Search results for: statistical data
26248 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area
Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim
Abstract:
In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.Keywords: data estimation, link data, machine learning, road network
Procedia PDF Downloads 51226247 Statistical Modeling for Permeabilization of a Novel Yeast Isolate for β-Galactosidase Activity Using Organic Solvents
Authors: Shweta Kumari, Parmjit S. Panesar, Manab B. Bera
Abstract:
The hydrolysis of lactose using β-galactosidase is one of the most promising biotechnological applications, which has wide range of potential applications in food processing industries. However, due to intracellular location of the yeast enzyme, and expensive extraction methods, the industrial applications of enzymatic hydrolysis processes are being hampered. The use of permeabilization technique can help to overcome the problems associated with enzyme extraction and purification of yeast cells and to develop the economically viable process for the utilization of whole cell biocatalysts in food industries. In the present investigation, standardization of permeabilization process of novel yeast isolate was carried out using a statistical model approach known as Response Surface Methodology (RSM) to achieve maximal b-galactosidase activity. The optimum operating conditions for permeabilization process for optimal β-galactosidase activity obtained by RSM were 1:1 ratio of toluene (25%, v/v) and ethanol (50%, v/v), 25.0 oC temperature and treatment time of 12 min, which displayed enzyme activity of 1.71 IU /mg DW.Keywords: β-galactosidase, optimization, permeabilization, response surface methodology, yeast
Procedia PDF Downloads 26126246 Customer Data Analysis Model Using Business Intelligence Tools in Telecommunication Companies
Authors: Monica Lia
Abstract:
This article presents a customer data analysis model using business intelligence tools for data modelling, transforming, data visualization and dynamic reports building. Economic organizational customer’s analysis is made based on the information from the transactional systems of the organization. The paper presents how to develop the data model starting for the data that companies have inside their own operational systems. The owned data can be transformed into useful information about customers using business intelligence tool. For a mature market, knowing the information inside the data and making forecast for strategic decision become more important. Business Intelligence tools are used in business organization as support for decision-making.Keywords: customer analysis, business intelligence, data warehouse, data mining, decisions, self-service reports, interactive visual analysis, and dynamic dashboards, use cases diagram, process modelling, logical data model, data mart, ETL, star schema, OLAP, data universes
Procedia PDF Downloads 43726245 Impact of Air Pollution and Climate on the Incidence of Emergency Interventions in Slavonski Brod
Authors: Renata Josipovic, Ante Cvitkovic
Abstract:
Particulate matter belongs to pollutants that can lead to respiratory problems or premature death due to exposure (long-term, short-term) to these substances, all depending on the severity of the effects. The importance of the study is to determine whether the existing climatic conditions in the period from January 1st to August 31st, 2018 increased the number of emergency interventions in Slavonski Brod with regard to pollutants hydrogen sulfide and particles less than 10 µm (PM10) and less than 2.5 µm (PM2.5). Analytical data of the concentration of pollutants are collected from the Croatian Meteorological and Hydrological Service, which monitors the operation of two meteorological stations in Slavonski Brod, as well as climatic conditions. Statistics data of emergency interventions were collected from the Emergency Medicine Department of Slavonski Brod. All data were compared (air pollution, emergency interventions) according to climatic conditions (air humidity and air temperature) and statistically processed. Statistical significance, although weak positive correlation PM2.5 (correlation coefficient 0.147; p = 0.036), determined PM10 (correlation coefficient 0.122; p = 0.048), hydrogen sulfide (correlation coefficient 0.141; p = 0.035) with max. temperature (correlation coefficient 0.202; p = 0.002) with number of interventions. The association between mean air humidity was significant but negative (correlation coefficient - 0.172; p = 0.007). The values of the influence of air pressure are not determined. As the problem of air pollution is very complex, coordinated action at many levels is needed to reduce air pollution in Slavonski Brod and consequences that can affect human health.Keywords: emergency interventions, human health, hydrogen sulfide, particulate matter
Procedia PDF Downloads 16926244 A Study on the Effect of the Work-Family Conflict on Work Engagement: A Mediated Moderation Model of Emotional Exhaustion and Positive Psychology Capital
Authors: Sungeun Hyun, Sooin Lee, Gyewan Moon
Abstract:
Work-Family Conflict has been an active research area for the past decades. Work-Family Conflict harms individuals and organizations, it is ultimately expected to bring the cost of losses to the company in the long run. WFC has mainly focused on effects of organizational effectiveness and job attitude such as Job Satisfaction, Organizational Commitment, and Turnover Intention variables. This study is different from consequence variable with previous research. For this purpose, we selected the positive job attitude 'Work Engagement' as a consequence of WFC. This research has its primary research purpose in identifying the negative effects of the Work-Family Conflict, and started out from the recognition of the problem that the research on the direct relationship on the influence of the WFC on Work Engagement is lacking. Based on the COR(Conservation of resource theory) and JD-R(Job Demand- Resource model), the empirical study model to examine the negative effects of WFC with Emotional Exhaustion as the link between WFC and Work Engagement was suggested and validated. Also, it was analyzed how much Positive Psychological Capital may buffer the negative effects arising from WFC within this relationship, and the Mediated Moderation model controlling the indirect effect influencing the Work Engagement by the Positive Psychological Capital mediated by the WFC and Emotional Exhaustion was verified. Data was collected by using questionnaires distributed to 500 employees engaged manufacturing, services, finance, IT industry, education services, and other sectors, of which 389 were used in the statistical analysis. The data are analyzed by statistical package, SPSS 21.0, SPSS macro and AMOS 21.0. The hierarchical regression analysis, SPSS PROCESS macro and Bootstrapping method for hypothesis testing were conducted. Results showed that all hypotheses are supported. First, WFC showed a negative effect on Work Engagement. Specifically, WIF appeared to be on more negative effects than FIW. Second, Emotional exhaustion found to mediate the relationship between WFC and Work Engagement. Third, Positive Psychological Capital showed to moderate the relationship between WFC and Emotional Exhaustion. Fourth, the effect of mediated moderation through the integration verification, Positive Psychological Capital demonstrated to buffer the relationship among WFC, Emotional Exhastion, and Work Engagement. Also, WIF showed a more negative effects than FIW through verification of all hypotheses. Finally, we discussed the theoretical and practical implications on research and management of the WFC, and proposed limitations and future research directions of research.Keywords: emotional exhaustion, positive psychological capital, work engagement, work-family conflict
Procedia PDF Downloads 22726243 Evaluation of Bucket Utility Truck In-Use Driving Performance and Electrified Power Take-Off Operation
Authors: Robert Prohaska, Arnaud Konan, Kenneth Kelly, Adam Ragatz, Adam Duran
Abstract:
In an effort to evaluate the in-use performance of electrified Power Take-off (PTO) usage on bucket utility trucks operating under real-world conditions, data from 20 medium- and heavy-duty vehicles operating in California, USA were collected, compiled, and analyzed by the National Renewable Energy Laboratory's (NREL) Fleet Test and Evaluation team. In this paper, duty-cycle statistical analyses of class 5, medium-duty quick response trucks and class 8, heavy-duty material handler trucks are performed to examine and characterize vehicle dynamics trends and relationships based on collected in-use field data. With more than 100,000 kilometers of driving data collected over 880+ operating days, researchers have developed a robust methodology for identifying PTO operation from in-field vehicle data. Researchers apply this unique methodology to evaluate the performance and utilization of the conventional and electric PTO systems. Researchers also created custom representative drive-cycles for each vehicle configuration and performed modeling and simulation activities to evaluate the potential fuel and emissions savings for hybridization of the tractive driveline on these vehicles. The results of these analyses statistically and objectively define the vehicle dynamic and kinematic requirements for each vehicle configuration as well as show the potential for further system optimization through driveline hybridization. Results are presented in both graphical and tabular formats illustrating a number of key relationships between parameters observed within the data set that relates specifically to medium- and heavy-duty utility vehicles operating under real-world conditions.Keywords: drive cycle, heavy-duty (HD), hybrid, medium-duty (MD), PTO, utility
Procedia PDF Downloads 40126242 Optimizing Nitrogen Fertilizer Application in Rice Cultivation: A Decision Model for Top and Ear Dressing Dosages
Authors: Ya-Li Tsai
Abstract:
Nitrogen is a vital element crucial for crop growth, significantly influencing crop yield. In rice cultivation, farmers often apply substantial nitrogen fertilizer to maximize yields. However, excessive nitrogen application increases the risk of lodging and pest infestation, leading to yield losses. Additionally, conventional flooded irrigation methods consume significant water resources, necessitating precise agricultural and intelligent water management systems. In this study, it leveraged physiological data and field images captured by unmanned aerial vehicles, considering fertilizer treatment and irrigation as key factors. Statistical models incorporating rice physiological data, yield, and vegetation indices from image data were developed. Missing physiological data were addressed using multiple imputation and regression methods, and regression models were established using principal component analysis and stepwise regression. Target nitrogen accumulation at key growth stages was identified to optimize fertilizer application, with the difference between actual and target nitrogen accumulation guiding recommendations for ear dressing dosage. Field experiments conducted in 2022 validated the recommended ear dressing dosage, demonstrating no significant difference in final yield compared to traditional fertilizer levels under alternate wetting and drying irrigation. These findings highlight the efficacy of applying recommended dosages based on fertilizer decision models, offering the potential for reduced fertilizer use while maintaining yield in rice cultivation.Keywords: intelligent fertilizer management, nitrogen top and ear dressing fertilizer, rice, yield optimization
Procedia PDF Downloads 9426241 Influence of Leadership Tenure and Succession on Institutional Goal Attainment in the University of Ibadan, Nigeria (2006-2015)
Authors: Ismial A. Raji, Blessing Egbezieme Oladejo, Babatunde Kasim Oladele
Abstract:
The study investigated the influence of leadership succession and tenure on goal attainment in the University of Ibadan. Leadership styles, tenure politics, organization succession, leadership succession, goal attainment in terms of research, teaching and public services were considered. The study adopted a descriptive survey design. The population of the study was 250 consisting 90 academic staff, 100 Senior Non-Teaching Staff and 60 Junior Non-Teaching Staff. Questionnaire was the instrument used to collect data. The instrument reliability coefficient was 0.88. Data collected were analysed with descriptive statistics. The result revealed that a significant relationship exist between leadership succession, tenure and goal attainment (r= .648, 0.466 and 0.479p< .0.5) Also, There was no statistical significant interaction between the effects of leadership tenure and leadership succession on goal attainment, F (38, 131) = 1.356, p = .104. The main influence of the independent variables on goal attainment were significant at F (24, 131) = 1.682, p=.034 and F (26, 131) = 2.182, p=.002. The study concluded that leadership succession and tenure are key factors for goal attainment in the University of Ibadan. The study recommended that an effective leadership succession and tenure processes should be maintained and sustained by higher institutions of learning.Keywords: leadership tenure, style, succession, institutional goal
Procedia PDF Downloads 26226240 Comparative Analysis of Enzyme Activities Concerned in Decomposition of Toluene
Authors: Ayuko Itsuki, Sachiyo Aburatani
Abstract:
In recent years, pollutions of the environment by toxic substances become a serious problem. While there are many methods of environmental clean-up, the methods by microorganisms are considered to be reasonable and safety for environment. Compost is known that it catabolize the meladorous substancess in its production process, however the mechanism of its catabolizing system is not known yet. In the catabolization process, organic matters turn into inorganic by the released enzymes from lots of microorganisms which live in compost. In other words, the cooperative of activated enzymes in the compost decomposes malodorous substances. Thus, clarifying the interaction among enzymes is important for revealing the catabolizing system of meladorous substance in compost. In this study, we utilized statistical method to infer the interaction among enzymes. We developed a method which combined partial correlation with cross correlation to estimate the relevance between enzymes especially from time series data of few variables. Because of using cross correlation, we can estimate not only the associative structure but also the reaction pathway. We applied the developed method to the enzyme measured data and estimated an interaction among the enzymes in decomposition mechanism of toluene.Keywords: enzyme activities, comparative analysis, compost, toluene
Procedia PDF Downloads 27926239 Examination of the Satisfaction Levels of Pre-Service Teachers Concerning E-Learning Process in Terms of Different Variables
Authors: Agah Tugrul Korucu
Abstract:
Significant changes have taken place for the better in the bulk of information and in the use of technology available in the field of education induced by technological changes in the 21st century. It is mainly the job of the teachers and pre-service teachers to integrate information and communication technologies into education by means of conveying the use of technology to individuals. While the pre-service teachers are conducting lessons by using technology, the methods they have developed are important factors for the requirements of the lesson and for the satisfaction levels of the students. The study of this study is to examine the satisfaction levels of pre-service teachers as regards e-learning in a technological environment in which there are lesson activities conducted through an online learning environment in terms of various variables. The study group of the research is composed of 156 pre-service teachers that were students in the departments of Computer and Teaching Technologies, Art Teaching and Pre-school Teaching in the academic year of 2014 - 2015. The qualitative research method was adopted for this study; the scanning model was employed in collecting the data. “The Satisfaction Scale regarding the E-learning Process”, developed by Gülbahar, and the personal information form, which was developed by the researcher, were used as means of collecting the data. Cronbach α reliability coefficient, which is the internal consistency coefficient of the scale, is 0.91. SPSS computerized statistical package program and the techniques of medium, standard deviation, percentage, correlation, t-test and variance analysis were used in the analysis of the data.Keywords: online learning environment, integration of information technologies, e-learning, e-learning satisfaction, pre-service teachers
Procedia PDF Downloads 35426238 Analytical Study of Cobalt(II) and Nickel(II) Extraction with Salicylidene O-, M-, and P-Toluidine in Chloroform
Authors: Sana Almi, Djamel Barkat
Abstract:
The solvent extraction of cobalt (II) and nickel (II) from aqueous sulfate solutions were investigated with the analytical methods of slope analysis using salicylidene aniline and the three isomeric o-, m- and p-salicylidene toluidine diluted with chloroform at 25°C. By a statistical analysis of the extraction data, it was concluded that the extracted species are CoL2 with CoL2(HL) and NiL2 (HL denotes HSA, HSOT, HSMT, and HSPT). The extraction efficiency of Co(II) was higher than Ni(II). This tendency is confirmed from numerical extraction constants for each metal cations. The best extraction was according to the following order: HSMT > HSPT > HSOT > HSA for Co2+ and Ni2+.Keywords: solvent extraction, nickel(II), cobalt(II), salicylidene aniline, o-, m-, and p-salicylidene toluidine
Procedia PDF Downloads 48826237 Investigation of Verbal Feedback and Learning Process for Oral Presentation
Authors: Nattawadee Sinpattanawong
Abstract:
Oral presentation has been used mostly in business communication. The business presentation is carrying out through an audio and visual presentation material such as statistical documents, projectors, etc. Common examples of business presentation are intra-organization and sales presentations. The study aims at investigating functions, strategies and contents of assessors’ verbal feedback on presenters’ oral presentations and exploring presenters’ learning process and specific views and expectations concerning assessors’ verbal feedback related to the delivery of the oral presentation. This study is designed as a descriptive qualitative research; four master students and one teacher in English for Business and Industry Presentation Techniques class of public university will be selected. The researcher hopes that any understanding how assessors’ verbal feedback on oral presentations and learning process may illuminate issues for other people. The data from this research may help to expand and facilitate the readers’ understanding of assessors’ verbal feedback on oral presentations and learning process in their own situations. The research instruments include an audio recorder, video recorder and an interview. The students will be interviewing in order to ask for their views and expectations concerning assessors’ verbal feedback related to the delivery of the oral presentation. After finishing data collection, the data will be analyzed and transcribed. The findings of this study are significant because it can provide presenters knowledge to enhance their learning process and provide teachers knowledge about providing verbal feedback on student’s oral presentations on a business context.Keywords: business context, learning process, oral presentation, verbal feedback
Procedia PDF Downloads 19626236 Enhancing Organizational Performance through Employee Empowerment: A Study of Koosar Insurance Company in Tehran
Authors: Masoud Jabar Zadeh Mamaghani
Abstract:
Employee empowerment is an effective technique for increasing employee productivity and utilizing their individual and group capacities toward organizational goals. Empowerment is a process that helps improve and enhance performance through the development and expansion of individuals' and teams' influence and capabilities. In other words, empowerment is a strategy for organizational development and flourishing. In this study, the relationship between training and employee empowerment was examined in addition to measuring the level of empowerment among the employees of Kowsar Tehran Insurance Agency. The research method used was a descriptive correlation, and the statistical population of the study included all official employees with a degree higher than a diploma in Kowsar Tehran Insurance Agency. Data related to training hours while serving employees were extracted from their educational certificates, and data related to employees' empowerment levels were obtained through interviews and questionnaires. The research results showed that the level of empowerment among the employees in this agency is higher than the average in all dimensions. However, no correlation was observed between their empowerment level and the training hours they completed while serving.Keywords: employee empowerment, organizational development, training, insurance industry
Procedia PDF Downloads 8726235 The Effectiveness of Energy Index Technique in Bearing Condition Monitoring
Authors: Faisal Alshammari, Abdulmajid Addali, Mosab Alrashed, Taihiret Alhashan
Abstract:
The application of acoustic emission techniques is gaining popularity, as it can monitor the condition of gears and bearings and detect early symptoms of a defect in the form of pitting, wear, and flaking of surfaces. Early detection of these defects is essential as it helps to avoid major failures and the associated catastrophic consequences. Signal processing techniques are required for early defect detection – in this article, a time domain technique called the Energy Index (EI) is used. This article presents an investigation into the Energy Index’s effectiveness to detect early-stage defect initiation and deterioration, and compares it with the common r.m.s. index, Kurtosis, and the Kolmogorov-Smirnov statistical test. It is concluded that EI is a more effective technique for monitoring defect initiation and development than other statistical parameters.Keywords: acoustic emission, signal processing, kurtosis, Kolmogorov-Smirnov test
Procedia PDF Downloads 37126234 Opening up Government Datasets for Big Data Analysis to Support Policy Decisions
Authors: K. Hardy, A. Maurushat
Abstract:
Policy makers are increasingly looking to make evidence-based decisions. Evidence-based decisions have historically used rigorous methodologies of empirical studies by research institutes, as well as less reliable immediate survey/polls often with limited sample sizes. As we move into the era of Big Data analytics, policy makers are looking to different methodologies to deliver reliable empirics in real-time. The question is not why did these people do this for the last 10 years, but why are these people doing this now, and if the this is undesirable, and how can we have an impact to promote change immediately. Big data analytics rely heavily on government data that has been released in to the public domain. The open data movement promises greater productivity and more efficient delivery of services; however, Australian government agencies remain reluctant to release their data to the general public. This paper considers the barriers to releasing government data as open data, and how these barriers might be overcome.Keywords: big data, open data, productivity, data governance
Procedia PDF Downloads 37526233 Review of Downscaling Methods in Climate Change and Their Role in Hydrological Studies
Authors: Nishi Bhuvandas, P. V. Timbadiya, P. L. Patel, P. D. Porey
Abstract:
Recent perceived climate variability raises concerns with unprecedented hydrological phenomena and extremes. Distribution and circulation of the waters of the Earth become increasingly difficult to determine because of additional uncertainty related to anthropogenic emissions. According to the sixth Intergovernmental Panel on Climate Change (IPCC) Technical Paper on Climate Change and water, changes in the large-scale hydrological cycle have been related to an increase in the observed temperature over several decades. Although many previous research carried on effect of change in climate on hydrology provides a general picture of possible hydrological global change, new tools and frameworks for modelling hydrological series with nonstationary characteristics at finer scales, are required for assessing climate change impacts. Of the downscaling techniques, dynamic downscaling is usually based on the use of Regional Climate Models (RCMs), which generate finer resolution output based on atmospheric physics over a region using General Circulation Model (GCM) fields as boundary conditions. However, RCMs are not expected to capture the observed spatial precipitation extremes at a fine cell scale or at a basin scale. Statistical downscaling derives a statistical or empirical relationship between the variables simulated by the GCMs, called predictors, and station-scale hydrologic variables, called predictands. The main focus of the paper is on the need for using statistical downscaling techniques for projection of local hydrometeorological variables under climate change scenarios. The projections can be then served as a means of input source to various hydrologic models to obtain streamflow, evapotranspiration, soil moisture and other hydrological variables of interest.Keywords: climate change, downscaling, GCM, RCM
Procedia PDF Downloads 41126232 The Incident of Concussion across Popular American Youth Sports: A Retrospective Review
Authors: Rami Hashish, Manon Limousis-Gayda, Caitlin H. McCleery
Abstract:
Introduction: A leading cause of emergency room visits among youth (in the United States), is sports-related traumatic brain injuries. Mild traumatic brain injuries (mTBIs), also called concussions, are caused by linear and/or angular acceleration experienced at the head and represent an increasing societal burden. Due to the developing nature of the brain in youth, there is a great risk for long-term neuropsychological deficiencies following a concussion. Accordingly, the purpose of this paper is to investigate incidence rates of concussion across gender for the five most common youth sports in the United States. These include basketball, track and field, soccer, baseball (boys), softball (girls), football (boys), and volleyball (girls). Methods: A PubMed search was performed for four search themes combined. The first theme identified the outcomes (concussion, brain injuries, mild traumatic brain injury, etc.). The second theme identified the sport (American football, soccer, basketball, softball, volleyball, track, and field, etc.). The third theme identified the population (adolescence, children, youth, boys, girls). The last theme identified the study design (prevalence, frequency, incidence, prospective). Ultimately, 473 studies were surveyed, with 15 fulfilling the criteria: prospective study presenting original data and incidence of concussion in the relevant youth sport. The following data were extracted from the selected studies: population age, total study population, total athletic exposures (AE) and incidence rate per 1000 athletic exposures (IR/1000). Two One-Way ANOVA and a Tukey’s post hoc test were conducted using SPSS. Results: From the 15 selected studies, statistical analysis revealed the incidence of concussion per 1000 AEs across the considered sports ranged from 0.014 (girl’s track and field) to 0.780 (boy’s football). Average IR/1000 across all sports was 0.483 and 0.268 for boys and girls, respectively; this difference in IR was found to be statistically significant (p=0.013). Tukey’s post hoc test showed that football had significantly higher IR/1000 than boys’ basketball (p=0.022), soccer (p=0.033) and track and field (p=0.026). No statistical difference was found for concussion incidence between girls’ sports. Removal of football was found to lower the IR/1000 for boys without a statistical difference (p=0.101) compared to girls. Discussion: Football was the only sport showing a statistically significant difference in concussion incidence rate relative to other sports (within gender). Males were overall more likely to be concussed than females when football was included (1.8x), whereas concussion was more likely for females when football was excluded. While the significantly higher rate of concussion in football is not surprising because of the nature and rules of the sport, it is concerning that research has shown higher incidence of concussion in practices than games. Interestingly, findings indicate that girls’ sports are more concussive overall when football is removed. This appears to counter the common notion that boys’ sports are more physically taxing and dangerous. Future research should focus on understanding the concussive mechanisms of injury in each sport to enable effective rule changes.Keywords: gender, football, soccer, traumatic brain injury
Procedia PDF Downloads 14526231 The Effect of Acute Creatine Supplementation on Physiological Variables of Continuous and Intermittent Soccer Activities of Men Soccer Players
Authors: Abdolrasoul Daneshjoo
Abstract:
The aim of this study was studying the effect of acute creatine supplementation on physiological variables of continuous and intermittent soccer activities of men soccer players. 32 soccer players from Tarbiat Moalem University aged (22/3+-1/6) volunteered for this research and were divided into two groups randomly. Both experimental and control groups after 6 days taking supplementation were tested. For measuring height and weight meter and balance were used. Questionnaire for health background, lactate electro, heart beat measuring polar electro, continuous and intermittent training program and time recorder were used for data collection. For data analysis descriptive statistical techniques, two-way ANOVA and F test were used. The result of this study showed increased significantly in heart rate in control group. For control group heart beat was (71/6 +- 3/5) and for experimental group it was (75/3 +- 4/9). No significant differences were observed in players weight after taking creatine.Keywords: heartbeat, lactate Blood, creatine, soccer players of Tarbiat Moalem University
Procedia PDF Downloads 38426230 Modelling Sudden Deaths from Myocardial Infarction and Stroke
Authors: Y. S. Yusoff, G. Streftaris, H. R Waters
Abstract:
Death within 30 days is an important factor to be looked into, as there is a significant risk of deaths immediately following or soon after, Myocardial Infarction (MI) or stroke. In this paper, we will model the deaths within 30 days following a Myocardial Infarction (MI) or stroke in the UK. We will see how the probabilities of sudden deaths from MI or stroke have changed over the period 1981-2000. We will model the sudden deaths using a Generalized Linear Model (GLM), fitted using the R statistical package, under a Binomial distribution for the number of sudden deaths. We parameterize our model using the extensive and detailed data from the Framingham Heart Study, adjusted to match UK rates. The results show that there is a reduction for the sudden deaths following a MI over time but no significant improvement for sudden deaths following a stroke.Keywords: sudden deaths, myocardial infarction, stroke, ischemic heart disease
Procedia PDF Downloads 29226229 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment
Authors: Arindam Chaudhuri
Abstract:
Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.Keywords: FRSVM, Hadoop, MapReduce, PFRSVM
Procedia PDF Downloads 49726228 A Systematic Review on Challenges in Big Data Environment
Authors: Rimmy Yadav, Anmol Preet Kaur
Abstract:
Big Data has demonstrated the vast potential in streamlining, deciding, spotting business drifts in different fields, for example, producing, fund, Information Technology. This paper gives a multi-disciplinary diagram of the research issues in enormous information and its procedures, instruments, and system identified with the privacy, data storage management, network and energy utilization, adaptation to non-critical failure and information representations. Other than this, result difficulties and openings accessible in this Big Data platform have made.Keywords: big data, privacy, data management, network and energy consumption
Procedia PDF Downloads 31626227 Comparison of Different Artificial Intelligence-Based Protein Secondary Structure Prediction Methods
Authors: Jamerson Felipe Pereira Lima, Jeane Cecília Bezerra de Melo
Abstract:
The difficulty and cost related to obtaining of protein tertiary structure information through experimental methods, such as X-ray crystallography or NMR spectroscopy, helped raising the development of computational methods to do so. An approach used in these last is prediction of tridimensional structure based in the residue chain, however, this has been proved an NP-hard problem, due to the complexity of this process, explained by the Levinthal paradox. An alternative solution is the prediction of intermediary structures, such as the secondary structure of the protein. Artificial Intelligence methods, such as Bayesian statistics, artificial neural networks (ANN), support vector machines (SVM), among others, were used to predict protein secondary structure. Due to its good results, artificial neural networks have been used as a standard method to predict protein secondary structure. Recent published methods that use this technique, in general, achieved a Q3 accuracy between 75% and 83%, whereas the theoretical accuracy limit for protein prediction is 88%. Alternatively, to achieve better results, support vector machines prediction methods have been developed. The statistical evaluation of methods that use different AI techniques, such as ANNs and SVMs, for example, is not a trivial problem, since different training sets, validation techniques, as well as other variables can influence the behavior of a prediction method. In this study, we propose a prediction method based on artificial neural networks, which is then compared with a selected SVM method. The chosen SVM protein secondary structure prediction method is the one proposed by Huang in his work Extracting Physico chemical Features to Predict Protein Secondary Structure (2013). The developed ANN method has the same training and testing process that was used by Huang to validate his method, which comprises the use of the CB513 protein data set and three-fold cross-validation, so that the comparative analysis of the results can be made comparing directly the statistical results of each method.Keywords: artificial neural networks, protein secondary structure, protein structure prediction, support vector machines
Procedia PDF Downloads 62426226 Confirmatory Factor Analysis of Smartphone Addiction Inventory (SPAI) in the Yemeni Environment
Authors: Mohammed Al-Khadher
Abstract:
Currently, we are witnessing rapid advancements in the field of information and communications technology, forcing us, as psychologists, to combat the psychological and social effects of such developments. It also drives us to continually look for the development and preparation of measurement tools compatible with the changes brought about by the digital revolution. In this context, the current study aimed to identify the factor analysis of the Smartphone Addiction Inventory (SPAI) in the Republic of Yemen. The sample consisted of (1920) university students (1136 males and 784 females) who answered the inventory, and the data was analyzed using the statistical software (AMOS V25). The factor analysis results showed a goodness-of-fit of the data five-factor model with excellent indicators, as RMSEA-(.052), CFI-(.910), GFI-(.931), AGFI-(.915), TLI-(.897), NFI-(.895), RFI-(.880), and RMR-(.032). All within the ideal range to prove the model's fit of the scale’s factor analysis. The confirmatory factor analysis results showed factor loading in (4) items on (Time Spent), (4) items on (Compulsivity), (8) items on (Daily Life Interference), (5) items on (Craving), and (3) items on (Sleep interference); and all standard values of factor loading were statistically significant at the significance level (>.001).Keywords: smartphone addiction inventory (SPAI), confirmatory factor analysis (CFA), yemeni students, people at risk of smartphone addiction
Procedia PDF Downloads 10226225 Pedagogy to Involve Research Process in an Undergraduate Physical Fitness Course: A Case Study
Authors: Indhumathi Gopal
Abstract:
Undergraduate research is well documented in Science, Technology, Engineering, and Mathematics (STEM), neurosciences, and microbiology disciplines, though it is hardly part of a physical fitness & wellness discipline. However, students need experiential learning opportunities, like internships and research assistantships, to get ahead with graduate schools and be gainfully employed. The first step towards this goal is to have students do a simple research project in a semester-long course. The value of research experiences and how to integrate research activity in a physical fitness & wellness course are discussed. The investigator looks into a mini research project, “Awareness of Obesity among College Students” and explains how to guide students through the research process, including journal search, data collection, and basic statistics. Besides, students will be introduced to the statistical package program SPSS 22.0 to assist with data evaluation. The lab component of the combined lecture-physical activity course could include the measurement of student’s weight with respect to their height to obtain body mass index (BMI). Students could categorize themselves in accordance with the World Health Organization’s guidelines. Results obtained after completing the data analysis help students be aware of their own potential health risks associated with overweight and obesity. Overweight and obesity are risk factors for hypertension, hypercholesterolemia, heart disease, stroke, diabetes, and certain types of cancer. It is hoped that this experience will get students interested in scientific studies, gain confidence, think critically, and develop problem-solving and good communication skills.Keywords: physical fitness, undergraduate research experience, obesity, BMI
Procedia PDF Downloads 8526224 Customers' Perception towards the Service Marketing Mix and Frequency of Use of Mercedes Benz Automobile Service, Thailand
Authors: Pranee Tridhoskul
Abstract:
This research paper is aimed to examine a relationship between the service marketing mix and customers’ frequency of use of service at Mercedes Benz Auto Repair Centres under Thonburi Group, Thailand. Based on 2,267 customers who used the service of Thonburi Group’s Auto Repair Centres as the population, the sampling of this research was a total of 340 samples, by use of Probability Sampling Technique. Systematic Random Sampling was applied by use of questionnaire in collecting the data at Thonburi Group’s Auto Repair Centres. Mean and Pearson’s basic statistical correlations were utilized in analyzing the data. The study discovered a medium level of customers’ perception towards product and service of Thonburi Group’s Auto Repair Centres, price, place or distribution channel and promotion. People who provided service were perceived also at a medium level, whereas the physical evidence and service process were perceived at a high level. Furthermore, there appeared a correlation between the physical evidence and service process, and customers’ frequency of use of automobile service per year.Keywords: service marketing mix, behavior, Mercedes Auto Service Centre, frequency of use
Procedia PDF Downloads 33026223 Survey on Big Data Stream Classification by Decision Tree
Authors: Mansoureh Ghiasabadi Farahani, Samira Kalantary, Sara Taghi-Pour, Mahboubeh Shamsi
Abstract:
Nowadays, the development of computers technology and its recent applications provide access to new types of data, which have not been considered by the traditional data analysts. Two particularly interesting characteristics of such data sets include their huge size and streaming nature .Incremental learning techniques have been used extensively to address the data stream classification problem. This paper presents a concise survey on the obstacles and the requirements issues classifying data streams with using decision tree. The most important issue is to maintain a balance between accuracy and efficiency, the algorithm should provide good classification performance with a reasonable time response.Keywords: big data, data streams, classification, decision tree
Procedia PDF Downloads 52526222 Robust and Dedicated Hybrid Cloud Approach for Secure Authorized Deduplication
Authors: Aishwarya Shekhar, Himanshu Sharma
Abstract:
Data deduplication is one of important data compression techniques for eliminating duplicate copies of repeating data, and has been widely used in cloud storage to reduce the amount of storage space and save bandwidth. In this process, duplicate data is expunged, leaving only one copy means single instance of the data to be accumulated. Though, indexing of each and every data is still maintained. Data deduplication is an approach for minimizing the part of storage space an organization required to retain its data. In most of the company, the storage systems carry identical copies of numerous pieces of data. Deduplication terminates these additional copies by saving just one copy of the data and exchanging the other copies with pointers that assist back to the primary copy. To ignore this duplication of the data and to preserve the confidentiality in the cloud here we are applying the concept of hybrid nature of cloud. A hybrid cloud is a fusion of minimally one public and private cloud. As a proof of concept, we implement a java code which provides security as well as removes all types of duplicated data from the cloud.Keywords: confidentiality, deduplication, data compression, hybridity of cloud
Procedia PDF Downloads 38626221 Employment Promotion and Its Role in Counteracting Unemployment during the Financial Crisis in the USA
Authors: Beata Wentura-Dudek
Abstract:
In the United States in 2007-2010 before the crisis, the US labour market policy focused mainly on providing residents with unemployment insurance, after the recession this policy changed. The aim of the article was to present quantitative research presenting the most effective labor market instruments contributing to reducing unemployment during the crisis in the USA. The article presents research based on the analysis of available documents and statistical data. The results of the conducted research show that the most effective forms of counteracting unemployment at that time were: direct job creation, job search assistance, subsidized employment, training and employment promotion using new technologies, including social media.Keywords: lotteries, loyalty programs, competitions, bonus sales, rebate campaigns
Procedia PDF Downloads 14626220 The Role of Celebrity Endorser in Men's Grooming Communication
Authors: Susana Marques, Cleide Abreu
Abstract:
Presently, more than ever, men’s grooming is seen as a broad category. The problem comes when the previous research about male consumer behavior have neglected some aspects in this subject. The purpose of this investigation is to examine the role of celebrity endorsement in men’s grooming communication to Generation Y. After identifying some gaps in the literature, with regard to this contemporary subject, the most important variables were defined in order to develop the investigation and draw conclusions through statistical analysis and validation, about the role celebrity endorsement as source of credibility in men’s grooming communication. According to the design and methodology, this research was sustained through in depth marketing analysis (secondary data), and primary data collection via online questionnaire, whereby 168 male respondents, from Brazil and Portugal, were exposed to some advertisement pieces in order to express their opinion and feelings. The findings reveal all the relationships among the variables, suggested by the literature, have occurred, presenting a significant relationship in terms of Source Credibility scale dimensions – attractiveness, trustworthiness and expertise. This paper aims to contribute to the existing literature with important conclusions about the role of celebrity endorsement and its credibility in men’s grooming advertisement.Keywords: communication, celebrity endorsement, men’s grooming, consumer behavior
Procedia PDF Downloads 24626219 A Review of Machine Learning for Big Data
Authors: Devatha Kalyan Kumar, Aravindraj D., Sadathulla A.
Abstract:
Big data are now rapidly expanding in all engineering and science and many other domains. The potential of large or massive data is undoubtedly significant, make sense to require new ways of thinking and learning techniques to address the various big data challenges. Machine learning is continuously unleashing its power in a wide range of applications. In this paper, the latest advances and advancements in the researches on machine learning for big data processing. First, the machine learning techniques methods in recent studies, such as deep learning, representation learning, transfer learning, active learning and distributed and parallel learning. Then focus on the challenges and possible solutions of machine learning for big data.Keywords: active learning, big data, deep learning, machine learning
Procedia PDF Downloads 450