Search results for: applications of aluminum metal matrix composites
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10760

Search results for: applications of aluminum metal matrix composites

2600 The Inverse Problem in Energy Beam Processes Using Discrete Adjoint Optimization

Authors: Aitor Bilbao, Dragos Axinte, John Billingham

Abstract:

The inverse problem in Energy Beam (EB) Processes consists of defining the control parameters, in particular the 2D beam path (position and orientation of the beam as a function of time), to arrive at a prescribed solution (freeform surface). This inverse problem is well understood for conventional machining, because the cutting tool geometry is well defined and the material removal is a time independent process. In contrast, EB machining is achieved through the local interaction of a beam of particular characteristics (e.g. energy distribution), which leads to a surface-dependent removal rate. Furthermore, EB machining is a time-dependent process in which not only the beam varies with the dwell time, but any acceleration/deceleration of the machine/beam delivery system, when performing raster paths will influence the actual geometry of the surface to be generated. Two different EB processes, Abrasive Water Machining (AWJM) and Pulsed Laser Ablation (PLA), are studied. Even though they are considered as independent different technologies, both can be described as time-dependent processes. AWJM can be considered as a continuous process and the etched material depends on the feed speed of the jet at each instant during the process. On the other hand, PLA processes are usually defined as discrete systems and the total removed material is calculated by the summation of the different pulses shot during the process. The overlapping of these shots depends on the feed speed and the frequency between two consecutive shots. However, if the feed speed is sufficiently slow compared with the frequency, then consecutive shots are close enough and the behaviour can be similar to a continuous process. Using this approximation a generic continuous model can be described for both processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at each single pixel on the surface using a linear model of the process. However, this approach does not always lead to the good solution since linear models are only valid when shallow surfaces are etched. The solution of the inverse problem is improved by using a discrete adjoint optimization algorithm. Moreover, the calculation of the Jacobian matrix consumes less computation time than finite difference approaches. The influence of the dynamics of the machine on the actual movement of the jet is also important and should be taken into account. When the parameters of the controller are not known or cannot be changed, a simple approximation is used for the choice of the slope of a step profile. Several experimental tests are performed for both technologies to show the usefulness of this approach.

Keywords: abrasive waterjet machining, energy beam processes, inverse problem, pulsed laser ablation

Procedia PDF Downloads 269
2599 The Beam Expansion Method, A Simplified and Efficient Approach of Field Propagation and Resonators Modes Study

Authors: Zaia Derrar Kaddour

Abstract:

The study of a beam throughout an optical path is generally achieved by means of diffraction integral. Unfortunately, in some problems, this tool turns out to be not very friendly and hard to implement. Instead, the beam expansion method for computing field profiles appears to be an interesting alternative. The beam expansion method consists of expanding the field pattern as a series expansion in a set of orthogonal functions. Propagating each individual component through a circuit and adding up the derived elements leads easily to the result. The problem is then reduced to finding how the expansion coefficients change in a circuit. The beam expansion method requires a systematic study of each type of optical element that can be met in the considered optical path. In this work, we analyze the following fundamental elements: first order optical systems, hard apertures and waveguides. We show that the former element type is completely defined thanks to the Gouy phase shift expression we provide and the latters require a suitable mode conversion. For endorsing the usefulness and relevance of the beam expansion approach, we show here some of its applications such as the treatment of the thermal lens effect and the study of unstable resonators.

Keywords: gouy phase shift, modes, optical resonators, unstable resonators

Procedia PDF Downloads 49
2598 Aerodynamics of Spherical Combat Platform Levitation

Authors: Aelina Franz

Abstract:

In recent years, the scientific community has witnessed a paradigm shift in the exploration of unconventional levitation methods, particularly in the domain of spherical combat platforms. This paper explores aerodynamics and levitational dynamics inherent in these spheres by examining interactions at the quantum level. Our research unravels the nuanced aerodynamic phenomena governing the levitation of spherical combat platforms. Through an analysis of the quantum fluid dynamics surrounding these spheres, we reveal the crucial interactions between air resistance, surface irregularities, and the quantum fluctuations that influence their levitational behavior. Our findings challenge conventional understanding, providing a perspective on the aerodynamic forces at play during the levitation of spherical combat platforms. Furthermore, we propose design modifications and control strategies informed by both classical aerodynamics and quantum information processing principles. These advancements not only enhance the stability and maneuverability of the combat platforms but also open new avenues for exploration in the interdisciplinary realm of engineering and quantum information sciences. This paper aims to contribute to levitation technologies and their applications in the field of spherical combat platforms. We anticipate that our work will stimulate further research to create a deeper understanding of aerodynamics and quantum phenomena in unconventional levitation systems.

Keywords: spherical combat platforms, levitation technologies, aerodynamics, maneuverable platforms

Procedia PDF Downloads 40
2597 Leakage Current Analysis of FinFET Based 7T SRAM at 32nm Technology

Authors: Chhavi Saxena

Abstract:

FinFETs can be a replacement for bulk-CMOS transistors in many different designs. Its low leakage/standby power property makes FinFETs a desirable option for memory sub-systems. Memory modules are widely used in most digital and computer systems. Leakage power is very important in memory cells since most memory applications access only one or very few memory rows at a given time. As technology scales down, the importance of leakage current and power analysis for memory design is increasing. In this paper, we discover an option for low power interconnect synthesis at the 32nm node and beyond, using Fin-type Field-Effect Transistors (FinFETs) which are a promising substitute for bulk CMOS at the considered gate lengths. We consider a mechanism for improving FinFETs efficiency, called variable supply voltage schemes. In this paper, we’ve illustrated the design and implementation of FinFET based 4x4 SRAM cell array by means of one bit 7T SRAM. FinFET based 7T SRAM has been designed and analysis have been carried out for leakage current, dynamic power and delay. For the validation of our design approach, the output of FinFET SRAM array have been compared with standard CMOS SRAM and significant improvements are obtained in proposed model.

Keywords: FinFET, 7T SRAM cell, leakage current, delay

Procedia PDF Downloads 442
2596 Preparation and Application of Biocompatible Nanobioactive Glass as Therapeutic Agents for Bone Tissue Engineering

Authors: P. Shrivastava, S. Vijayalakshmi, A. K. Singh, S. Dalai, R. Teotia, P. Sharma, J. Bellare

Abstract:

This paper focuses on the synthesis and application of nanobioactive glass for bone regeneration studies. Nanobioactive glass has been synthesized by sol gel method having a combination of silicon, calcium and phosphorous in the molar ratio of 75:21:4. The prepared particles were analyzed for surface morphology by FEG SEM and FEG TEM. Physiochemical properties were investigated using ICP AES, FTIR spectroscopy and X-ray diffraction (XRD) techniques. To ascertain their use for therapeutic use, biocompatibility evaluation of the particles was done by performing soaking studies in SBF and in vitro cell culture studies on MG63 cell lines. Cell morphology was observed by FE SEM and phase contrast microscopy. Nanobioactive glasses (NBG) thus prepared were of 30-200 nm in size, which makes them suitable for nano-biomedical applications. The spherical shape of the particles imparts high surface to volume ratio, promoting fast growth of hydroxyapatite (HA), which is the mineral component of bone. As evaluated by in vitro cell culture studies the NBG was found to enhance the surface activation which enhances osteoblast adhesion. This is an essential parameter to improve bone tissue integration, thereby making nanobioactive glass therapeutically suitable for correcting bone defects.

Keywords: biocompatibility, bone tissue engineering, hydroxyapatite, nanobioactive glass

Procedia PDF Downloads 448
2595 Evaluation and Preservation of Post-War Concrete Architecture: The Case of Lithuania

Authors: Aušra Černauskienė

Abstract:

The heritage of modern architecture is closely related to the materiality and technology used to implement the buildings. Concrete is one of the most ubiquitous post-war building materials with enormous aesthetic and structural potential that architects have creatively used for everyday buildings and exceptional architectural objects that have survived. Concrete's material, structural, and architectural development over the post-war years has produced a remarkably rich and diverse typology of buildings, for implementation of which unique handicraft skills and industrialized novelties were used. Nonetheless, in the opinion of the public, concrete architecture is often treated as ugly and obsolete, and in Lithuania, it also has negative associations with the scarcity of the Soviet era. Moreover, aesthetic non-appreciation is not the only challenge that concrete architecture meets. It also no longer meets the needs of contemporary requirements: buildings are of poor energy class, have little potential for transformation, and have an obsolete surrounding environment. Thus, as a young heritage, concrete architecture is not yet sufficiently appreciated by society and heritage specialists, as it takes a short time to rethink what they mean from a historical perspective. However, concrete architecture is considered ambiguous but has its character and specificity that needs to be carefully studied in terms of cultural heritage to avoid the risk of poor renovation or even demolition, which has increasingly risen in recent decades in Lithuania. For example, several valuable pieces of post-war concrete architecture, such as the Banga restaurant and the Summer Stage in Palanga, were demolished without understanding their cultural value. Many unique concrete structures and raw concrete surfaces were painted or plastered, paying little attention to the appearance of authentic material. Furthermore, it raises a discussion on how to preserve buildings of different typologies: for example, innovative public buildings in their aesthetic, spatial solutions, and mass housing areas built using precast concrete panels. It is evident that the most traditional preservation strategy, conservation, is not the only option for preserving post-war concrete architecture, and more options should be considered. The first step in choosing the right strategy in each case is an appropriate assessment of the cultural significance. For this reason, an evaluation matrix for post-war concrete architecture is proposed. In one direction, an analysis of different typological groups of buildings is suggested, with the designation of ownership rights; in the other direction – the analysis of traditional value aspects such as aesthetic, technological, and relevant for modern architecture such as social, economic, and sustainability factors. By examining these parameters together, three relevant scenarios for preserving post-war concrete architecture were distinguished: conservation, renovation, and reuse, and they are revealed using examples of concrete architecture in Lithuania.

Keywords: modern heritage, value aspects, typology, conservation, upgrade, reuse

Procedia PDF Downloads 126
2594 Impact of Firm Location and Organizational Structure on Receipt and Effectiveness of Social Assistance

Authors: Nalanda Matia, Julia Zhao, Amber Jaycocks, Divya Sinha

Abstract:

Social assistance programs for businesses are intended to improve their survival and growth in the face of catastrophic events like the COVID-19 pandemic. However, that goal remains unfulfilled when the mostwantingbusinesses fail to participate in such programs. Reasons for non-participation can include lack of information, inability to cope with applications and program compliance, as well as some programs’ non-entitlement status. Some of these factors may be associated with the organizational and locational characteristics of these businesses. This research investigates these organizational and locational factorsthat determine receipt and effectiveness of social assistance among the firms that receive it. of A sample of firms from the universe of 3 rounds of Small Business Administration backed Paycheck Protection Program recipient and similarly profiled non recipient businesses are used to analyze this question. Initial results show firm organizational factors like size and spatial factors like broadband coverage at firm location impact application for and subsequent receipt of assistance for digitally administered programs. Further, Line of business and wage structure of recipients’ impact effectiveness of the assistance dollars.

Keywords: public economics, economics of social assistance, firm organizational structure, survival analysis

Procedia PDF Downloads 156
2593 Inertial Spreading of Drop on Porous Surfaces

Authors: Shilpa Sahoo, Michel Louge, Anthony Reeves, Olivier Desjardins, Susan Daniel, Sadik Omowunmi

Abstract:

The microgravity on the International Space Station (ISS) was exploited to study the imbibition of water into a network of hydrophilic cylindrical capillaries on time and length scales long enough to observe details hitherto inaccessible under Earth gravity. When a drop touches a porous medium, it spreads as if laid on a composite surface. The surface first behaves as a hydrophobic material, as liquid must penetrate pores filled with air. When contact is established, some of the liquid is drawn into pores by a capillarity that is resisted by viscous forces growing with length of the imbibed region. This process always begins with an inertial regime that is complicated by possible contact pinning. To study imbibition on Earth, time and distance must be shrunk to mitigate gravity-induced distortion. These small scales make it impossible to observe the inertial and pinning processes in detail. Instead, in the International Space Station (ISS), astronaut Luca Parmitano slowly extruded water spheres until they touched any of nine capillary plates. The 12mm diameter droplets were large enough for high-speed GX1050C video cameras on top and side to visualize details near individual capillaries, and long enough to observe dynamics of the entire imbibition process. To investigate the role of contact pinning, a text matrix was produced which consisted nine kinds of porous capillary plates made of gold-coated brass treated with Self-Assembled Monolayers (SAM) that fixed advancing and receding contact angles to known values. In the ISS, long-term microgravity allowed unambiguous observations of the role of contact line pinning during the inertial phase of imbibition. The high-speed videos of spreading and imbibition on the porous plates were analyzed using computer vision software to calculate the radius of the droplet contact patch with the plate and height of the droplet vs time. These observations are compared with numerical simulations and with data that we obtained at the ESA ZARM free-fall tower in Bremen with a unique mechanism producing relatively large water spheres and similarity in the results were observed. The data obtained from the ISS can be used as a benchmark for further numerical simulations in the field.

Keywords: droplet imbibition, hydrophilic surface, inertial phase, porous medium

Procedia PDF Downloads 121
2592 Extraction and Electrochemical Behaviors of Au(III) using Phosphonium-Based Ionic Liquids

Authors: Kyohei Yoshino, Masahiko Matsumiya, Yuji Sasaki

Abstract:

Recently, studies have been conducted on Au(III) extraction using ionic liquids (ILs) as extractants or diluents. ILs such as piperidinium, pyrrolidinium, and pyridinium have been studied as extractants for noble metal extractions. Furthermore, the polarity, hydrophobicity, and solvent miscibility of these ILs can be adjusted depending on their intended use. Therefore, the unique properties of ILs make them functional extraction media. The extraction mechanism of Au(III) using phosphonium-based ILs and relevant thermodynamic studies are yet to be reported. In the present work, we focused on the mechanism of Au(III) extraction and related thermodynamic analyses using phosphonium-based ILs. Triethyl-n-pentyl, triethyl-n-octyl, and triethyl-n-dodecyl phosphonium bis(trifluoromethyl-sulfonyl)amide, [P₂₂₂ₓ][NTf₂], (X = 5, 8, and 12) were investigated for Au(III) extraction. The IL–Au complex was identified as [P₂₂₂₅][AuCl₄] using UV–Vis–NIR and Raman spectroscopic analyses. The extraction behavior of Au(III) was investigated with a change in the [P₂₂₂ₓ][NTf₂]IL concentration from 1.0 × 10–4 to 1.0 × 10–1 mol dm−3. The results indicate that Au(III) can be easily extracted by the anion-exchange reaction in the [P₂₂₂ₓ][NTf₂]IL. The slope range 0.96–1.01 on the plot of log D vs log[P₂₂₂ₓ][NTf2]IL indicates the association of one mole of IL with one mole of [AuCl4−] during extraction. Consequently, [P₂₂₂ₓ][NTf₂] is an anion-exchange extractant for the extraction of Au(III) in the form of anions from chloride media. Thus, this type of phosphonium-based IL proceeds via an anion exchange reaction with Au(III). In order to evaluate the thermodynamic parameters on the Au(III) extraction, the equilibrium constant (logKₑₓ’) was determined from the temperature dependence. The plot of the natural logarithm of Kₑₓ’ vs the inverse of the absolute temperature (T–1) yields a slope proportional to the enthalpy (ΔH). By plotting T–1 vs lnKₑₓ’, a line with a slope range 1.129–1.421 was obtained. Thus, the result indicated that the extraction reaction of Au(III) using the [P₂₂₂ₓ][NTf₂]IL (X=5, 8, and 12) was exothermic (ΔH=-9.39〜-11.81 kJ mol-1). The negative value of TΔS (-4.20〜-5.27 kJ mol-1) indicates that microscopic randomness is preferred in the [P₂₂₂₅][NTf₂]IL extraction system over [P₂₂₂₁₂][NTf₂]IL. The total negative alternation in Gibbs energy (-5.19〜-6.55 kJ mol-1) for the extraction reaction would thus be relatively influenced by the TΔS value on the number of carbon atoms in the alkyl side length, even if the efficiency of ΔH is significantly influenced by the total negative alternations in Gibbs energy. Electrochemical analysis revealed that extracted Au(III) can be reduced in two steps: (i) Au(III)/Au(I) and (ii) Au(I)/Au(0). The diffusion coefficients of the extracted Au(III) species in [P₂₂₂ₓ][NTf₂] (X = 5, 8, and 12) were evaluated from 323 to 373 K using semi-integral and semi-differential analyses. Because of the viscosity of the IL medium, the diffusion coefficient of the extracted Au(III) increases with increasing alkyl chain length. The 4f7/2 spectrum based on X-ray photoelectron spectroscopy revealed that the Au electrodeposits obtained after 10 cycles of continuous extraction and electrodeposition were in the metallic state.

Keywords: au(III), electrodeposition, phosphonium-based ionic liquids, solvent extraction

Procedia PDF Downloads 84
2591 Association between G2677T/A MDR1 Polymorphism with the Clinical Response to Disease Modifying Anti-Rheumatic Drugs in Rheumatoid Arthritis

Authors: Alan Ruiz-Padilla, Brando Villalobos-Villalobos, Yeniley Ruiz-Noa, Claudia Mendoza-Macías, Claudia Palafox-Sánchez, Miguel Marín-Rosales, Álvaro Cruz, Rubén Rangel-Salazar

Abstract:

Introduction: In patients with rheumatoid arthritis, resistance or poor response to disease modifying antirheumatic drugs (DMARD) may be a reflection of the increase in g-P. The expression of g-P may be important in mediating the effluence of DMARD from the cell. In addition, P-glycoprotein is involved in the transport of cytokines, IL-1, IL-2 and IL-4, from normal lymphocytes activated to the surrounding extracellular matrix, thus influencing the activity of RA. The involvement of P-glycoprotein in the transmembrane transport of cytokines can serve as a modulator of the efficacy of DMARD. It was shown that a number of lymphocytes with glycoprotein P activity is increased in patients with RA; therefore, P-glycoprotein expression could be related to the activity of RA and could be a predictor of poor response to therapy. Objective: To evaluate in RA patients, if the G2677T/A MDR1 polymorphisms is associated with differences in the rate of therapeutic response to disease-modifying antirheumatic agents in patients with rheumatoid arthritis. Material and Methods: A prospective cohort study was conducted. Fifty seven patients with RA were included. They had an active disease according to DAS-28 (score >3.2). We excluded patients receiving biological agents. All the patients were followed during 6 months in order to identify the rate of therapeutic response according to the American College of Rheumatology (ACR) criteria. At the baseline peripheral blood samples were taken in order to identify the G2677T/A MDR1 polymorphisms using PCR- Specific allele. The fragment was identified by electrophoresis in polyacrylamide gels stained with ethidium bromide. For statistical analysis, the genotypic and allelic frequencies of MDR1 gene polymorphism between responders and non-responders were determined. Chi-square tests as well as, relative risks with 95% confidence intervals (95%CI) were computed to identify differences in the risk for achieving therapeutic response. Results: RA patients had a mean age of 47.33 ± 12.52 years, 87.7% were women with a mean for DAS-28 score of 6.45 ± 1.12. At the 6 months, the rate of therapeutic response was 68.7 %. The observed genotype frequencies were: for G/G 40%, T/T 32%, A/A 19%, G/T 7% and for A/A genotype 2%. Patients with G allele developed at 6 months of treatment, higher rate for therapeutic response assessed by ACR20 compared to patients with others alleles (p=0.039). Conclusions: Patients with G allele of the - G2677T/A MDR1 polymorphisms had a higher rate of therapeutic response at 6 months with DMARD. These preliminary data support the requirement for a deep evaluation of these and other genotypes as factors that may influence the therapeutic response in RA.

Keywords: pharmacogenetics, MDR1, P-glycoprotein, therapeutic response, rheumatoid arthritis

Procedia PDF Downloads 193
2590 The 5G Communication Technology Radiation Impact on Human Health and Airports Safety

Authors: Ashraf Aly

Abstract:

The aim of this study is to examine the impact of 5G communication technology radiation on human health and airport safety. The term 5G refers to the fifth generation of wireless mobile technology. The 5G wireless technology will increase the number of high-frequency-powered base stations and other devices and browsing and download speeds, as well as improve the network connectivity and play a big part in improving the performance of integrated applications, such as self-driving cars, medical devices, and robotics. 4G was the latest embedded version of mobile networking technology called 4G, and 5G is the new version of wireless technology. 5G networks have more features than 4G networks, such as lower latency, higher capacity, and increased bandwidth compared to 4G. 5G network improvements over 4G will have big impacts on how people live, business, and work all over the world. But neither 4G nor 5G have been tested for safety and show harmful effects from this wireless radiation. This paper presents biological factors on the effects of 5G radiation on human health. 5G services use C-band radio frequencies; these frequencies are close to those used by radio altimeters, which represent important equipment for airport and aircraft safety. The aviation industry, telecommunications companies, and their regulators have been discussing and weighing these interference concerns for years.

Keywords: wireless communication, radiofrequency, Electromagnetic field, environmental issues

Procedia PDF Downloads 53
2589 pH and Thermo-Sensitive Nanogels for Anti-Cancer Therapy

Authors: V. Naga Sravan Kumar Varma, H. G. Shivakumar

Abstract:

The aim of the study was to develop dual sensitive poly (N-isopropylacrylamide-co-acrylic acid) (PNA) nanogels(NGs) and studying its applications for Anti-Cancer therapy. NGs were fabricated by free radical polymerization using different amount of N-isopropylacrylamide and acrylic acid. A study for polymer composition over the effect on LCST in different pH was evaluated by measuring the absorbance at 500nm using UV spectrophotometer. Further selected NG’s were evaluated for change in hydrodynamic diameters in response to pH and temperature. NGs which could sharply respond to low pH value of cancer cells at body temperature were loaded with Fluorouracil (5-FU) using equilibrium swelling method and studied for drug release behaviour in different pH. A significant influence of NGs polymer composition over pH dependent LCST was observed. NGs which were spherical with an average particle size of 268nm at room temperature, shrinked forming an irregular shape when heated above to their respective LCST. 5FU loaded NGs did not intervene any difference in pH depended LCST behaviour of NGs. The in vitro drug release of NGs exhibited a pH and thermo-dependent control release. The cytoxicity study of blank carrier to MCF7 cell line showed no cytotoxicity. The results indicated that PNA NGs could be used as a potential drug carrier for anti-cancer therapy.

Keywords: pH and thermo-sensitive, nanogels, P(NIPAM-co-AAc), anti-cancer, 5-FU

Procedia PDF Downloads 341
2588 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky

Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio

Abstract:

This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.

Keywords: contour orientation histogram, meteors, night sky, RSC neural classifier, stars

Procedia PDF Downloads 127
2587 Calculating Non-Unique Sliding Modes for Switched Dynamical Systems

Authors: Eugene Stepanov, Arkadi Ponossov

Abstract:

Ordinary differential equations with switching nonlinearities constitute a very useful tool in many applications. The solutions of such equations can usually be calculated analytically if they cross the discontinuities transversally. Otherwise, one has trajectories that slides along the discontinuity, and the calculations become less straightforward in this case. For instance, one of the problems one faces is non-uniqueness of the sliding modes. In the presentation, it is proposed to apply the theory of hybrid dynamical systems to calculate the solutions that are ‘hidden’ in the discontinuities. Roughly, one equips the underlying switched system with an explicitly designed discrete dynamical system (‘automaton’), which governs the dynamics of the switched system. This construction ‘splits’ the dynamics, which, as it is shown in the presentation, gives uniqueness of the resulting hybrid trajectories and at the same time provides explicit formulae for them. Projecting the hybrid trajectories back onto the original continuous system explains non-uniqueness of its trajectories. The automaton is designed with the help of the attractors of the specially constructed adjoint dynamical system. Several examples are provided in the presentation, which supports the efficiency of the suggested scheme. The method can be of interest in control theory, gene regulatory networks, neural field models and other fields, where switched dynamics is a part of the analysis.

Keywords: hybrid dynamical systems, singular perturbation analysis, sliding modes, switched dynamics

Procedia PDF Downloads 148
2586 Failure Analysis of Laminated Veneer Bamboo Dowel Connections

Authors: Niloufar Khoshbakht, Peggi L. Clouston, Sanjay R. Arwade, Alexander C. Schreyer

Abstract:

Laminated veneer bamboo (LVB) is a structural engineered composite made from glued layers of bamboo. A relatively new building product, LVB is currently employed in similar sizes and applications as dimensional lumber. This study describes the results of a 3D elastic Finite Element model for halfhole specimens when loaded in compression parallel-to-grain per ASTM 5764. The model simulates LVB fracture initiation due to shear stresses in the dowel joint and predicts displacement at failure validated through comparison with experimental results. The material fails at 1mm displacement due to in-plane shear stresses. The paper clarifies the complex interactive state of in-plane shear, tension perpendicular-to-grain, and compression parallel-to-grain stresses that form different distributions in the critical zone beneath the bolt hole for half-hole specimens. These findings are instrumental in understanding key factors and fundamental failure mechanisms that occur in LVB dowel connections to help devise safe standards and further LVB product adoption and design.

Keywords: composite, dowel connection, embedment strength, failure behavior, finite element analysis, Moso bamboo

Procedia PDF Downloads 257
2585 Analysis of Genomics Big Data in Cloud Computing Using Fuzzy Logic

Authors: Mohammad Vahed, Ana Sadeghitohidi, Majid Vahed, Hiroki Takahashi

Abstract:

In the genomics field, the huge amounts of data have produced by the next-generation sequencers (NGS). Data volumes are very rapidly growing, as it is postulated that more than one billion bases will be produced per year in 2020. The growth rate of produced data is much faster than Moore's law in computer technology. This makes it more difficult to deal with genomics data, such as storing data, searching information, and finding the hidden information. It is required to develop the analysis platform for genomics big data. Cloud computing newly developed enables us to deal with big data more efficiently. Hadoop is one of the frameworks distributed computing and relies upon the core of a Big Data as a Service (BDaaS). Although many services have adopted this technology, e.g. amazon, there are a few applications in the biology field. Here, we propose a new algorithm to more efficiently deal with the genomics big data, e.g. sequencing data. Our algorithm consists of two parts: First is that BDaaS is applied for handling the data more efficiently. Second is that the hybrid method of MapReduce and Fuzzy logic is applied for data processing. This step can be parallelized in implementation. Our algorithm has great potential in computational analysis of genomics big data, e.g. de novo genome assembly and sequence similarity search. We will discuss our algorithm and its feasibility.

Keywords: big data, fuzzy logic, MapReduce, Hadoop, cloud computing

Procedia PDF Downloads 286
2584 Nacre Deposition Rate in Japanese and Hybrid Mother Oysters, Pinctada Fucata, and Its Relationship with Their Respective Pearls

Authors: Gunawan Muhammad, Takashi Atsumi, Akira Komaru

Abstract:

Pinctada fucata has been the most important pearl culture species in Japan and known as Japanese Akoya Pearl Oyster. However, during summer 1994, mass mortality devastated pearl culture in most parts of Japan. Therefore, pearl farmers started to import Chinese Pearl Oysters from Hainan Island that came from the same species because they are believed to be more resistant towards high water temperature, despite their lack of ability in producing high-quality pearls. The local farmers were then hybridized Japanese and Chinese pearl oysters and currently known as Hybrid pearl oysters, as an attempt to produce a new oyster's strain which is more resistant towards high temperature but also able to produce higher quality pearls. However, despite both strains were implanted by mantle tissues from the same group of donors, the thickness of pearl nacre produced by both strains was different, even though tablet thickness shows a rather similar pattern. Hence, this leads to a question of whether mother oysters play a major role in both nacre deposition rate and tablet thickness of pearls or not. This study first describes the nacre deposition rate of the shells of Japanese and Hybrid mother oysters towards the water temperature condition in Ago Bay, Mie Prefecture, Japan. Later, a comparative study was conducted among 4 shell positions that had been chosen according to the mantle tissue location and shell growth directions. A correlative study was then taken between shells and pearls nacre deposition rate to know whether mother oyster ability in depositing nacre on their shells is related to that of pearls. All the four shell positions were significantly different in shell nacre growth rate (Kruskal-Wallis, p-value < 0.05), and the third position have faster nacre growth among the other three both in Japanese and Hybrid strains, especially in warm temperature. The ability to deposit nacre between Japanese and Hybrid during warm water conditions (August and September) is also significantly different in almost all positions (Mann Whitney U, p-value < 0.01), Japanese oyster growth faster than Hybrid in all four positions. This leads to a different total growth among the two strains and a higher possibility of thicker nacre thickness in Japanese shell nacre. Tablet thickness is significantly different among all positions of shells (Kruskal-Wallis, p-value < 0.01), the 2nd position deposited rather thinner tablet thickness than the other three, including on the 6th month of culture which is more desirable in producing pearls with good luster. This result gives us new information that pearl growth rate is highly affected by the mother oysters; however, nacre tablet thickness might be the result of the shell matrix expressed by different mantle position from donor oysters.

Keywords: nacre, deposition, biomineralization, pearl aquaculture, pearl oyster, Akoya pearl, pearl

Procedia PDF Downloads 131
2583 Environmentally Sustainable Transparent Wood: A Fully Green Approach from Bleaching to Impregnation for Energy-Efficient Engineered Wood Components

Authors: Francesca Gullo, Paola Palmero, Massimo Messori

Abstract:

Transparent wood is considered a promising structural material for the development of environmentally friendly, energy-efficient engineered components. To obtain transparent wood from natural wood materials two approaches can be used: i) bottom-up and ii) top-down. Through the second method, the color of natural wood samples is lightened through a chemical bleaching process that acts on chromophore groups of lignin, such as the benzene ring, quinonoid, vinyl, phenolics, and carbonyl groups. These chromophoric units form complex conjugate systems responsible for the brown color of wood. There are two strategies to remove color and increase the whiteness of wood: i) lignin removal and ii) lignin bleaching. In the lignin removal strategy, strong chemicals containing chlorine (chlorine, hypochlorite, and chlorine dioxide) and oxidizers (oxygen, ozone, and peroxide) are used to completely destroy and dissolve the lignin. In lignin bleaching methods, a moderate reductive (hydrosulfite) or oxidative (hydrogen peroxide) is commonly used to alter or remove the groups and chromophore systems of lignin, selectively discoloring the lignin while keeping the macrostructure intact. It is, therefore, essential to manipulate nanostructured wood by precisely controlling the nanopores in the cell walls by monitoring both chemical treatments and process conditions, for instance, the treatment time, the concentration of chemical solutions, the pH value, and the temperature. The elimination of wood light scattering is the second step in the fabrication of transparent wood materials, which can be achieved through two-step approaches: i) the polymer impregnation method and ii) the densification method. For the polymer impregnation method, the wood scaffold is treated with polymers having a corresponding refractive index (e.g., PMMA and epoxy resins) under vacuum to obtain the transparent composite material, which can finally be pressed to align the cellulose fibers and reduce interfacial defects in order to have a finished product with high transmittance (>90%) and excellent light-guiding. However, both the solution-based bleaching and the impregnation processes used to produce transparent wood generally consume large amounts of energy and chemicals, including some toxic or pollutant agents, and are difficult to scale up industrially. Here, we report a method to produce optically transparent wood by modifying the lignin structure with a chemical reaction at room temperature using small amounts of hydrogen peroxide in an alkaline environment. This method preserves the lignin, which results only deconjugated and acts as a binder, providing both a strong wood scaffold and suitable porosity for infiltration of biobased polymers while reducing chemical consumption, the toxicity of the reagents used, polluting waste, petroleum by-products, energy and processing time. The resulting transparent wood demonstrates high transmittance and low thermal conductivity. Through the combination of process efficiency and scalability, the obtained materials are promising candidates for application in the field of construction for modern energy-efficient buildings.

Keywords: bleached wood, energy-efficient components, hydrogen peroxide, transparent wood, wood composites

Procedia PDF Downloads 36
2582 Characteristics of GaAs/InGaP and AlGaAs/GaAs/InAlGaP Npn Heterostructural Optoelectronic Switches

Authors: Der-Feng Guo

Abstract:

Optoelectronic switches have attracted a considerable attention in the semiconductor research field due to their potential applications in optical computing systems and optoelectronic integrated circuits (OEICs). With high gains and high-speed operations, npn heterostructures can be used to produce promising optoelectronic switches. It is known that the bulk barrier and heterostructure-induced potential spike act important roles in the characteristics of the npn heterostructures. To investigate the effects of bulk barrier and potential spike heights on the optoelectronic switching of the npn heterostructures, GaAs/InGaP and AlGaAs/GaAs/InAlGaP npn heterostructural optoelectronic switches (HSOSs) have been fabricated in this work. It is seen that the illumination decreases the switching voltage Vs and increases the switching current Is, and thus the OFF state is under dark and ON state under illumination in the optical switching of the GaAs/InGaP HSOS characteristics. But in the AlGaAs/GaAs/InAlGaP HSOS characteristics, the Vs and Is present contrary trends, and the OFF state is under illumination and ON state under dark. The studied HSOSs show quite different switching variations with incident light, which are mainly attributed to the bulk barrier and potential spike heights affected by photogenerated carriers.

Keywords: bulk barrier, heterostructure, optoelectronic switch, potential spike

Procedia PDF Downloads 228
2581 Bioprotective Role of Soil Borne Bacillus Strain against Selected Fungal Pathogens of Agriculture Relevance

Authors: Asif Jamal, Asad Ali, Muhammad Ishtiaq Ali

Abstract:

The agriculture productivity losses due to microbial pathogens have been a serious issue in Pakistan and rest of the world. Present work was designed to isolate soil borne microorganisms having the antagonistic ability against notorious phytopathogens. From the initial collection of 23 bacterial isolates, two potent strains of Bacillus were screened on the basis of their comparative efficacy against devastating fungal pathogens. The strains AK-1 and AK-5 showed excellent inhibitory indexes against the majority of tested fungal strains. It was noted that both strains of Bacillus showed significant biocontrolling activity against Aspergillus flavus, Fusarium moniliforme, Colletotricum falcatum, Botrytis cinerea, Aspergillus niger, Fusarium oxysporum, Phythopthora capsici and Rhizopus oryzae. The strain AK-1 was efficient to suppress Aspergillus species and Rhizopus oryzae while AK-5 expressed significant antagonistic activity against Fusarium, Botrytis, and Colletotricum species. On the basis of in vitro assay, it can be postulated that the Bacillus strains AK-1 and AK-5 can be used as a bio-protective agent against various plant diseases. In addition, their applications as natural pesticides could be very helpful to prevent the adverse effects of chemical pesticides.

Keywords: biological control, Bacillus spp, fungal pathogens, agriculture

Procedia PDF Downloads 257
2580 Resilient Modulus and Deformation Responses of Waste Glass in Flexible Pavement System

Authors: M. Al-Saedi, A. Chegenizadeh, H. Nikraz

Abstract:

Experimental investigations are conducted to assess a layered structure of glass (G) - rock (R) blends under the impact of repeated loading. Laboratory tests included sieve analyses, modified compaction test and repeated load triaxial test (RLTT) is conducted on different structures of stratified GR samples to reach the objectives of this study. Waste materials are such essential components in the climate system, and also commonly used in minimising the need for natural materials in many countries. Glass is one of the most widely used groups of waste materials which have been extensively using in road applications. Full range particle size and colours of glass are collected and mixed at different ratios with natural rock material trying to use the blends in pavement layers. Whole subsurface specimen sequentially consists of a single layer of R and a layer of G-R blend. 12G/88R and 45G/55R mix ratios are employed in this research, the thickness of G-R layer was changed, and the results were compared between the pure rock and the layered specimens. The relations between resilient module (Mr) and permanent deformation with sequence number are presented. During the earlier stages of RLTT, the results indicated that the 45G/55R specimen shows higher moduli than R specimen.

Keywords: Rock base course, Layered Structure, Glass, Resilient Modulus

Procedia PDF Downloads 116
2579 Investigation of Dry Ice Mixed Novel Hybrid Lubri-Coolant in Sustainable Machining of Ti-6AL-4V Alloy: A Comparison of Experimental and Modelling

Authors: Muhammad Jamil, Ning He, Aqib Mashood Khan, Munish Kumar Gupta

Abstract:

Ti-6Al-4V has numerous applications in the medical, automobile, and aerospace industries due to corrosion resistivity, structural stability, and chemical inertness to most fluids at room temperature. These peculiar characteristics are beneficial for their application and present formidable challenges during machining. Machining of Ti-6Al-4V produces an elevated cutting temperature above 1000oC at dry conditions. This accelerates tool wear and reduces product quality. Therefore, there is always a need to employ sustainable/effective coolant/lubricant when machining such alloy. In this study, Finite Element Modeling (FEM) and experimental analysis when cutting Ti-6Al-4V under a distinctly developed dry ice mixed hybrid lubri-coolant are presented. This study aims to model the milling process of Ti-6Al-4V under a proposed novel hybrid lubri-coolant using different cutting speeds and feed per tooth DEFORM® software package was used to conduct the FEM and the numerical model was experimentally validated. A comparison of experimental and simulation results showed a maximum error of no more than 6% for all experimental conditions. In a nutshell, it can be said that the proposed model is effective in predicting the machining temperature precisely.

Keywords: friction coefficient, heat transfer, finite element modeling (FEM), milling Ti-6Al-4V

Procedia PDF Downloads 38
2578 Ionic Polymer Actuators with Fast Response and High Power Density Based on Sulfonated Phthalocyanine/Sulfonated Polysulfone Composite Membrane

Authors: Taehoon Kwon, Hyeongrae Cho, Dirk Henkensmeier, Youngjong Kang, Chong Min Koo

Abstract:

Ionic polymer actuators have been of interest in the bio-inspired artificial muscle devices. However, the relatively slow response and low power density were the obstacles for practical applications. In this study, ionic polymer actuators are fabricated with ionic polymer composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) and copper(II) phthalocyanine tetrasulfonic acid (CuPCSA). CuPCSA is an organic filler with very high ion exchange capacity (IEC, 4.5 mmol H+/g) that can be homogeneously dispersed on the molecular scale into the SPAES membrane. SPAES/CuPCSA actuators show larger ionic conductivity, mechanical properties, bending deformation, exceptional faster response to electrical stimuli, and larger mechanical power density (3028 W m–3) than Nafion actuators. This outstanding actuation performance of SPAES/CuPCSA composite membrane actuators makes them attractive for next generation transducers with high power density, which are currently developed biomimetic devices such as endoscopic surgery.

Keywords: actuation performance, composite membranes, ionic polymer actuators, organic filler

Procedia PDF Downloads 264
2577 Evaluation of European Surveys in the Area of Health and Safety at Work and Identification of New Risks in the Labor Environment

Authors: Alena Dadova, Katarina Holla, Anna Cidlinova, Linda Makovicka Osvaldova, Jiri Vala, Samuel Kockar

Abstract:

Occupational health and safety (ASH) is an area in which procedures and applications are constantly evolving and changing through legislation and new directives and guidelines. In this way, the relevant organizations strive to ensure continuous progress and the advantage of up-to-date information to ensure safety and prevent occupational accidents. Three ESENER surveys have been carried out in the European Union, led by the Agency for Safety and Health at Work (EU-OSHA). On the basis of surveys, it was determined how European workplaces manage risks and how they manage the field of safety and health protection at work. Thousands of companies and organizations in the European Union were involved in the surveys. Organizations and businesses were presented with a questionnaire that focused on the following topics: the impact of general risks on the field of OSH and the possibility of their management, psychosocial risks and other factors such as stress, harassment and bullying, and employee participation in OSH procedures. The article is dedicated to the fundamental conclusions from these surveys and their subsequent connection with the strategic intent of the Strategic Framework of European Union for the years 2021 - 2027. In the conclusion, emerging risks are identified and EU will soon have to deal with them.

Keywords: ESENER, emerging risks, strategic framework in OSH, EU

Procedia PDF Downloads 100
2576 Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System

Authors: Shane D. Inder, Mehrdad Khamooshi

Abstract:

Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored for use in the discharge phase. It will also describe a thermodynamic model, developed in EES (Engineering Equation Solver) to evaluate the performance and critical parameters of the discharge phase of the proposed system. Three configurations are explained including: single turbine without preheater, two turbines with preheaters, and three turbines with preheaters. It is shown that the micro-scale A-CAES is highly dependent upon key parameters including; regulator pressure, air pressure and volume, thermal energy storage temperature and flow rate and the number of turbines. It was found that a micro-scale AA-CAES, when optimized with an appropriate configuration, could deliver energy input to output efficiency of up to 70%.

Keywords: CAES, adiabatic compressed air energy storage, expansion phase, micro generation, thermodynamic

Procedia PDF Downloads 300
2575 Automated Testing of Workshop Robot Behavior

Authors: Arne Hitzmann, Philipp Wentscher, Alexander Gabel, Reinhard Gerndt

Abstract:

Autonomous mobile robots can be found in a wide field of applications. Their types range from household robots over workshop robots to autonomous cars and many more. All of them undergo a number of testing steps during development, production and maintenance. This paper describes an approach to improve testing of robot behavior. It was inspired by the RoboCup @work competition that itself reflects a robotics benchmark for industrial robotics. There, scaled down versions of mobile industrial robots have to navigate through a workshop-like environment or operation area and have to perform tasks of manipulating and transporting work pieces. This paper will introduce an approach of automated vision-based testing of the behavior of the so called youBot robot, which is the most widely used robot platform in the RoboCup @work competition. The proposed system allows automated testing of multiple tries of the robot to perform a specific missions and it allows for the flexibility of the robot, e.g. selecting different paths between two tasks within a mission. The approach is based on a multi-camera setup using, off the shelf cameras and optical markers. It has been applied for test-driven development (TDD) and maintenance-like verification of the robot behavior and performance.

Keywords: supervisory control, testing, markers, mono vision, automation

Procedia PDF Downloads 364
2574 Development of Colorimetric Based Microfluidic Platform for Quantification of Fluid Contaminants

Authors: Sangeeta Palekar, Mahima Rana, Jayu Kalambe

Abstract:

In this paper, a microfluidic-based platform for the quantification of contaminants in the water is proposed. The proposed system uses microfluidic channels with an embedded environment for contaminants detection in water. Microfluidics-based platforms present an evident stage of innovation for fluid analysis, with different applications advancing minimal efforts and simplicity of fabrication. Polydimethylsiloxane (PDMS)-based microfluidics channel is fabricated using a soft lithography technique. Vertical and horizontal connections for fluid dispensing with the microfluidic channel are explored. The principle of colorimetry, which incorporates the use of Griess reagent for the detection of nitrite, has been adopted. Nitrite has high water solubility and water retention, due to which it has a greater potential to stay in groundwater, endangering aquatic life along with human health, hence taken as a case study in this work. The developed platform also compares the detection methodology, containing photodetectors for measuring absorbance and image sensors for measuring color change for quantification of contaminants like nitrite in water. The utilization of image processing techniques offers the advantage of operational flexibility, as the same system can be used to identify other contaminants present in water by introducing minor software changes.

Keywords: colorimetric, fluid contaminants, nitrite detection, microfluidics

Procedia PDF Downloads 186
2573 Role of Geomatics in Architectural and Cultural Conservation

Authors: Shweta Lall

Abstract:

The intent of this paper is to demonstrate the role of computerized auxiliary science in advancing the desired and necessary alliance of historians, surveyors, topographers, and analysts of architectural conservation and management. The digital era practice of recording architectural and cultural heritage in view of its preservation, dissemination, and planning developments are discussed in this paper. Geomatics include practices like remote sensing, photogrammetry, surveying, Geographic Information System (GIS), laser scanning technology, etc. These all resources help in architectural and conservation applications which will be identified through various case studies analysed in this paper. The standardised outcomes and the methodologies using relevant case studies are listed and described. The main component of geomatics methodology adapted in conservation is data acquisition, processing, and presentation. Geomatics is used in a wide range of activities involved in architectural and cultural heritage – damage and risk assessment analysis, documentation, 3-D model construction, virtual reconstruction, spatial and structural decision – making analysis and monitoring. This paper will project the summary answers of the capabilities and limitations of the geomatics field in architectural and cultural conservation. Policy-makers, urban planners, architects, and conservationist not only need answers to these questions but also need to practice them in a predictable, transparent, spatially explicit and inexpensive manner.

Keywords: architectural and cultural conservation, geomatics, GIS, remote sensing

Procedia PDF Downloads 134
2572 Production of Ferroboron by SHS-Metallurgy from Iron-Containing Rolled Production Wastes for Alloying of Cast Iron

Authors: G. Zakharov, Z. Aslamazashvili, M. Chikhradze, D. Kvaskhvadze, N. Khidasheli, S. Gvazava

Abstract:

Traditional technologies for processing iron-containing industrial waste, including steel-rolling production, are associated with significant energy costs, the long duration of processes, and the need to use complex and expensive equipment. Waste generated during the industrial process negatively affects the environment, but at the same time, it is a valuable raw material and can be used to produce new marketable products. The study of the effectiveness of self-propagating high-temperature synthesis (SHS) methods, which are characterized by the simplicity of the necessary equipment, the purity of the final product, and the high processing speed, is under the wide scientific and practical interest to solve the set problem. The work presents technological aspects of the production of Ferro boron by the method of SHS - metallurgy from iron-containing wastes of rolled production for alloying of cast iron and results of the effect of alloying element on the degree of boron assimilation with liquid cast iron. Features of Fe-B system combustion have been investigated, and the main parameters to control the phase composition of synthesis products have been experimentally established. Effect of overloads on patterns of cast ligatures formation and mechanisms structure formation of SHS products was studied. It has been shown that an increase in the content of hematite Fe₂O₃ in iron-containing waste leads to an increase in the content of phase FeB and, accordingly, the amount of boron in the ligature. Boron content in ligature is within 3-14%, and the phase composition of obtained ligatures consists of Fe₂B and FeB phases. Depending on the initial composition of the wastes, the yield of the end product reaches 91 - 94%, and the extraction of boron is 70 - 88%. Combustion processes of high exothermic mixtures allow to obtain a wide range of boron-containing ligatures from industrial wastes. In view of the relatively low melting point of the obtained SHS-ligature, the positive dynamics of boron absorption by liquid iron is established. According to the obtained data, the degree of absorption of the ligature by alloying gray cast iron at 1450°C is 80-85%. When combined with the treatment of liquid cast iron with magnesium, followed by alloying with the developed ligature, boron losses are reduced by 5-7%. At that, uniform distribution of boron micro-additives in the volume of treated liquid metal is provided. Acknowledgment: This work was supported by Shota Rustaveli Georgian National Science Foundation of Georgia (SRGNSFG) under the GENIE project (grant number № CARYS-19-802).

Keywords: self-propagating high-temperature synthesis, cast iron, industrial waste, ductile iron, structure formation

Procedia PDF Downloads 113
2571 Enhancing Academic Writing Through Artificial Intelligence: Opportunities and Challenges

Authors: Abubakar Abdulkareem, Nasir Haruna Soba

Abstract:

Artificial intelligence (AI) is developing at a rapid pace, revolutionizing several industries, including education. This talk looks at how useful AI can be for academic writing, with an emphasis on how it can help researchers be more accurate, productive, and creative. The academic world now relies heavily on AI technologies like grammar checkers, plagiarism detectors, and content generators to help with the writing, editing, and formatting of scholarly papers. This study explores the particular uses of AI in academic writing and assesses how useful and helpful these applications may be for both students and scholars. By means of an extensive examination of extant literature and a sequence of empirical case studies, we scrutinize the merits and demerits of artificial intelligence tools utilized in academic writing. Important discoveries indicate that although AI greatly increases productivity and lowers human error, there are still issues that need to be resolved, including reliance, ethical concerns, and the potential loss of critical thinking abilities. The talk ends with suggestions for incorporating AI tools into academic settings so that they enhance rather than take the place of the intellectual rigor that characterizes scholarly work. This study adds to the continuing conversation about artificial intelligence (AI) in higher education by supporting a methodical strategy that uses technology to enhance human abilities in academic writing.

Keywords: artificial intelligence, academic writing, ai tools, productivity, ethics, higher education

Procedia PDF Downloads 8