions. So that, a person can have accesses to the righteous understanding and interpretation of the Holy Quran.

Keywords: Hadith, interpretation, narrators, verses

Procedia PDF Downloads 164
6867 A Statistical Approach to Air Pollution in Mexico City and It's Impacts on Well-Being

Authors: Ana B. Carrera-Aguilar , Rodrigo T. Sepulveda-Hirose, Diego A. Bernal-Gurrusquieta, Francisco A. Ramirez Casas

Abstract:

In recent years, Mexico City has presented high levels of atmospheric pollution; the city is also an example of inequality and poverty that impact metropolitan areas around the world. This combination of social and economic exclusion, coupled with high levels of pollution evidence the loss of well-being among the population. The effect of air pollution on quality of life is an area of study that has been overlooked. The purpose of this study is to find relations between air quality and quality of life in Mexico City through statistical analysis of a regression model and principal component analysis of several atmospheric contaminants (CO, NO₂, ozone, particulate matter, SO₂) and well-being indexes (HDI, poverty, inequality, life expectancy and health care index). The data correspond to official information (INEGI, SEDEMA, and CEPAL) for 2000-2018. Preliminary results show that the Human Development Index (HDI) is affected by the impacts of pollution, and its indicators are reduced in the presence of contaminants. It is necessary to promote a strong interest in this issue in Mexico City. Otherwise, the problem will not only remain but will worsen affecting those who have less and the population well-being in a generalized way.

Keywords: air quality, Mexico City, quality of life, statistics

Procedia PDF Downloads 147
6866 A Constructivist Approach and Tool for Autonomous Agent Bottom-up Sequential Learning

Authors: Jianyong Xue, Olivier L. Georgeon, Salima Hassas

Abstract:

During the initial phase of cognitive development, infants exhibit amazing abilities to generate novel behaviors in unfamiliar situations, and explore actively to learn the best while lacking extrinsic rewards from the environment. These abilities set them apart from even the most advanced autonomous robots. This work seeks to contribute to understand and replicate some of these abilities. We propose the Bottom-up hiErarchical sequential Learning algorithm with Constructivist pAradigm (BEL-CA) to design agents capable of learning autonomously and continuously through interactions. The algorithm implements no assumption about the semantics of input and output data. It does not rely upon a model of the world given a priori in the form of a set of states and transitions as well. Besides, we propose a toolkit to analyze the learning process at run time called GAIT (Generating and Analyzing Interaction Traces). We use GAIT to report and explain the detailed learning process and the structured behaviors that the agent has learned on each decision making. We report an experiment in which the agent learned to successfully interact with its environment and to avoid unfavorable interactions using regularities discovered through interaction.

Keywords: cognitive development, constructivist learning, hierarchical sequential learning, self-adaptation

Procedia PDF Downloads 184
6865 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images

Authors: Jameela Ali Alkrimi, Abdul Rahim Ahmad, Azizah Suliman, Loay E. George

Abstract:

Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. The lack of RBCs is a condition characterized by lower than normal hemoglobin level; this condition is referred to as 'anemia'. In this study, a software was developed to isolate RBCs by using a machine learning approach to classify anemic RBCs in microscopic images. Several features of RBCs were extracted using image processing algorithms, including principal component analysis (PCA). With the proposed method, RBCs were isolated in 34 second from an image containing 18 to 27 cells. We also proposed that PCA could be performed to increase the speed and efficiency of classification. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network ANN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained for a short time period with more efficient when PCA was used.

Keywords: red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC

Procedia PDF Downloads 411
6864 Membrane Permeability of Middle Molecules: A Computational Chemistry Approach

Authors: Sundaram Arulmozhiraja, Kanade Shimizu, Yuta Yamamoto, Satoshi Ichikawa, Maenaka Katsumi, Hiroaki Tokiwa

Abstract:

Drug discovery is shifting from small molecule based drugs targeting local active site to middle molecules (MM) targeting large, flat, and groove-shaped binding sites, for example, protein-protein interface because at least half of all targets assumed to be involved in human disease have been classified as “difficult to drug” with traditional small molecules. Hence, MMs such as peptides, natural products, glycans, nucleic acids with various high potent bioactivities become important targets for drug discovery programs in the recent years as they could be used for ‘undruggable” intracellular targets. Cell membrane permeability is one of the key properties of pharmacodynamically active MM drug compounds and so evaluating this property for the potential MMs is crucial. Computational prediction for cell membrane permeability of molecules is very challenging; however, recent advancement in the molecular dynamics simulations help to solve this issue partially. It is expected that MMs with high membrane permeability will enable drug discovery research to expand its borders towards intracellular targets. Further to understand the chemistry behind the permeability of MMs, it is necessary to investigate their conformational changes during the permeation through membrane and for that their interactions with the membrane field should be studied reliably because these interactions involve various non-bonding interactions such as hydrogen bonding, -stacking, charge-transfer, polarization dispersion, and non-classical weak hydrogen bonding. Therefore, parameters-based classical mechanics calculations are hardly sufficient to investigate these interactions rather, quantum mechanical (QM) calculations are essential. Fragment molecular orbital (FMO) method could be used for such purpose as it performs ab initio QM calculations by dividing the system into fragments. The present work is aimed to study the cell permeability of middle molecules using molecular dynamics simulations and FMO-QM calculations. For this purpose, a natural compound syringolin and its analogues were considered in this study. Molecular simulations were performed using NAMD and Gromacs programs with CHARMM force field. FMO calculations were performed using the PAICS program at the correlated Resolution-of-Identity second-order Moller Plesset (RI-MP2) level with the cc-pVDZ basis set. The simulations clearly show that while syringolin could not permeate the membrane, its selected analogues go through the medium in nano second scale. These correlates well with the existing experimental evidences that these syringolin analogues are membrane-permeable compounds. Further analyses indicate that intramolecular -stacking interactions in the syringolin analogues influenced their permeability positively. These intramolecular interactions reduce the polarity of these analogues so that they could permeate the lipophilic cell membrane. Conclusively, the cell membrane permeability of various middle molecules with potent bioactivities is efficiently studied using molecular dynamics simulations. Insight of this behavior is thoroughly investigated using FMO-QM calculations. Results obtained in the present study indicate that non-bonding intramolecular interactions such as hydrogen-bonding and -stacking along with the conformational flexibility of MMs are essential for amicable membrane permeation. These results are interesting and are nice example for this theoretical calculation approach that could be used to study the permeability of other middle molecules. This work was supported by Japan Agency for Medical Research and Development (AMED) under Grant Number 18ae0101047.

Keywords: fragment molecular orbital theory, membrane permeability, middle molecules, molecular dynamics simulation

Procedia PDF Downloads 193
6863 Desired Flow of Radioactive Materials from Logistics Service Quality Perspective

Authors: Tuğçe Yavaş Akış

Abstract:

In recent years, due to an increased use of radioactive materials, radioactive sources are constantly being transported via air, road and ocean ways for medical, industrial, research etc. purposes throughout the world. The quantity of radioactive materials transported all around the world varies from negligible quantities in shipments of consumer products to very large quantities in shipments of irradiated nuclear fuel. Radioactive materials have been less attractive for social science researchers in literature. In this study, it is aimed to discover desired flow of radioactive materials from logistics service quality (LSQ) perspective. In doing so, case study approach will be employed by using secondary data collected from one of the world’s leading transportation companies’ customer care system reports. Movement of radioactive cargoes containing IR-192 and logistics process will be analyzed with the help of logistics service quality dimensions. Based on the case study that will be conducted, interaction between dimensions, the importance of each dimension in desired flow, and their relevance with desired flow of radioactive materials will be explained. This study will bring out the desired flow of radioactive materials transportation and be a guide for all other companies, employees and researchers.

Keywords: logistics service quality, LSQ dimension , radioactive material, transportation

Procedia PDF Downloads 242
6862 Paediatric Motor Difficulties and Internalising Problems: An Integrative Review on the Environmental Stress Hypothesis

Authors: Noah Erskine, Jaime Barratt, John Cairney

Abstract:

The current study aims to provide an in-depth analysis and extension of the Environmental Stress Hypothesis (ESH) framework, focusing on the complex interplay between poor motor skills and internalising problems like anxiety and depression. Using an integrative research review methodology, this study synthesizes findings from 38 articles, both empirical and theoretical, building upon the foundational work of the model. The hypothesis posits that poor motor skills serve as a primary stressor, leading to internalising problems through various secondary stressors. A rigorous comparison of data was conducted, considering study design, findings, and methodologies - while giving special attention to variables such as age, sex, and comorbidities. The study also enhances the ESH framework by introducing resource buffers, including optimism and familial support, as additional influencing factors. This multi-level approach yields a more nuanced and comprehensive ESH framework, highlighting the need for future studies to consider intersectional variables and how they may vary across various life stages.

Keywords: motor coordination, mental health, developmental coordination disorders, paediatric comorbidities, obesity, peer problems

Procedia PDF Downloads 82
6861 Fault-Tolerant Configuration for T-Type Nested Neutral Point Clamped Converter

Authors: S. Masoud Barakati, Mohsen Rahmani Haredasht

Abstract:

Recently, the use of T-type nested neutral point clamped (T-NNPC) converter has increased in medium voltage applications. However, the T-NNPC converter architecture's reliability and continuous operation are at risk by including semiconductor switches. Semiconductor switches are a prone option for open-circuit faults. As a result, fault-tolerant converters are required to improve the system's reliability and continuous functioning. This study's primary goal is to provide a fault-tolerant T-NNPC converter configuration. In the proposed design utilizing the cold reservation approach, a redundant phase is considered, which replaces the faulty phase once the fault is diagnosed in each phase. The suggested fault-tolerant configuration can be easily implemented in practical applications due to the use of a simple PWM control mechanism. The performance evaluation of the proposed configuration under different scenarios in the MATLAB-Simulink environment proves its efficiency.

Keywords: T-type nested neutral point clamped converter, reliability, continuous operation, open-circuit faults, fault-tolerant converters

Procedia PDF Downloads 127