Search results for: energetic material detonation reaction
828 From Context to Text and Back Again: Teaching Toni Morrison Overseas
Authors: Helena Maragou
Abstract:
Introducing Toni Morrison’s fiction to a classroom overseas entails a significant pedagogical investment, from monitoring students’ uncertain journey through Morrison’s shifty semantics to filling in the gaps of cultural knowledge and understanding for the students to be able to relate text to context. A rewarding process, as Morrison’s works present a tremendous opportunity for transnational dialogue, an opportunity that hinges upon Toni Morrison’s bringing to the fore the untold and unspeakable lives of racial ‘Others’, but also, crucially, upon her broader critique of Western ideological hegemony. This critique is a fundamental aspect of Toni Morrison’s politics and one that appeals to young readers of Toni Morrison in Greece at a time when the questioning of institutions and ideological traditions is precipitated by regional and global change. It is more or less self-evident that to help a class of international students get aboard a Morrison novel, an instructor should begin by providing them with cultural context. These days, students’ exposure to Hollywood representations of the African American past and present, as well as the use of documentaries, photography, music videos, etc., as supplementary class material, provide a starting point, a workable historical and cultural framework for textual comprehension. The true challenge, however, lies ahead: it is one thing for students to intellectually grasp the historical hardships and traumas of Morrison’s characters and to even engage in aesthetic appreciation of Morrison’s writing; quite another to relate to her works as articulations of experiences akin to their own. The great challenge, then, is in facilitating students’ discovery of the universal Morrison, the author who speaks across cultures while voicing the untold tales of her own people; this process of discovery entails, on a pedagogical level, that students be guided through the works’ historical context, to plunge into the intricacies of Morrison’s discourse, itself an elaborate linguistic booby trap, so as to be finally brought to reconsider their own historical experiences using the lens of Morrison’s fiction. The paper will be based on experience of teaching a Toni Morrison seminar to a class of Greek students at the American College of Greece and will draw from students’ exposure and responses to Toni Morrison’s “Nobel Prize Lecture,” as well as her novels Song of Solomon and Home.Keywords: toni morrison, international classroom, pedagogy, African American literature
Procedia PDF Downloads 83827 Recycling Waste Product for Metal Removal from Water
Authors: Saidur R. Chowdhury, Mamme K. Addai, Ernest K. Yanful
Abstract:
The research was performed to assess the potential of nickel smelter slag, an industrial waste, as an adsorbent in the removal of metals from aqueous solution. An investigation was carried out for Arsenic (As), Copper (Cu), lead (Pb) and Cadmium (Cd) adsorption from aqueous solution. Smelter slag was obtain from Ni ore at the Vale Inco Ni smelter in Sudbury, Ontario, Canada. The batch experimental studies were conducted to evaluate the removal efficiencies of smelter slag. The slag was characterized by surface analytical techniques. The slag contained different iron oxides and iron silicate bearing compounds. In this study, the effect of pH, contact time, particle size, competition by other ions, slag dose and distribution coefficient were evaluated to measure the optimum adsorption conditions of the slag as an adsorbent for As, Cu, Pb and Cd. The results showed 95-99% removal of As, Cu, Pb, and almost 50-60% removal of Cd, while batch experimental studies were conducted at 5-10 mg/L of initial concentration of metals, 10 g/L of slag doses, 10 hours of contact time and 170 rpm of shaking speed and 25oC condition. The maximum removal of Arsenic (As), Copper (Cu), lead (Pb) was achieved at pH 5 while the maximum removal of Cd was found after pH 7. The column experiment was also conducted to evaluate adsorption depth and service time for metal removal. This study also determined adsorption capacity, adsorption rate and mass transfer rate. The maximum adsorption capacity was found to be 3.84 mg/g for As, 4 mg/g for Pb, and 3.86 mg/g for Cu. The adsorption capacity of nickel slag for the four test metals were in decreasing order of Pb > Cu > As > Cd. Modelling of experimental data with Visual MINTEQ revealed that saturation indices of < 0 were recorded in all cases suggesting that the metals at this pH were under- saturated and thus in their aqueous forms. This confirms the absence of precipitation in the removal of these metals at the pHs. The experimental results also showed that Fe and Ni leaching from the slag during the adsorption process was found to be very minimal, ranging from 0.01 to 0.022 mg/L indicating the potential adsorbent in the treatment industry. The study also revealed that waste product (Ni smelter slag) can be used about five times more before disposal in a landfill or as a stabilization material. It also highlighted the recycled slags as a potential reactive adsorbent in the field of remediation engineering. It also explored the benefits of using renewable waste products for the water treatment industry.Keywords: adsorption, industrial waste, recycling, slag, treatment
Procedia PDF Downloads 146826 Reasons for Lack of an Ideal Disinfectant after Dental Treatments
Authors: Ilma Robo, Saimir Heta, Rialda Xhizdari, Kers Kapaj
Abstract:
Background: The ideal disinfectant for surfaces, instruments, air, skin, both in dentistry and in the fields of medicine, does not exist.This is for the sole reason that all the characteristics of the ideal disinfectant cannot be contained in one; these are the characteristics that if one of them is emphasized, it will conflict with the other. A disinfectant must be stable, not be affected by changes in the environmental conditions where it stands, which means that it should not be affected by an increase in temperature or an increase in the humidity of the environment. Both of these elements contradict the other element of the idea of an ideal disinfectant, as they disrupt the solubility ratios of the base substance of the disinfectant versus the diluent. Material and methods: The study aims to extract the constant of each disinfectant/antiseptic used during dental disinfection protocols, accompanied by the side effects of the surface of the skin or mucosa where it is applied in the role of antiseptic. In the end, attempts were made to draw conclusions about the best possible combination for disinfectants after a dental procedure, based on the data extracted from the basic literature required during the development of the pharmacology module, as a module in the formation of a dentist, against data published in the literature. Results: The sensitivity of the disinfectant to changes in the atmospheric conditions of the environment where it is kept is a known fact. The care against this element is always accompanied by the advice on the application of the specific disinfectant, in order to have the desired clinical result. The constants of disinfectants according to the classification based on the data collected and presented are for alcohols 70-120, glycols 0.2, aldehydes 30-200, phenols 15-60, acids 100, povidone iodine halogens 5-75, hypochlorous acid halogens 150, sodium hypochlorite halogens 30-35, oxidants 18-60, metals 0.2-10. The part of halogens should be singled out, where specific results were obtained according to the representatives of this class, since it is these representatives that find scope for clinical application in dentistry. Conclusions: The search for the "ideal", in the conditions where its defining criteria are also established, not only for disinfectants but also for any medication or pharmaceutical product, is an ongoing search, without any definitive results. In this mine of data in the published literature if there is something fixed, calculable, such as the specific constant for disinfectants, the search for the ideal is more concrete. During the disinfection protocols, different disinfectants are applied since the field of action is different, including water, air, aspiration devices, tools, disinfectants used in full accordance with the production indications.Keywords: disinfectant, constant, ideal, side effects
Procedia PDF Downloads 69825 Agronomic Test to Determine the Efficiency of Hydrothermally Treated Alkaline Igneous Rocks and Their Potassium Fertilizing Capacity
Authors: Aaron Herve Mbwe Mbissik, Lotfi Khiari, Otmane Raji, Abdellatif Elghali, Abdelkarim Lajili, Muhammad Ouabid, Martin Jemo, Jean-Louis Bodinier
Abstract:
Potassium (K) is an essential macronutrient for plant growth, helping to regulate several physiological and metabolic processes. Evaporite-related potash salts, mainly sylvite minerals (K chloride or KCl), are the principal source of K for the fertilizer industry. However, due to the high potash-supply risk associated with its considerable price fluctuations and uneven geographic distribution for most agriculture-based developing countries, the development of alternative sources of fertilizer K is imperative to maintain adequate crop yield, reduce yield gaps, and food security. Alkaline Igneous rocks containing significant K-rich silicate minerals such as K feldspar are increasingly seen as the best alternative available. However, these rocks may require to be hydrothermally treatment to enhance the release of potassium. In this study, we evaluate the fertilizing capacity of raw and hydrothermally treated K-bearing silicate rocks from different areas in Morocco. The effectiveness of rock powders was tested in a greenhouse experiment using ryegrass (Lolium multiflorum) by comparing them to a control (no K added) and to a conventional fertilizer (muriate of potash: MOP or KCl). The trial was conducted in a randomized complete block design with three replications, and plants were grown on K-depleted soils for three growing cycles. To achieve our objective, in addition to the analysis of the muriate response curve and the different biomasses, we also examined three necessary coefficients, namely: the K uptake, then apparent K recovery (AKR), and the relative K efficiency (RKE). The results showed that based on the optimum economic rate of MOP (230 kg.K.ha⁻¹) and the optimum yield (44 000 kg.K.ha⁻¹), the efficiency of K silicate rocks was as high as that of MOP. Although the plants took up only half of the K supplied by the powdered rock, the hydrothermal material was found to be satisfactory, with a biomass value reaching the optimum economic limit until the second crop cycle. In comparison, the AKR of the MOP (98.6%) and its RKE in the 1st cycle were higher than our materials: 39% and 38%, respectively. Therefore, the raw and hydrothermal materials mixture could be an appropriate solution for long-term agronomic use based on the obtained results.Keywords: K-uptake, AKR, RKE, K-bearing silicate rock, MOP
Procedia PDF Downloads 89824 An Investigation of the Structural and Microstructural Properties of Zn1-xCoxO Thin Films Applied as Gas Sensors
Authors: Ariadne C. Catto, Luis F. da Silva, Khalifa Aguir, Valmor Roberto Mastelaro
Abstract:
Zinc oxide (ZnO) pure or doped are one of the most promising metal oxide semiconductors for gas sensing applications due to the well-known high surface-to-volume area and surface conductivity. It was shown that ZnO is an excellent gas-sensing material for different gases such as CO, O2, NO2 and ethanol. In this context, pure and doped ZnO exhibiting different morphologies and a high surface/volume ratio can be a good option regarding the limitations of the current commercial sensors. Different studies showed that the sensitivity of metal-doped ZnO (e.g. Co, Fe, Mn,) enhanced its gas sensing properties. Motivated by these considerations, the aim of this study consisted on the investigation of the role of Co ions on structural, morphological and the gas sensing properties of nanostructured ZnO samples. ZnO and Zn1-xCoxO (0 < x < 5 wt%) thin films were obtained via the polymeric precursor method. The sensitivity, selectivity, response time and long-term stability gas sensing properties were investigated when the sample was exposed to a different concentration range of ozone (O3) at different working temperatures. The gas sensing property was probed by electrical resistance measurements. The long and short-range order structure around Zn and Co atoms were investigated by X-ray diffraction and X-ray absorption spectroscopy. X-ray photoelectron spectroscopy measurement was performed in order to identify the elements present on the film surface as well as to determine the sample composition. Microstructural characteristics of the films were analyzed by a field-emission scanning electron microscope (FE-SEM). Zn1-xCoxO XRD patterns were indexed to the wurtzite ZnO structure and any second phase was observed even at a higher cobalt content. Co-K edge XANES spectra revealed the predominance of Co2+ ions. XPS characterization revealed that Co-doped ZnO samples possessed a higher percentage of oxygen vacancies than the ZnO samples, which also contributed to their excellent gas sensing performance. Gas sensor measurements pointed out that ZnO and Co-doped ZnO samples exhibit a good gas sensing performance concerning the reproducibility and a fast response time (around 10 s). Furthermore, the Co addition contributed to reduce the working temperature for ozone detection and improve the selective sensing properties.Keywords: cobalt-doped ZnO, nanostructured, ozone gas sensor, polymeric precursor method
Procedia PDF Downloads 247823 The Environmental Impacts of Textiles Reuse and Recycling: A Review on Life-Cycle-Assessment Publications
Authors: Samuele Abagnato, Lucia Rigamonti
Abstract:
Life-Cycle-Assessment (LCA) is an effective tool to quantify the environmental impacts of reuse models and recycling technologies for textiles. In this work, publications in the last ten years about LCA on textile waste are classified according to location, goal and scope, functional unit, waste composition, impact assessment method, impact categories, and sensitivity analysis. Twenty papers have been selected: 50% are focused only on recycling, 30% only on reuse, the 15% on both, while only one paper considers only the final disposal of the waste. It is found that reuse is generally the best way to decrease the environmental impacts of textiles waste management because of the avoided impacts of manufacturing a new item. In the comparison between a product made with recycled yarns and a product from virgin materials, in general, the first option is less impact, especially for the categories of climate change, water depletion, and land occupation, while for other categories, such as eutrophication or ecotoxicity, under certain conditions the impacts of the recycled fibres can be higher. Cultivation seems to have quite high impacts when natural fibres are involved, especially in the land use and water depletion categories, while manufacturing requires a remarkable amount of electricity, with its associated impact on climate change. In the analysis of the reuse processes, relevant importance is covered by the laundry phase, with water consumption and impacts related to the use of detergents. About the sensitivity analysis, it can be stated that one of the main variables that influence the LCA results and that needs to be further investigated in the modeling of the LCA system about this topic is the substitution rate between recycled and virgin fibres, that is the amount of recycled material that can be used in place of virgin one. Related to this, also the yield of the recycling processes has a strong influence on the results of the impact. The substitution rate is also important in the modeling of the reuse processes because it represents the number of avoided new items bought in place of the reused ones. Another aspect that appears to have a large influence on the impacts is consumer behaviour during the use phase (for example, the number of uses between two laundry cycles). In conclusion, to have a deeper knowledge of the impacts of a life-cycle approach of textile waste, further data and research are needed in the modeling of the substitution rate and of the use phase habits of the consumers.Keywords: environmental impacts, life-cycle-assessment, textiles recycling, textiles reuse, textiles waste management
Procedia PDF Downloads 88822 Obtainment of Systems with Efavirenz and Lamellar Double Hydroxide as an Alternative for Solubility Improvement of the Drug
Authors: Danilo A. F. Fontes, Magaly A. M.Lyra, Maria L. C. Moura, Leslie R. M. Ferraz, Salvana P. M. Costa, Amanda C. Q. M. Vieira, Larissa A. Rolim, Giovanna C. R. M. Schver, Ping I. Lee, Severino Alves-Júnior, José L. Soares-Sobrinho, Pedro J. Rolim-Neto
Abstract:
Efavirenz (EFV) is a first-choice drug in antiretroviral therapy with high efficacy in the treatment of infection by Human Immunodeficiency Virus, which causes Acquired Immune Deficiency Syndrome (AIDS). EFV has low solubility in water resulting in a decrease in the dissolution rate and, consequently, in its bioavailability. Among the technological alternatives to increase solubility, the Lamellar Double Hydroxides (LDH) have been applied in the development of systems with poorly water-soluble drugs. The use of analytical techniques such as X-Ray Diffraction (XRD), Infrared Spectroscopy (IR) and Differential Scanning Calorimetry (DSC) allowed the elucidation of drug interaction with the lamellar compounds. The objective of this work was to characterize and develop the binary systems with EFV and LDH in order to increase the solubility of the drug. The LDH-CaAl was synthesized by the method of co-precipitation from salt solutions of calcium nitrate and aluminum nitrate in basic medium. The systems EFV-LDH and their physical mixtures (PM) were obtained at different concentrations (5-60% of EFV) using the solvent technique described by Takahashi & Yamaguchi (1991). The characterization of the systems and the PM’s was performed by XRD techniques, IR, DSC and dissolution test under non-sink conditions. The results showed improvements in the solubility of EFV when associated with LDH, due to a possible change in its crystal structure and formation of an amorphous material. From the DSC results, one could see that the endothermic peak at 173°C, temperature that correspond to the melting process of EFZ in the crystal form, was present in the PM results. For the EFZ-LDH systems (with 5, 10 and 30% of drug loading), this peak was not observed. XRD profiles of the PM showed well-defined peaks for EFV. Analyzing the XRD patterns of the systems, it was found that the XRD profiles of all the systems showed complete attenuation of the characteristic peaks of the crystalline form of EFZ. The IR technique showed that, in the results of the PM, there was the appearance of one band and overlap of other bands, while the IR results of the systems with 5, 10 and 30% drug loading showed the disappearance of bands and a few others with reduced intensity. The dissolution test under non-sink conditions showed that systems with 5, 10 and 30% drug loading promoted a great increase in the solubility of EFV, but the system with 10% of drug loading was the only one that could keep substantial amount of drug in solution at different pHs.Keywords: Efavirenz, Lamellar Double Hydroxides, Pharmaceutical Techonology, Solubility
Procedia PDF Downloads 583821 Use of 3D Printed Bioscaffolds from Decellularized Umbilical Cord for Cartilage Regeneration
Authors: Tayyaba Bari, Muhammad Hamza Anjum, Samra Kanwal, Fakhera Ikram
Abstract:
Osteoarthritis, a degenerative condition, affects more than 213 million individuals globally. Since articular cartilage has no or limited vessels, therefore, after deteriorating, it is unable to rejuvenate. Traditional approaches for cartilage repair, like autologous chondrocyte implantation, microfracture and cartilage transplantation are often associated with postoperative complications and lead to further degradation. Decellularized human umbilical cord has gained interest as a viable treatment for cartilage repair. Decellularization removes all cellular contents as well as debris, leaving a biologically active 3D network known as extracellular matrix (ECM). This matrix is biodegradable, non-immunogenic and provides a microenvironment for homeostasis, growth and repair. UC derived bioink function as 3D scaffolding material, not only mediates cell-matrix interactions but also adherence, proliferation and propagation of cells for 3D organoids. This study comprises different physical, chemical and biological approaches to optimize the decellularization of human umbilical cord (UC) tissues followed by the solubilization of these tissues to bioink formation. The decellularization process consisted of two cycles of freeze thaw where the umbilical cord at -20˚C was thawed at room temperature followed by dissection in small sections from 0.5 to 1cm. Similarly decellularization with ionic and non-ionic detergents Sodium dodecyl sulfate (SDS) and Triton-X 100 revealed that both concentrations of SDS i.e 0.1% and 1% were effective in complete removal of cells from the small UC tissues. The results of decellularization was further confirmed by running them on 1% agarose gel. Histological analysis revealed the efficacy of decellularization, which involves paraffin embedded samples of 4μm processed for Hematoxylin-eosin-safran and 4,6-diamidino-2-phenylindole (DAPI). ECM preservation was confirmed by Alcian Blue, and Masson’s trichrome staining on consecutive sections and images were obtained. Sulfated GAG’s content were determined by 1,9-dimethyl-methylene blue (DMMB) assay, similarly collagen quantification was done by hydroxy proline assay. This 3D bioengineered scaffold will provide a typical atmosphere as in the extracellular matrix of the tissue, which would be seeded with the mesenchymal cells to generate the desired 3D ink for in vitro and in vivo cartilage regeneration applications.Keywords: umbilical cord, 3d printing, bioink, tissue engineering, cartilage regeneration
Procedia PDF Downloads 99820 Optical and Surface Characteristics of Direct Composite, Polished and Glazed Ceramic Materials After Exposure to Tooth Brush Abrasion and Staining Solution
Authors: Maryam Firouzmandi, Moosa Miri
Abstract:
Aim and background: esthetic and structural reconstruction of anterior teeth may require the application of different restoration material. In this regard combination of direct composite veneer and ceramic crown is a common treatment option. Despite the initial matching, their long term harmony in term of optical and surface characteristics is a matter of concern. The purpose of this study is to evaluate and compare optical and surface characteristic of direct composite polished and glazed ceramic materials after exposure to tooth brush abrasion and staining solution. Materials and Methods: ten 2 mm thick disk shape specimens were prepared from IPS empress direct composite and twenty specimens from IPS e.max CAD blocks. Composite specimens and ten ceramic specimens were polished by using D&Z composite and ceramic polishing kit. The other ten specimens of ceramic were glazed with glazing liquid. Baseline measurement of roughness, CIElab coordinate, and luminance were recorded. Then the specimens underwent thermocycling, tooth brushing, and coffee staining. Afterword, the final measurements were recorded. Color coordinate were used to calculate ΔE76, ΔE00, translucency parameter, and contrast ratio. Data were analyzed by One-way ANOVA and post hoc LSD test. Results: baseline and final roughness of the study group were not different. At baseline, the order of roughness for the study group were as follows: composite < glazed ceramic < polished ceramic, but after aging, no difference. Between ceramic groups was not detected. The comparison of baseline and final luminance was similar to roughness but in reverse order. Unlike differential roughness which was comparable between the groups, changes in luminance of the glazed ceramic group was higher than other groups. ΔE76 and ΔE00 in the composite group were 18.35 and 12.84, in the glazed ceramic group were 1.3 and 0.79, and in polished ceramic were 1.26 and 0.85. These values for the composite group were significantly different from ceramic groups. Translucency of composite at baseline was significantly higher than final, but there was no significant difference between these values in ceramic groups. Composite was more translucency than ceramic at baseline and final measurement. Conclusion: Glazed ceramic surface was smoother than polished ceramic. Aging did not change the roughness. Optical properties (color and translucency) of the composite were influenced by aging. Luminance of composite, glazed ceramic, and polished ceramic decreased after aging, but the reduction in glazed ceramic was more pronounced.Keywords: ceramic, tooth-brush abrasion, staining solution, composite resin
Procedia PDF Downloads 185819 Preparedness Level of European Cultural Institutions and Catering Establishments Within the Sanitary and Epidemiological Dimension During the COVID-19 Pandemic
Authors: Magdalena Barbara Kaziuk
Abstract:
Introduction: In December 2019, the first case of an acute infectious disease of the respiratory system caused by the SARS-CoV-2 virus was recorded in Wuhan in Central China. On March 11, 2020, the World Health Organization restrictions, among others, in the travel industry. Aim: The aim of the study was the assessment of the preparedness of European cultural institutions and catering establishments within the sanitary and epidemiological dimension during the COVID-19 pandemic by Polish tourists and their sense of safety in selected destinations. Material and methods: The study involved 300 Polish tourists (125 females, 175 males, age 46.5+/-12.9 years) who traveled during the COVID-19 pandemic to Southern European countries. 5 most popular travel destinations were selected: Italy, Austria, Greece, Croatia, and Mediterranean islands. The tourists assessed cultural institutions and catering establishments with the use of a proprietary questionnaire which concerned the preparedness regarding the sanitary and epidemiological requirements and the tourists' sense of safety. The number of respondents was deliberate - 60 persons per each country. Results: The more stringent sanitary regimes, the higher the sense of safety in the study group of females aged 45-50 (p<0.005), while the more stringent sanitary and epidemiological issues are implemented, the shorter the stay (p<0.001). Less stringent restrictions resulted in increased sense of freedom and mental rest in the group of studied males (p<0.005). Conclusions: The respondents' opinions revealed that the highest level of safety with regard to sanitary and epidemiological requirements (masks covering mouth and nose worn by both personnel and society, the necessity to present the COVID passport, the possibility to disinfect hands) was observed in Austria and Italy, while shorter length of the stay in these countries resulted from high prices, particularly in catering establishments. According to the respondents, less stringent restrictions, among others lack of the necessity to own the COVID passport, were linked to Croatia and Mediterranean islands. The sense of safety was satisfying, while the sense of freedom and mental rest was high. declared a string of COVID-19 cases a pandemic. Most countries implemented numerous sanitary and epidemiologicalKeywords: sanitary and epidemiological regimes, tourist facilities, COVID-19 pandemic, sense of safety
Procedia PDF Downloads 124818 Laser Powder Bed Fusion Awareness for Engineering Students in France and Qatar
Authors: Hiba Naccache, Rima Hleiss
Abstract:
Additive manufacturing AM or 3D printing is one of the pillars of Industry 4.0. Compared to traditional manufacturing, AM provides a prototype before production in order to optimize the design and avoid the stock market and uses strictly necessary material which can be recyclable, for the benefit of leaning towards local production, saving money, time and resources. Different types of AM exist and it has a broad range of applications across several industries like aerospace, automotive, medicine, education and else. The Laser Powder Bed Fusion (LPBF) is a metal AM technique that uses a laser to liquefy metal powder, layer by layer, to build a three-dimensional (3D) object. In industry 4.0 and aligned with the numbers 9 (Industry, Innovation and Infrastructure) and 12 (Responsible Production and Consumption) of the Sustainable Development Goals of the UNESCO 2030 Agenda, the AM’s manufacturers committed to minimizing the environmental impact by being sustainable in every production. The LPBF has several environmental advantages, like reduced waste production, lower energy consumption, and greater flexibility in creating components with lightweight and complex geometries. However, LPBF also have environmental drawbacks, like energy consumption, gas consumption and emissions. It is critical to recognize the environmental impacts of LPBF in order to mitigate them. To increase awareness and promote sustainable practices regarding LPBF, the researchers use the Elaboration Likelihood Model (ELM) theory where people from multiple universities in France and Qatar process information in two ways: peripherally and centrally. The peripheral campaigns use superficial cues to get attention, and the central campaigns provide clear and concise information. The authors created a seminar including a video showing LPBF production and a website with educational resources. The data is collected using questionnaire to test attitude about the public awareness before and after the seminar. The results reflected a great shift on the awareness toward LPBF and its impact on the environment. With no presence of similar research, to our best knowledge, this study will add to the literature on the sustainability of the LPBF production technique.Keywords: additive manufacturing, laser powder bed fusion, elaboration likelihood model theory, sustainable development goals, education-awareness, France, Qatar, specific energy consumption, environmental impact, lightweight components
Procedia PDF Downloads 88817 Anti-Leishmanial Compounds from the Seaweed Padina pavonica
Authors: Nahal Najafi, Afsaneh Yegdaneh, Sedigheh Saberi
Abstract:
Introduction: Leishmaniasis poses a substantial global risk, affecting millions and resulting in thousands of cases each year in endemic regions. Challenges in current leishmaniasis treatments include drug resistance, high toxicity, and pancreatitis. Marine compounds, particularly brown algae, serve as a valuable source of inspiration for discovering treatments against Leishmania. Material and method: Padina pavonica was collected from the Persian Gulf. The seaweeds were dried and extracted with methanol: ethylacetate (1:1). The extract was partitioned to hexane (Hex), dicholoromethane (DCM), butanol, and water by Kupchan partitioning method. Hex partition was fractionated by silica gel column chromatography to 10 fractions (Fr. 1-10). Fr. 6 was further separated by the normal phase HPLC method to yield compounds 1-3. The structures of isolated compounds were elucidated by NMR, Mass, and other spectroscopic methods. Hex and DCM partitions, Fr. 6 and compounds 1-3, were tested for anti-leishmanicidal activity. RAW cell lines were cultured in enriched RPMI (10% FBS, 1% pen-strep) in a 37°C CO2 5% incubator, while promastigote cells were initially cultured in NNN culture and subsequently transferred to the aforementioned medium. Cytotoxicity was assessed using MTT tests, anti-promastigote activity was evaluated through Hemocytometer chamber promastigote counting, and the impact of amastigote damage was determined by counting amastigotes within 100 macrophages. Results: NMR and Mass identified isolated compounds as fucosterol and two sulfoquinovosyldiacylglycerols (SQDG). Among the samples tested, Fr.6 exhibited the highest cytotoxicity (CC50=60.24), while compound 2 showed the lowest cytotoxicity (CC50=21984). Compound 1 and dichloromethane fraction demonstrated the highest and lowest anti-promastigote activity (IC50=115.7, IC50=16.42, respectively), and compound 1 and hexane fraction exhibited the highest and lowest anti-amastigote activity (IC50=7.874, IC50=40.18, respectively). Conclusion: All six samples, including Hex and DCM partitions, Fr.6, and compounds 1-3, demonstrate a noteworthy correlation between rising concentration and time, with a statistically significant P-value of ≤0.05. Considering the higher selectivity index of compound 2 compared to others, it can be inferred that the presence of sulfur groups and unsaturated chains potentially contributes to these effects by impeding the DNA polymerase, which, of course, needs more research.Keywords: Padina, leishmania, sulfoquinovosyldiacylglycerol, cytotoxicity
Procedia PDF Downloads 20816 Development of Generally Applicable Intravenous to Oral Antibiotic Switch Therapy Criteria
Authors: H. Akhloufi, M. Hulscher, J. M. Prins, I. H. Van Der Sijs, D. Melles, A. Verbon
Abstract:
Background: A timely switch from intravenous to oral antibiotic therapy has many advantages, such as reduced incidence of IV-line related infections, a decreased hospital length of stay and less workload for healthcare professionals with equivalent patient safety. Additionally, numerous studies have demonstrated significant decreases in costs of a timely intravenous to oral antibiotic therapy switch, while maintaining efficacy and safety. However, a considerable variation in iv to oral antibiotic switch therapy criteria has been described in literature. Here, we report the development of a set of iv to oral switch criteria that are generally applicable in all hospitals. Material/methods: A RAND-modified Delphi procedure, which was composed of 3 rounds, was used. This Delphi procedure is a widely used structured process to develop consensus using multiple rounds of questionnaires within a qualified panel of selected experts. The international expert panel was multidisciplinary and composed out of clinical microbiologists, infectious disease consultants and clinical pharmacists. This panel of 19 experts appraised 6 major intravenous to oral antibiotic switch therapy criteria and operationalized these criteria using 41 measurable conditions extracted from the literature. The procedure to select a concise set of iv to oral switch criteria included 2 questionnaire rounds and a face-to-face meeting. Results: The procedure resulted in the selection of 16 measurable conditions, which operationalize 6 major intravenous to oral antibiotic switch therapy criteria. The following 6 major switch therapy criteria were selected: (1) Vital signs should be good or improving when bad. (2) Signs and symptoms related to the infection have to be resolved or improved. (3) The gastrointestinal tract has to be intact and functioning. (4) The oral route should not be compromised. (5) Absence of contra-indicated infections. (6) An oral variant of the antibiotic with good bioavailability has to exist. Conclusions: This systematic stepwise method which combined evidence and expert opinion resulted in a feasible set of 6 major intravenous to oral antibiotic switch therapy criteria operationalized by 16 measurable conditions. This set of early antibiotic iv to oral switch criteria can be used in daily practice in all adult hospital patients. Future use in audits and as rules in computer assisted decision support systems will lead to improvement of antimicrobial steward ship programs.Keywords: antibiotic resistance, antibiotic stewardship, intravenous to oral, switch therapy
Procedia PDF Downloads 356815 Isolation, Characterization, and Antibacterial Evaluation of Antimicrobial Peptides and Derivatives from Fly Larvae Sarconesiopsis magellanica (Diptera: Calliphoridae)
Authors: A. Díaz-Roa, P. I. Silva Junior, F. J. Bello
Abstract:
Sarconesiopsis magellanica (Diptera: Calliphoridae) is a medically important necrophagous fly which is used for establishing the post-mortem interval. Dipterous maggots release diverse proteins and peptides contained in larval excretion and secretion (ES) products playing a key role in digestion. The most important mechanism for combating infection using larval therapy depends on larval ES. These larvae are protected against infection by a diverse spectrum of antimicrobial peptides (AMPs), one already known like lucifensin. Special interest in these peptides has also been aroused regarding understanding their role in wound healing since they degrade necrotic tissue and kill different bacteria during larval therapy. The action of larvae on wounds occurs through 3 mechanisms of action: removal of necrotic tissue, stimulation of granulation tissue, and antibacterial action of larval ES. Some components of the ES include calcium, urea, allantoin ammonium bicarbonate and reducing the viability of Gram positive and Gram negative bacteria. The Lucilia sericata fly larvae have been the most used, however, we need to evaluate new species that could potentially be similar or more effective than fly above. This study was thus aimed at identifying and characterizing S. magellanica AMPs contained in ES products for the first time and compared them with the common fly used L. sericata. These products were obtained from third-instar larvae taken from a previously established colony. For the first analysis, ES fractions were separate by Sep-Pak C18 disposable columns (first step). The material obtained was fractionated by RP-HPLC by using Júpiter C18 semi-preparative column. The products were then lyophilized and their antimicrobial activity was characterized by incubation with different bacterial strains. The first chromatographic analysis of ES from L. sericata gives 6 fractions with antimicrobial activity against Gram-positive bacteria Micrococus luteus, and 3 fractions with activity against Gram-negative bacteria Pseudomonae aeruginosa while the one from S. magellanica gaves 1 fraction against M. luteus and 4 against P. aeruginosa. Maybe one of these fractions could correspond to the peptide already known from L. sericata. These results show the first work for supporting further experiments aimed at validating S. magellanica use in larval therapy. We still need to search if we find some new molecules, by making mass spectrometry and ‘de novo sequencing’. Further studies are necessary to identify and characterize them to better understand their functioning.Keywords: antimicrobial peptides, larval therapy, Lucilia sericata, Sarconesiopsis magellanica
Procedia PDF Downloads 367814 Deformation Characteristics of Fire Damaged and Rehabilitated Normal Strength Concrete Beams
Authors: Yeo Kyeong Lee, Hae Won Min, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin
Abstract:
Fire incidents have been steadily increased over the last year according to national emergency management agency of South Korea. Even though most of the fire incidents with property damage have been occurred in building, rehabilitation has not been properly done with consideration of structure safety. Therefore, this study aims at evaluating rehabilitation effects on fire damaged normal strength concrete beams through experiments and finite element analyses. For the experiments, reinforced concrete beams were fabricated having designed concrete strength of 21 MPa. Two different cover thicknesses were used as 40 mm and 50 mm. After cured, the fabricated beams were heated for 1hour or 2hours according to ISO-834 standard time-temperature curve. Rehabilitation was done by removing the damaged part of cover thickness and filling polymeric mortar into the removed part. Both fire damaged beams and rehabilitated beams were tested with four point loading system to observe structural behaviors and the rehabilitation effect. To verify the experiment, finite element (FE) models for structural analysis were generated using commercial software ABAQUS 6.10-3. For the rehabilitated beam models, integrated temperature-structural analyses were performed in advance to obtain geometries of the fire damaged beams. In addition to the fire damaged beam models, rehabilitated part was added with material properties of polymeric mortar. Three dimensional continuum brick elements were used for both temperature and structural analyses. The same loading and boundary conditions as experiments were implemented to the rehabilitated beam models and non-linear geometrical analyses were performed. Test results showed that maximum loads of the rehabilitated beams were 8~10% higher than those of the non-rehabilitated beams and even 1~6 % higher than those of the non-fire damaged beam. Stiffness of the rehabilitated beams were also larger than that of non-rehabilitated beams but smaller than that of the non-fire damaged beams. In addition, predicted structural behaviors from the analyses also showed good rehabilitation effect and the predicted load-deflection curves were similar to the experimental results. From this study, both experiments and analytical results demonstrated good rehabilitation effect on the fire damaged normal strength concrete beams. For the further, the proposed analytical method can be used to predict structural behaviors of rehabilitated and fire damaged concrete beams accurately without suffering from time and cost consuming experimental process.Keywords: fire, normal strength concrete, rehabilitation, reinforced concrete beam
Procedia PDF Downloads 508813 Gilgel Gibe III: Dam-Induced Displacement in Ethiopia and Kenya
Authors: Jonny Beirne
Abstract:
Hydropower developments have come to assume an important role within the Ethiopian government's overall development strategy for the country during the last ten years. The Gilgel Gibe III on the Omo river, due to become operational in September 2014, represents the most ambitious, and controversial, of these projects to date. Further aspects of the government's national development strategy include leasing vast areas of designated 'unused' land for large-scale commercial agricultural projects and 'voluntarily' villagizing scattered, semi-nomadic agro-pastoralist groups to centralized settlements so as to use land and water more efficiently and to better provide essential social services such as education and healthcare. The Lower Omo valley, along the Omo River, is one of the sites of this villagization programme as well as of these large-scale commercial agricultural projects which are made possible owing to the regulation of the river's flow by Gibe III. Though the Ethiopian government cite many positive aspects of these agricultural and hydropower developments there are still expected to be serious regional and transnational effects, including on migration flows, in an area already characterized by increasing climatic vulnerability with attendant population movements and conflicts over scarce resources. The following paper is an attempt to track actual and anticipated migration flows resulting from the construction of Gibe III in the immediate vicinity of the dam, downstream in the Lower Omo Valley and across the border in Kenya around Lake Turkana. In the case of those displaced in the Lower Omo Valley, this will be considered in view of the distinction between voluntary villagization and forced resettlement. The research presented is not primary-source material. Instead, it is drawn from the reports and assessments of the Ethiopian government, rights-based groups, and academic researchers as well as media articles. It is hoped that this will serve to draw greater attention to the issue and encourage further methodological research on the dynamics of dam constructions (and associated large-scale irrigation schemes) on migration flows and on the ultimate experience of displacement and resettlement for environmental migrants in the region.Keywords: forced displacement, voluntary resettlement, migration, human rights, human security, land grabs, dams, commercial agriculture, pastoralism, ecosystem modification, natural resource conflict, livelihoods, development
Procedia PDF Downloads 381812 Evaluation of the Physico-Chemical and Microbial Properties of the Compost Leachate (CL) to Assess Its Role in the Bioremediation of Polyaromatic Hydrocarbons (PAHs)
Authors: Omaima A. Sharaf, Tarek A. Moussa, Said M. Badr El-Din, H. Moawad
Abstract:
Background: Polycyclic aromatic hydrocarbons (PAHs) pose great environmental and human health concerns for their widespread occurrence, persistence, and carcinogenic properties. PAHs releases due to anthropogenic activities to the wider environment have led to higher concentrations of these contaminants than would be expected from natural processes alone. This may result in a wide range of environmental problems that can accumulate in agricultural ecosystems, which threatened to become a negative impact on sustainable agricultural development. Thus, this study aimed to evaluate the physico-chemical, and microbial properties of the compost leachate (CL) to assess its role as nutrient and microbial source (biostimulation/bioaugmentation) for developing a cost-effective bioremediation technology for PAHs contaminated sites. Material and Methods: PAHs-degrading bacteria were isolated from CL that was collected from a composting site located in central Scotland, UK. Isolation was carried out by enrichment using phenanthrene (PHR), pyrene (PYR) and benzo(a)pyrene (BaP) as the sole source of carbon and energy. The isolates were characterized using a variety of phenotypic and molecular properties. Six different isolates were identified based on the difference in morphological and biochemical tests. The efficiency of these isolates in PAHs utilization was assessed. Further analysis was performed to define taxonomical status and phylogenic relation between the most potent PAHs-utilizing bacterial strains and other standard strains, using molecular approach by partial 16S rDNA gene sequence analysis. Results indicated that the 16S rDNA sequence analysis confirmed the results of biochemical identification, as both of biochemical and molecular identification of the isolates assigned them to Bacillus licheniformis, Pseudomonas aeruginosa, Alcaligenes faecalis, Serratia marcescens, Enterobacter cloacae and Providenicia which were identified as the prominent PAHs-utilizers isolated from CL. Conclusion: This study indicates that the CL samples contain a diverse population of PAHs-degrading bacteria and the use of CL may have a potential for bioremediation of PAHs contaminated sites.Keywords: polycyclic aromatic hydrocarbons, physico-chemical analyses, compost leachate, microbial and biochemical analyses, phylogenic relations, 16S rDNA sequence analysis
Procedia PDF Downloads 263811 Bandgap Engineering of CsMAPbI3-xBrx Quantum Dots for Intermediate Band Solar Cell
Authors: Deborah Eric, Abbas Ahmad Khan
Abstract:
Lead halide perovskites quantum dots have attracted immense scientific and technological interest for successful photovoltaic applications because of their remarkable optoelectronic properties. In this paper, we have simulated CsMAPbI3-xBrx based quantum dots to implement their use in intermediate band solar cells (IBSC). These types of materials exhibit optical and electrical properties distinct from their bulk counterparts due to quantum confinement. The conceptual framework provides a route to analyze the electronic properties of quantum dots. This layer of quantum dots optimizes the position and bandwidth of IB that lies in the forbidden region of the conventional bandgap. A three-dimensional MAPbI3 quantum dot (QD) with geometries including spherical, cubic, and conical has been embedded in the CsPbBr3 matrix. Bound energy wavefunction gives rise to miniband, which results in the formation of IB. If there is more than one miniband, then there is a possibility of having more than one IB. The optimization of QD size results in more IBs in the forbidden region. One band time-independent Schrödinger equation using the effective mass approximation with step potential barrier is solved to compute the electronic states. Envelope function approximation with BenDaniel-Duke boundary condition is used in combination with the Schrödinger equation for the calculation of eigen energies and Eigen energies are solved for the quasi-bound states using an eigenvalue study. The transfer matrix method is used to study the quantum tunneling of MAPbI3 QD through neighbor barriers of CsPbI3. Electronic states are computed using Schrödinger equation with effective mass approximation by considering quantum dot and wetting layer assembly. Results have shown the varying the quantum dot size affects the energy pinning of QD. Changes in the ground, first, second state energies have been observed. The QD is non-zero at the center and decays exponentially to zero at boundaries. Quasi-bound states are characterized by envelope functions. It has been observed that conical quantum dots have maximum ground state energy at a small radius. Increasing the wetting layer thickness exhibits energy signatures similar to bulk material for each QD size.Keywords: perovskite, intermediate bandgap, quantum dots, miniband formation
Procedia PDF Downloads 164810 Nano-Pesticides: Recent Emerging Tool for Sustainable Agricultural Practices
Authors: Ekta, G. K. Darbha
Abstract:
Nanotechnology offers the potential of simultaneously increasing efficiency as compared to their bulk material as well as reducing harmful environmental impacts of pesticides in field of agriculture. The term nanopesticide covers different pesticides that are cumulative of several surfactants, polymers, metal ions, etc. of nanometer size ranges from 1-1000 nm and exhibit abnormal behavior (high efficacy and high specific surface area) of nanomaterials. Commercial formulations of pesticides used by farmers nowadays cannot be used effectively due to a number of problems associated with them. For example, more than 90% of applied formulations are either lost in the environment or unable to reach the target area required for effective pest control. Around 20−30% of pesticides are lost through emissions. A number of factors (application methods, physicochemical properties of the formulations, and environmental conditions) can influence the extent of loss during application. It is known that among various formulations, polymer-based formulations show the greatest potential due to their greater efficacy, slow release and protection against premature degradation of active ingredient as compared to other commercial formulations. However, the nanoformulations can have a significant effect on the fate of active ingredient as well as may release some new ingredients by reacting with existing soil contaminants. Environmental fate of these newly generated species is still not explored very well which is essential to field scale experiments and hence a lot to be explored in the field of environmental fate, nanotoxicology, transport properties and stability of such formulations. In our preliminary work, we have synthesized polymer based nanoformulation of commercially used weedicide atrazine. Atrazine belongs to triazine class of herbicide, which is used in the effective control of seed germinated dicot weeds and grasses. It functions by binding to the plastoquinone-binding protein in PS-II. Plant death results from starvation and oxidative damage caused by breakdown in electron transport system. The stability of the suspension of nanoformulation containing herbicide has been evaluated by considering different parameters like polydispersity index, particle diameter, zeta-potential under different environmental relevance condition such as pH range 4-10, temperature range from 25°C to 65°C and stability of encapsulation also have been studied for different amount of added polymer. Morphological characterization has been done by using SEM.Keywords: atrazine, nanoformulation, nanopesticide, nanotoxicology
Procedia PDF Downloads 256809 BLS-2/BSL-3 Laboratory for Diagnosis of Pathogens on the Colombia-Ecuador Border Region: A Post-COVID Commitment to Public Health
Authors: Anderson Rocha-Buelvas, Jaqueline Mena Huertas, Edith Burbano Rosero, Arsenio Hidalgo Troya, Mauricio Casas Cruz
Abstract:
COVID-19 is a disruptive pandemic for the public health and economic system of whole countries, including Colombia. Nariño Department is the southwest of the country and draws attention to being on the border with Ecuador, constantly facing demographic transition affecting infections between countries. In Nariño, the early routine diagnosis of SARS-CoV-2, which can be handled at BSL-2, has affected the transmission dynamics of COVID-19. However, new emerging and re-emerging viruses with biological flexibility classified as a Risk Group 3 agent can take advantage of epidemiological opportunities, generating the need to increase clinical diagnosis, mainly in border regions between countries. The overall objective of this project was to assure the quality of the analytical process in the diagnosis of high biological risk pathogens in Nariño by building a laboratory that includes biosafety level (BSL)-2 and (BSL)-3 containment zones. The delimitation of zones was carried out according to the Verification Tool of the National Health Institute of Colombia and following the standard requirements for the competence of testing and calibration laboratories of the International Organization for Standardization. This is achieved by harmonization of methods and equipment for effective and durable diagnostics of the large-scale spread of highly pathogenic microorganisms, employing negative-pressure containment systems and UV Systems in accordance with a finely controlled electrical system and PCR systems as new diagnostic tools. That increases laboratory capacity. Protection in BSL-3 zones will separate the handling of potentially infectious aerosols within the laboratory from the community and the environment. It will also allow the handling and inactivation of samples with suspected pathogens and the extraction of molecular material from them, allowing research with pathogens with high risks, such as SARS-CoV-2, Influenza, and syncytial virus, and malaria, among others. The diagnosis of these pathogens will be articulated across the spectrum of basic, applied, and translational research that could receive about 60 daily samples. It is expected that this project will be articulated with the health policies of neighboring countries to increase research capacity.Keywords: medical laboratory science, SARS-CoV-2, public health surveillance, Colombia
Procedia PDF Downloads 91808 A Corpus-Based Contrastive Analysis of Directive Speech Act Verbs in English and Chinese Legal Texts
Authors: Wujian Han
Abstract:
In the process of human interaction and communication, speech act verbs are considered to be the most active component and the main means for information transmission, and are also taken as an indication of the structure of linguistic behavior. The theoretical value and practical significance of such everyday built-in metalanguage have long been recognized. This paper, which is part of a bigger study, is aimed to provide useful insights for a more precise and systematic application to speech act verbs translation between English and Chinese, especially with regard to the degree to which generic integrity is maintained in the practice of translation of legal documents. In this study, the corpus, i.e. Chinese legal texts and their English translations, English legal texts, ordinary Chinese texts, and ordinary English texts, serve as a testing ground for examining contrastively the usage of English and Chinese directive speech act verbs in legal genre. The scope of this paper is relatively wide and essentially covers all directive speech act verbs which are used in ordinary English and Chinese, such as order, command, request, prohibit, threat, advice, warn and permit. The researcher, by combining the corpus methodology with a contrastive perspective, explored a range of characteristics of English and Chinese directive speech act verbs including their semantic, syntactic and pragmatic features, and then contrasted them in a structured way. It has been found that there are similarities between English and Chinese directive speech act verbs in legal genre, such as similar semantic components between English speech act verbs and their translation equivalents in Chinese, formal and accurate usage of English and Chinese directive speech act verbs in legal contexts. But notable differences have been identified in areas of difference between their usage in the original Chinese and English legal texts such as valency patterns and frequency of occurrences. For example, the subjects of some directive speech act verbs are very frequently omitted in Chinese legal texts, but this is not the case in English legal texts. One of the practicable methods to achieve adequacy and conciseness in speech act verb translation from Chinese into English in legal genre is to repeat the subjects or the message with discrepancy, and vice versa. In addition, translation effects such as overuse and underuse of certain directive speech act verbs are also found in the translated English texts compared to the original English texts. Legal texts constitute a particularly valuable material for speech act verb study. Building up such a contrastive picture of the Chinese and English speech act verbs in legal language would yield results of value and interest to legal translators and students of language for legal purposes and have practical application to legal translation between English and Chinese.Keywords: contrastive analysis, corpus-based, directive speech act verbs, legal texts, translation between English and Chinese
Procedia PDF Downloads 499807 Wind Energy Harvester Based on Triboelectricity: Large-Scale Energy Nanogenerator
Authors: Aravind Ravichandran, Marc Ramuz, Sylvain Blayac
Abstract:
With the rapid development of wearable electronics and sensor networks, batteries cannot meet the sustainable energy requirement due to their limited lifetime, size and degradation. Ambient energies such as wind have been considered as an attractive energy source due to its copious, ubiquity, and feasibility in nature. With miniaturization leading to high-power and robustness, triboelectric nanogenerator (TENG) have been conceived as a promising technology by harvesting mechanical energy for powering small electronics. TENG integration in large-scale applications is still unexplored considering its attractive properties. In this work, a state of the art design TENG based on wind venturi system is demonstrated for use in any complex environment. When wind introduces into the air gap of the homemade TENG venturi system, a thin flexible polymer repeatedly contacts with and separates from electrodes. This device structure makes the TENG suitable for large scale harvesting without massive volume. Multiple stacking not only amplifies the output power but also enables multi-directional wind utilization. The system converts ambient mechanical energy to electricity with 400V peak voltage by charging of a 1000mF super capacitor super rapidly. Its future implementation in an array of applications aids in environment friendly clean energy production in large scale medium and the proposed design performs with an exhaustive material testing. The relation between the interfacial micro-and nano structures and the electrical performance enhancement is comparatively studied. Nanostructures are more beneficial for the effective contact area, but they are not suitable for the anti-adhesion property due to the smaller restoring force. Considering these issues, the nano-patterning is proposed for further enhancement of the effective contact area. By considering these merits of simple fabrication, outstanding performance, robust characteristic and low-cost technology, we believe that TENG can open up great opportunities not only for powering small electronics, but can contribute to large-scale energy harvesting through engineering design being complementary to solar energy in remote areas.Keywords: triboelectric nanogenerator, wind energy, vortex design, large scale energy
Procedia PDF Downloads 213806 Investigating the Status of Black Women in Brazil: Beyond Housekeepers and Samba Dancers
Authors: Sandra Maria Cerqueira Da Silva
Abstract:
The construction of the material world involves a series of social power relations. These relations, in a way, can dictate, shape, judge and drive the profiles of so-called ‘ideal’ individuals. Gender relations, as power relations, are defined based on hierarchies, obediences and inequalities, and male domination seems, with few exceptions, to be rooted in every society around the world. The profile of the Brazilian woman, beyond patriarchal and market determinations, is strongly subjected to media products. Women are, numerically, the majority in Brazilian society. The social indicators point to slight advances in terms of years of study and professional qualification, as well as access to the job market; yet, differences in opportunity and conditions — often explained though the ‘unquestionable’ cultural rancidness argument — still hinder women’s ability to reach and keep job positions. These unequalities are also visible in everyday interactions and in gender relations, and they become greater once race is added to the analysis. For a black woman, her racial origins may play a part in determining the construction of her gender roles. In these terms, there is need to investigate the racial character of the sexual differences within a larger social proccess of naturalization and justification of cultural hierarchies. Thus, the goal of this study is to identify and discuss the media-built image of black women in Brazil. Furthermore, it is necessary to seek views different than those of the ruling classes. The study uses a qualitative approach based on the feminist standpoint, which intends to hold women’s experiences as central. The body of the research — images taken from the Internet — was treated through critical content analysis. The results show that in Brazil the profile of black women, beyond the machist and sexist generalizations, objectifies them or sees them as servants, always at the disposal of non-blacks. It is necessary to overcome the history of this nation, always considering the contribution of these women to the growth and development of places and societies. This can be done through the acknowledgement and highlighting of the few black women who were able to overcome the many barriers in their path and reach leadership position in the country. There are still many important challenges in the way of finding affirmative policies and reaching a more equal society in terms of gender and race; a serious and firm political commitment seems sine qua non.Keywords: black woman, feminist standpoint, markings, objectification
Procedia PDF Downloads 272805 Extension of the Simplified Theory of Plastic Zones for Analyzing Elastic Shakedown in a Multi-Dimensional Load Domain
Authors: Bastian Vollrath, Hartwig Hubel
Abstract:
In case of over-elastic and cyclic loading, strain may accumulate due to a ratcheting mechanism until the state of shakedown is possibly achieved. Load history dependent numerical investigations by a step-by-step analysis are rather costly in terms of engineering time and numerical effort. In the case of multi-parameter loading, where various independent loadings affect the final state of shakedown, the computational effort becomes an additional challenge. Therefore, direct methods like the Simplified Theory of Plastic Zones (STPZ) are developed to solve the problem with a few linear elastic analyses. Post-shakedown quantities such as strain ranges and cyclic accumulated strains are calculated approximately by disregarding the load history. The STPZ is based on estimates of a transformed internal variable, which can be used to perform modified elastic analyses, where the elastic material parameters are modified, and initial strains are applied as modified loading, resulting in residual stresses and strains. The STPZ already turned out to work well with respect to cyclic loading between two states of loading. Usually, few linear elastic analyses are sufficient to obtain a good approximation to the post-shakedown quantities. In a multi-dimensional load domain, the approximation of the transformed internal variable transforms from a plane problem into a hyperspace problem, where time-consuming approximation methods need to be applied. Therefore, a solution restricted to structures with four stress components was developed to estimate the transformed internal variable by means of three-dimensional vector algebra. This paper presents the extension to cyclic multi-parameter loading so that an unlimited number of load cases can be taken into account. The theoretical basis and basic presumptions of the Simplified Theory of Plastic Zones are outlined for the case of elastic shakedown. The extension of the method to many load cases is explained, and a workflow of the procedure is illustrated. An example, adopting the FE-implementation of the method into ANSYS and considering multilinear hardening is given which highlights the advantages of the method compared to incremental, step-by-step analysis.Keywords: cyclic loading, direct method, elastic shakedown, multi-parameter loading, STPZ
Procedia PDF Downloads 161804 An Investigation into the Influence of Compression on 3D Woven Preform Thickness and Architecture
Authors: Calvin Ralph, Edward Archer, Alistair McIlhagger
Abstract:
3D woven textile composites continue to emerge as an advanced material for structural applications and composite manufacture due to their bespoke nature, through thickness reinforcement and near net shape capabilities. When 3D woven preforms are produced, they are in their optimal physical state. As 3D weaving is a dry preforming technology it relies on compression of the preform to achieve the desired composite thickness, fibre volume fraction (Vf) and consolidation. This compression of the preform during manufacture results in changes to its thickness and architecture which can often lead to under-performance or changes of the 3D woven composite. Unlike traditional 2D fabrics, the bespoke nature and variability of 3D woven architectures makes it difficult to know exactly how each 3D preform will behave during processing. Therefore, the focus of this study is to investigate the effect of compression on differing 3D woven architectures in terms of structure, crimp or fibre waviness and thickness as well as analysing the accuracy of available software to predict how 3D woven preforms behave under compression. To achieve this, 3D preforms are modelled and compression simulated in Wisetex with varying architectures of binder style, pick density, thickness and tow size. These architectures have then been woven with samples dry compression tested to determine the compressibility of the preforms under various pressures. Additional preform samples were manufactured using Resin Transfer Moulding (RTM) with varying compressive force. Composite samples were cross sectioned, polished and analysed using microscopy to investigate changes in architecture and crimp. Data from dry fabric compression and composite samples were then compared alongside the Wisetex models to determine accuracy of the prediction and identify architecture parameters that can affect the preform compressibility and stability. Results indicate that binder style/pick density, tow size and thickness have a significant effect on compressibility of 3D woven preforms with lower pick density allowing for greater compression and distortion of the architecture. It was further highlighted that binder style combined with pressure had a significant effect on changes to preform architecture where orthogonal binders experienced highest level of deformation, but highest overall stability, with compression while layer to layer indicated a reduction in fibre crimp of the binder. In general, simulations showed a relative comparison to experimental results; however, deviation is evident due to assumptions present within the modelled results.Keywords: 3D woven composites, compression, preforms, textile composites
Procedia PDF Downloads 135803 Artificial Membrane Comparison for Skin Permeation in Skin PAMPA
Authors: Aurea C. L. Lacerda, Paulo R. H. Moreno, Bruna M. P. Vianna, Cristina H. R. Serra, Airton Martin, André R. Baby, Vladi O. Consiglieri, Telma M. Kaneko
Abstract:
The modified Franz cell is the most widely used model for in vitro permeation studies, however it still presents some disadvantages. Thus, some alternative methods have been developed such as Skin PAMPA, which is a bio- artificial membrane that has been applied for skin penetration estimation of xenobiotics based on HT permeability model consisting. Skin PAMPA greatest advantage is to carry out more tests, in a fast and inexpensive way. The membrane system mimics the stratum corneum characteristics, which is the primary skin barrier. The barrier properties are given by corneocytes embedded in a multilamellar lipid matrix. This layer is the main penetration route through the paracellular permeation pathway and it consists of a mixture of cholesterol, ceramides, and fatty acids as the dominant components. However, there is no consensus on the membrane composition. The objective of this work was to compare the performance among different bio-artificial membranes for studying the permeation in skin PAMPA system. Material and methods: In order to mimetize the lipid composition`s present in the human stratum corneum six membranes were developed. The membrane composition was equimolar mixture of cholesterol, ceramides 1-O-C18:1, C22, and C20, plus fatty acids C20 and C24. The membrane integrity assay was based on the transport of Brilliant Cresyl Blue, which has a low permeability; and Lucifer Yellow with very poor permeability and should effectively be completely rejected. The membrane characterization was performed using Confocal Laser Raman Spectroscopy, using stabilized laser at 785 nm with 10 second integration time and 2 accumulations. The membrane behaviour results on the PAMPA system were statistically evaluated and all of the compositions have shown integrity and permeability. The confocal Raman spectra were obtained in the region of 800-1200 cm-1 that is associated with the C-C stretches of the carbon scaffold from the stratum corneum lipids showed similar pattern for all the membranes. The ceramides, long chain fatty acids and cholesterol in equimolar ratio permitted to obtain lipid mixtures with self-organization capability, similar to that occurring into the stratum corneum. Conclusion: The artificial biological membranes studied for Skin PAMPA showed to be similar and with comparable properties to the stratum corneum.Keywords: bio-artificial membranes, comparison, confocal Raman, skin PAMPA
Procedia PDF Downloads 509802 Spark Plasma Sintering/Synthesis of Alumina-Graphene Composites
Authors: Nikoloz Jalabadze, Roin Chedia, Lili Nadaraia, Levan Khundadze
Abstract:
Nanocrystalline materials in powder condition can be manufactured by a number of different methods, however manufacture of composite materials product in the same nanocrystalline state is still a problem because the processes of compaction and synthesis of nanocrystalline powders go with intensive growth of particles – the process which promotes formation of pieces in an ordinary crystalline state instead of being crystallized in the desirable nanocrystalline state. To date spark plasma sintering (SPS) has been considered as the most promising and energy efficient method for producing dense bodies of composite materials. An advantage of the SPS method in comparison with other methods is mainly low temperature and short time of the sintering procedure. That finally gives an opportunity to obtain dense material with nanocrystalline structure. Graphene has recently garnered significant interest as a reinforcing phase in composite materials because of its excellent electrical, thermal and mechanical properties. Graphene nanoplatelets (GNPs) in particular have attracted much interest as reinforcements for ceramic matrix composites (mostly in Al2O3, Si3N4, TiO2, ZrB2 a. c.). SPS has been shown to fully densify a variety of ceramic systems effectively including Al2O3 and often with improvements in mechanical and functional behavior. Alumina consolidated by SPS has been shown to have superior hardness, fracture toughness, plasticity and optical translucency compared to conventionally processed alumina. Knowledge of how GNPs influence sintering behavior is important to effectively process and manufacture process. In this study, the effects of GNPs on the SPS processing of Al2O3 are investigated by systematically varying sintering temperature, holding time and pressure. Our experiments showed that SPS process is also appropriate for the synthesis of nanocrystalline powders of alumina-graphene composites. Depending on the size of the molds, it is possible to obtain different amount of nanopowders. Investigation of the structure, physical-chemical, mechanical and performance properties of the elaborated composite materials was performed. The results of this study provide a fundamental understanding of the effects of GNP on sintering behavior, thereby providing a foundation for future optimization of the processing of these promising nanocomposite systems.Keywords: alumina oxide, ceramic matrix composites, graphene nanoplatelets, spark-plasma sintering
Procedia PDF Downloads 376801 Usage of Cyanobacteria in Battery: Saving Money, Enhancing the Storage Capacity, Making Portable, and Supporting the Ecology
Authors: Saddam Husain Dhobi, Bikrant Karki
Abstract:
The main objective of this paper is save money, balance ecosystem of the terrestrial organism, control global warming, and enhancing the storage capacity of the battery with requiring weight and thinness by using Cyanobacteria in the battery. To fulfill this purpose of paper we can use different methods: Analysis, Biological, Chemistry, theoretical and Physics with some engineering design. Using this different method, we can produce the special type of battery that has the long life, high storage capacity, and clean environment, save money so on and by using the byproduct of Cyanobacteria i.e. glucose. Cyanobacteria are a special type of bacteria that produces different types of extracellular glucoses and oxygen with the help of little sunlight, water, and carbon dioxide and can survive in freshwater, marine and in the land as well. In this process, O₂ is more in the comparison to plant due to rapid growth rate of Cyanobacteria. The required materials are easily available in this process to produce glucose with the help of Cyanobacteria. Since CO₂, is greenhouse gas that causes the global warming? We can utilize this gas and save our ecological balance and the byproduct (glucose) C₆H₁₂O₆ can be utilized for raw material for the battery where as O₂ escape is utilized by living organism. The glucose produce by Cyanobateria goes on Krebs's Cycle or Citric Acid Cycle, in which glucose is complete, oxidizes and all the available energy from glucose molecule has been release in the form of electron and proton as energy. If we use a suitable anodes and cathodes, we can capture these electrons and protons to produce require electricity current with the help of byproduct of Cyanobacteria. According to "Virginia Tech Bio-battery" and "Sony" 13 enzymes and the air is used to produce nearly 24 electrons from a single glucose unit. In this output power of 0.8 mW/cm, current density of 6 mA/cm, and energy storage density of 596 Ah/kg. This last figure is impressive, at roughly 10 times the energy density of the lithium-ion batteries in your mobile devices. When we use Cyanobacteria in battery, we are able to reduce Carbon dioxide, Stop global warming, and enhancing the storage capacity of battery more than 10 times that of lithium battery, saving money, balancing ecology. In this way, we can produce energy from the Cyanobacteria and use it in battery for different benefits. In addition, due to the mass, size and easy cultivation, they are better to maintain the size of battery. Hence, we can use Cyanobacteria for the battery having suitable size, enhancing the storing capacity of battery, helping the environment, portability and so on.Keywords: anode, byproduct, cathode, cyanobacteri, glucose, storage capacity
Procedia PDF Downloads 348800 Factory Communication System for Customer-Based Production Execution: An Empirical Study on the Manufacturing System Entropy
Authors: Nyashadzashe Chiraga, Anthony Walker, Glen Bright
Abstract:
The manufacturing industry is currently experiencing a paradigm shift into the Fourth Industrial Revolution in which customers are increasingly at the epicentre of production. The high degree of production customization and personalization requires a flexible manufacturing system that will rapidly respond to the dynamic and volatile changes driven by the market. They are a gap in technology that allows for the optimal flow of information and optimal manufacturing operations on the shop floor regardless of the rapid changes in the fixture and part demands. Information is the reduction of uncertainty; it gives meaning and context on the state of each cell. The amount of information needed to describe cellular manufacturing systems is investigated by two measures: the structural entropy and the operational entropy. Structural entropy is the expected amount of information needed to describe scheduled states of a manufacturing system. While operational entropy is the amount of information that describes the scheduled states of a manufacturing system, which occur during the actual manufacturing operation. Using Anylogic simulator a typical manufacturing job shop was set-up with a cellular manufacturing configuration. The cellular make-up of the configuration included; a Material handling cell, 3D Printer cell, Assembly cell, manufacturing cell and Quality control cell. The factory shop provides manufactured parts to a number of clients, and there are substantial variations in the part configurations, new part designs are continually being introduced to the system. Based on the normal expected production schedule, the schedule adherence was calculated from the structural entropy and operation entropy of varying the amounts of information communicated in simulated runs. The structural entropy denotes a system that is in control; the necessary real-time information is readily available to the decision maker at any point in time. For contractive analysis, different out of control scenarios were run, in which changes in the manufacturing environment were not effectively communicated resulting in deviations in the original predetermined schedule. The operational entropy was calculated from the actual operations. From the results obtained in the empirical study, it was seen that increasing, the efficiency of a factory communication system increases the degree of adherence of a job to the expected schedule. The performance of downstream production flow fed from the parallel upstream flow of information on the factory state was increased.Keywords: information entropy, communication in manufacturing, mass customisation, scheduling
Procedia PDF Downloads 245799 Integrating Wearable-Textiles Sensors and IoT for Continuous Electromyography Monitoring
Authors: Bulcha Belay Etana, Benny Malengier, Debelo Oljira, Janarthanan Krishnamoorthy, Lieva Vanlangenhove
Abstract:
Electromyography (EMG) is a technique used to measure the electrical activity of muscles. EMG can be used to assess muscle function in a variety of settings, including clinical, research, and sports medicine. The aim of this study was to develop a wearable textile sensor for EMG monitoring. The sensor was designed to be soft, stretchable, and washable, making it suitable for long-term use. The sensor was fabricated using a conductive thread material that was embroidered onto a fabric substrate. The sensor was then connected to a microcontroller unit (MCU) and a Wi-Fi-enabled module. The MCU was programmed to acquire the EMG signal and transmit it wirelessly to the Wi-Fi-enabled module. The Wi-Fi-enabled module then sent the signal to a server, where it could be accessed by a computer or smartphone. The sensor was able to successfully acquire and transmit EMG signals from a variety of muscles. The signal quality was comparable to that of commercial EMG sensors. The development of this sensor has the potential to improve the way EMG is used in a variety of settings. The sensor is soft, stretchable, and washable, making it suitable for long-term use. This makes it ideal for use in clinical settings, where patients may need to wear the sensor for extended periods of time. The sensor is also small and lightweight, making it ideal for use in sports medicine and research settings. The data for this study was collected from a group of healthy volunteers. The volunteers were asked to perform a series of muscle contractions while the EMG signal was recorded. The data was then analyzed to assess the performance of the sensor. The EMG signals were analyzed using a variety of methods, including time-domain analysis and frequency-domain analysis. The time-domain analysis was used to extract features such as the root mean square (RMS) and average rectified value (ARV). The frequency-domain analysis was used to extract features such as the power spectrum. The question addressed by this study was whether a wearable textile sensor could be developed that is soft, stretchable, and washable and that can successfully acquire and transmit EMG signals. The results of this study demonstrate that a wearable textile sensor can be developed that meets the requirements of being soft, stretchable, washable, and capable of acquiring and transmitting EMG signals. This sensor has the potential to improve the way EMG is used in a variety of settings.Keywords: EMG, electrode position, smart wearable, textile sensor, IoT, IoT-integrated textile sensor
Procedia PDF Downloads 75