Search results for: pure water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9262

Search results for: pure water

8482 Investigating the Chemical Structure of Drinking Water in Domestic Areas of Kuwait by Appling GIS Technology

Authors: H. Al-Jabli

Abstract:

The research on the presence of heavy metals and bromate in drinking water is of immense scientific significance due to the potential risks these substances pose to public health. These contaminants are subject to regulatory limits outlined by the National Primary Drinking Water Regulations. Through a comprehensive analysis involving the compilation of existing data and the collection of new data via water sampling in residential areas of Kuwait, the aim is to create detailed maps illustrating the spatial distribution of these substances. Furthermore, the investigation will utilize GRAPHER software to explore correlations among different chemical parameters. By implementing rigorous scientific methodologies, the research will provide valuable insights for the Ministry of Electricity and Water and the Ministry of Health. These insights can inform evidence-based decision-making, facilitate the implementation of corrective measures, and support strategic planning for future infrastructure activities.

Keywords: heavy metals, bromate, ozonation, GIS

Procedia PDF Downloads 64
8481 Effect of Electrodes Spacing on Energy Consumption of Electrocoagulation Cells

Authors: Khalid S. Hashim, Andy Shaw, Rafid Al-Khaddar, Montserrat Ortoneda Pedrola

Abstract:

In spite of the acknowledged advantages of the electrocoagulation (EC) method to remove a wide range of pollutants from waters and wastewaters, its efficiency is limited by several operational parameters (such as electrolysis time, current density, electrode material, distance between electrodes, and water temperature). Hence, optimizing these key operating parameters is considered a vital step to remove a pollutant efficiently. In this context, the present study has been carried out to explore the influence of electrodes spacing on energy consumption, temperature of the water being treated, and iron removal from water. To achieve this target, iron containing synthetic water samples were electrolysed for 20 min, using a new flow column electrocoagulation reactor (FCER), at three different gaps between electrodes (5, 10, and 20 mm). These batch experiments were commenced at a constant current density of 1.5 mA/cm² and initial pH of 6. The obtained results demonstrated that increasing gap between electrodes negatively influenced the performance of the EC method. It was found that increasing the gap between electrodes from 5 to 20 mm increased the energy consumption from about 3.3 to 7.3 kW.h/m³, and water temperature from 20.2 to 22 °C, respectively. In addition, it has been found, after 20 min of electrolysing, that increasing the gap between electrodes from 5 to 20 mm increased the residual iron concentration from 0.05 to 1.01 mg/L, respectively.

Keywords: electrocoagulation, water, electrodes, iron

Procedia PDF Downloads 254
8480 Multiparametric Optimization of Water Treatment Process for Thermal Power Plants

Authors: Balgaisha Mukanova, Natalya Glazyrina, Sergey Glazyrin

Abstract:

The formulated problem of optimization of the technological process of water treatment for thermal power plants is considered in this article. The problem is of multiparametric nature. To optimize the process, namely, reduce the amount of waste water, a new technology was developed to reuse such water. A mathematical model of the technology of wastewater reuse was developed. Optimization parameters were determined. The model consists of a material balance equation, an equation describing the kinetics of ion exchange for the non-equilibrium case and an equation for the ion exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion exchange. A direct problem of calculating the impurity concentration at the outlet of the water treatment plant was numerically solved. The direct problem was approximated by an implicit point-to-point computation difference scheme. The inverse problem was formulated as relates to determination of the parameters of the mathematical model of the water treatment plant operating in non-equilibrium conditions. The formulated inverse problem was solved. Following the results of calculation the time of start of the filter regeneration process was determined, as well as the period of regeneration process and the amount of regeneration and wash water. Multi-parameter optimization of water treatment process for thermal power plants allowed decreasing the amount of wastewater by 15%.

Keywords: direct problem, multiparametric optimization, optimization parameters, water treatment

Procedia PDF Downloads 380
8479 Mechanisms of Ginger Bioactive Compounds Extract Using Soxhlet and Accelerated Water Extraction

Authors: M. N. Azian, A. N. Ilia Anisa, Y. Iwai

Abstract:

The mechanism for extraction bioactive compounds from plant matrix is essential for optimizing the extraction process. As a benchmark technique, a soxhlet extraction has been utilized for discussing the mechanism and compared with an accelerated water extraction. The trends of both techniques show that the process involves extraction and degradation. The highest yields of 6-, 8-, 10-gingerols and 6-shogaol in soxhlet extraction were 13.948, 7.12, 10.312 and 2.306 mg/g, respectively. The optimum 6-, 8-, 10-gingerols and 6-shogaol extracted by the accelerated water extraction at 140oC were 68.97±3.95 mg/g at 3min, 18.98±3.04 mg/g at 5min, 5.167±2.35 mg/g at 3min and 14.57±6.27 mg/g at 3min, respectively. The effect of temperature at 3mins shows that the concentration of 6-shogaol increased rapidly as decreasing the recovery of 6-gingerol.

Keywords: mechanism, ginger bioactive compounds, soxhlet extraction, accelerated water extraction

Procedia PDF Downloads 424
8478 A Multivariate Statistical Approach for Water Quality Assessment of River Hindon, India

Authors: Nida Rizvi, Deeksha Katyal, Varun Joshi

Abstract:

River Hindon is an important river catering the demand of highly populated rural and industrial cluster of western Uttar Pradesh, India. Water quality of river Hindon is deteriorating at an alarming rate due to various industrial, municipal and agricultural activities. The present study aimed at identifying the pollution sources and quantifying the degree to which these sources are responsible for the deteriorating water quality of the river. Various water quality parameters, like pH, temperature, electrical conductivity, total dissolved solids, total hardness, calcium, chloride, nitrate, sulphate, biological oxygen demand, chemical oxygen demand and total alkalinity were assessed. Water quality data obtained from eight study sites for one year has been subjected to the two multivariate techniques, namely, principal component analysis and cluster analysis. Principal component analysis was applied with the aim to find out spatial variability and to identify the sources responsible for the water quality of the river. Three Varifactors were obtained after varimax rotation of initial principal components using principal component analysis. Cluster analysis was carried out to classify sampling stations of certain similarity, which grouped eight different sites into two clusters. The study reveals that the anthropogenic influence (municipal, industrial, waste water and agricultural runoff) was the major source of river water pollution. Thus, this study illustrates the utility of multivariate statistical techniques for analysis and elucidation of multifaceted data sets, recognition of pollution sources/factors and understanding temporal/spatial variations in water quality for effective river water quality management.

Keywords: cluster analysis, multivariate statistical techniques, river Hindon, water quality

Procedia PDF Downloads 449
8477 Comparison of Overall Sensitivity of Meloidogyne incognita to Pure Cucurbitacins and Cucurbitacin-Containing Crude Extracts

Authors: Zakheleni P. Dube, Phatu W. Mashela

Abstract:

The Curve-fitting Allelochemical Response Data (CARD) model had been adopted as a valuable tool in enhancing the understanding of the efficacy of cucurbitacin-containing phytonematicides on the suppression of nematodes. In most cases, for registration purposes, the active ingredients should be in purified form. Evidence in other phytonematicides suggested that purified active ingredients were less effective in suppression of nematodes. The objective of this study was to use CARD model to compare the overall sensitivities of Meloidogyne incognita J2 hatch, mobility and mortality to Nemarioc-AL phytonematicides, cucurbitacin A, Nemafric-BL phytonematicide and cucurbitacin B. Meloidogyne incognita eggs and J2 were exposed to 0.00, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50 and 5.00% of each phytonematicide, whereas in purified form the concentrations were 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25 and 2.50 μg.mL⁻¹. The exposure period to each concentration was 24-, 48- and 72-h. The overall sensitivities of J2 hatch to Nemarioc-AL phytonematicide, cucurbitacin A, Nemafric-BL phytonematicide and cucurbitacin B were 1, 30, 5 and 2 units, respectively, whereas J2 mobiltity were 3, 17, 3 and 6 units, respectively. For J2 mortality overall sensitivities to Nemarioc-AL phytonematicide, cucurbitacin A, Nemafric-BL phytonematicide and cucurbitacin B were 2, 4, 1 and 4 units, respectively. In conclusion, the two crude extracts, Nemarioc-AL and Nemafric-BL phytonematicides were generally more potent to M. incognita compared to their pure active ingredients. The crude plant extract preparation is easy, and they could be an ideal tactic for the management of nematodes in resource poor farming communities.

Keywords: Botanicals, cucumin, leptodermin, plant extracts, triterpenoids

Procedia PDF Downloads 201
8476 Drought Resilient Water Supply for Livelihood: Establishment of Groundwater Treatment Plant at Construction Sites in Taichung City

Authors: Shang-Hsin Ou, Yang-Chun Lin, Ke-Hao Cheng

Abstract:

The year 2021 marked a historic drought in Taiwan, posing unprecedented challenges due to record-low rainfall and inadequate reservoir storage. The central region experienced water scarcity, leading to the implementation of "Groundwater Utilization at Construction Sites" for drought-resilient livelihood water supply. This study focuses on the establishment process of temporary groundwater treatment plants at construction sites in Taichung City, serving as a reference for future emergency response and the utilization of construction site groundwater. To identify suitable sites for groundwater reuse projects, site selection operations were carried out based on relevant water quality regulations and assessment principles. Subsequently, the planning and design of temporary water treatment plants were conducted, considering the water quality, quantity, and on-site conditions of groundwater wells associated with construction projects. The study consolidates the major water treatment facilities at each site and addresses encountered challenges during the establishment process. Practical insights gained from operating temporary groundwater treatment plants are presented, including improvements related to stable water quality, water quantity, equipment operation, and hydraulic control. In light of possible future droughts, this study provides an outlook and recommendations to expedite and improve the setup of groundwater treatment plants at construction sites. This includes considering on-site water abstraction, treatment, and distribution conditions. The study's results aim to offer practical guidelines for effectively establishing and managing such treatment plants, while offering experiences and recommendations for other regions facing similar emergencies, water shortages, and drought situations. These endeavors contribute to ensuring sustainable water supply for drought-resilient livelihoods and maintaining societal stability.

Keywords: drought resilience, groundwater treatment, construction site, water supply

Procedia PDF Downloads 72
8475 Development and Characterization of a Polymer Composite Electrolyte to Be Used in Proton Exchange Membranes Fuel Cells

Authors: B. A. Berns, V. Romanovicz, M. M. de Camargo Forte, D. E. O. S. Carpenter

Abstract:

The Proton Exchange Membranes (PEM) are largely studied because they operate at low temperatures and they are suitable for mobile applications. However, There are some deficiencies in their operation, Mainly those that use ethanol as a hydrogen source that require a certain attention. Therefore, This research aimed to develop Nafion® composite membranes, Mixing clay minerals, Kaolin and halloysite to the polymer matrix in order to improve the ethanol molecule retentions and at the same time to keep the system’s protonic conductivity. The modified Nafion/Kaolin, Nafion/Halloysite composite membranes were prepared in weight proportion of 0.5, 1.0 and 1.5. The membranes obtained were characterized as to their ethanol permeability, Protonic conductivity and water absorption. The composite morphology and structure are characterized by SEM and EDX and also the thermal behavior is determined by TGA and DSC. The analysis of the results shows ethanol permeability reduction from 48% to 63%. However, The protonic conductivity results are lower in relation to pure Nafion®. As to the thermal behavior, The Nafion® composite membranes were stable up to a temperature of 325ºC.

Keywords: Polymer-matrix composites (PMCs), thermal properties, nanoclay, differential scanning calorimetry

Procedia PDF Downloads 389
8474 The Use of Multivariate Statistical and GIS for Characterization Groundwater Quality in Laghouat Region, Algeria

Authors: Rouighi Mustapha, Bouzid Laghaa Souad, Rouighi Tahar

Abstract:

Due to rain Shortage and the increase of population in the last years, wells excavation and groundwater use for different purposes had been increased without any planning. This is a great challenge for our country. Moreover, this scarcity of water resources in this region is unfortunately combined with rapid fresh water resources quality deterioration, due to salinity and contamination processes. Therefore, it is necessary to conduct the studies about groundwater quality in Algeria. In this work consists in the identification of the factors which influence the water quality parameters in Laghouat region by using statistical analysis Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA) and geographic information system (GIS) in an attempt to discriminate the sources of the variation of water quality variations. The results of PCA technique indicate that variables responsible for water quality composition are mainly related to soluble salts variables; natural processes and the nature of the rock which modifies significantly the water chemistry. Inferred from the positive correlation between K+ and NO3-, NO3- is believed to be human induced rather than naturally originated. In this study, the multivariate statistical analysis and GIS allows the hydrogeologist to have supplementary tools in the characterization and evaluating of aquifers.

Keywords: cluster, analysis, GIS, groundwater, laghouat, quality

Procedia PDF Downloads 316
8473 The Evaluation of the Performance of CaCO3/Polymer Nano-Composites for the Preservation of Historic Limestone Monuments

Authors: Mohammed Badereldien, Rezk Diab, Mohamoud Ali, Ayman Aboelkassem

Abstract:

The stone surfaces of historical architectural heritage in Egypt are under threat from of various environmental factors such as temperature fluctuation, humidity, pollution, and microbes. Due to these factors, the facades of buildings are deteriorating deformation and disfiguration of external decoration and the formation of black accretion also often from the stone works. The aim of this study is to evaluate the effectiveness of CaCO₃ nano-particles as consolidation and protection material for calcareous stone monuments. Selected tests were carried out in order to estimate the superficial consolidating and protective effect of the treatment. When applied the nanoparticles dispersed in the acrylic copolymer; poly ethylmethacrylate (EMA)/methylacrylate (MA) (70/30, respectively) (EMA)/methylacrylate (MA) (70/30, respectively). The synthesis process of CaCO₃ nanoparticles/polymer nano-composite was prepared using in situ emulsion polymerization system. The consolidation and protection were characterized by TEM, while the penetration depth, re-aggregating effects of the deposited phase, and the surface morphology before and after treatment were examined by SEM (Scanning Electron Microscopy). Improvement of the stones' mechanical properties was evaluated by compressive strength tests. Changes in water-interaction properties were evaluated by water absorption capillarity measurements, and colorimetric measurements were used to evaluate the optical appearance. Together the results appear to demonstrate that CaCO₃/polymer nanocomposite is an efficient material for the consolidation of limestone architecture and monuments. As compared with samples treated with pure acrylic copolymer without Calcium carbonate nanoparticles, for example, CaCO₃ nanoparticles are completely compatible, strengthening limestone against thermal aging and improving its mechanical properties.

Keywords: calcium carbonate nanoparticles, consolidation, nanocomposites, calcareous stone, colorimetric measurements, compressive strength

Procedia PDF Downloads 125
8472 Investigating the Organizational Capacity of Communities Affecting Water Supply Resilience

Authors: Behrooz Balaei, Suzanne Wilkinson, Regan Potangaroa, Larry Abel, Philip McFarlane

Abstract:

Water supply system failure has serious direct and indirect effects on people wellbeing. Post-disaster water system serviceability depends on a variety of factors from technical characteristics to social, economic, and organizational attributes of communities. This paper tests the organizational factors affecting water supply resilience to outline how these factors contributed to previous disasters. To do so, a framework is briefly introduced in this study to provide a clear guide to identify the significant relevant organizational factors. Then the factors affecting water serviceability following a disaster are outlines. Next, these factors are measured in the case of Tropical Cyclone Pam, which hit Vanuatu in March 2015. Reviewing the existing literature has also been carried out to obtain a comprehensive understanding of the background A site visit and a series of interviews have also been undertaken following the cyclone to collect site-specific data and information. In the end, the organizational factors were ranked to enable decision makers to identify significance of each factor compared to the others.

Keywords: water supply, resilience, organizational capacity, Vanuatu, Tropical Cyclone Pam

Procedia PDF Downloads 120
8471 Role of Water Supply in the Functioning of the MLDB Systems

Authors: Ramanpreet Kaur, Upasana Sharma

Abstract:

The purpose of this paper is to address the challenges faced by MLDB system at the piston foundry plant due to interruption in supply of water. For the MLDB system to work in Model, two sub-units must be connected to the robotic main unit. The system cannot function without robotics and water supply by the fan (WSF). Insufficient water supply is the cause of system failure. The system operates at top performance using two sub-units. If one sub-unit fails, the system capacity is reduced. Priority of repair is given to the main unit i.e. Robotic and WSF. To solve the problem, semi-Markov process and regenerative point technique are used. Relevant graphs are also included to particular case.

Keywords: MLDB system, robotic, semi-Markov process, regenerative point technique

Procedia PDF Downloads 65
8470 Microwave Assisted Sol-gel Synthesis And Characterization Of Nanocrystalline Zirconia

Authors: Farzana Majid, Mahwish Bashir, Ammara, Attia Falak

Abstract:

Zirconia nanoparticles have gained significant attention due to their excellent mechanical strength, thermal properties, biocompatibility, and catalytic activity. Tetragonal zirconia holds the greatest efficacy for surgical implants and coatings when it comes to the three zirconia phases (monoclinic, tetragonal, and cubic). However, its stability at higher temperatures and transformation to the monoclinic phase upon cooling are challenging. In this research, zirconia nanoparticles were prepared using microwave-assisted sol-gel method with varying microwave powers (100 W, 300 W, 500 W, 700 W, & 900 W). Organic stabilizing agent, i.e., eggshell powder, was used to stabilize the tetragonal phase. Fourier transform infrared spectroscopy (FTIR) confirmed the phase-pure tetragonal zirconia, corroborating the XRD data. Optical properties, including the optical bandgap, were studied using UV/Visible and PL spectroscopies. The synthesized ZrO2 nanoparticles exhibited excellent photocatalytic degradation efficiency in the degradation of methylene blue (MB) dye under UV irradiation. The findings demonstrate the potential of these ZrO2 nanoparticles as a viable alternative photocatalyst for the efficient degradation of various dyes in contaminated water.

Keywords: zirconia nanoparticles, sol-gel, photocataylsis, wter purification

Procedia PDF Downloads 71
8469 The Taiwan Environmental Impact Assessment Act Contributes to the Water Resources Saving

Authors: Feng-Ming Fan, Xiu-Hui Wen

Abstract:

Shortage of water resources is a crucial problem to be solved in Taiwan. However, lack of effective and mandatory regulation on water recovery and recycling leads to no effective water resource controls currently. Although existing legislation sets standards regarding water recovery, implementation and enforcement of legislation are facing challenges. In order to break through the dilemma, this study aims to find enforcement tools, improve inspection skills, develop an inspection system, to achieve sustainable development of precious water resources. The Taiwan Environmental Impact Assessment Act (EIA Act) was announced on 1994. The aim of EIA Act is to protect the environment by preventing and mitigating the adverse impact of development activity on the environment. During the EIA process, we can set standards that require enterprises to reach a certain percentage of water recycling based on different case characteristics, to promote sewage source reduction and water saving benefits. Next, we have to inspect how the enterprises handle their waste water and perform water recovery based on environmental assessment commitments, for the purpose of reviewing and measuring the implementation efficiency of water recycling and reuse, an eco-friendly measure. We invited leading experts in related fields to provide lecture on water recycling, strengthen law enforcement officials’ inspection knowledge, and write inspection reference manual to be used as basis of enforcement. Then we finalized the manual by reaching mutual agreement between the experts and relevant agencies. We then inspected 65 high-tech companies whose daily water consumption is over 1,000 tons individually, located at 3 science parks, set up by Ministry of Science and Technology. Great achievement on water recycling was achieved at an amount of 400 million tons per year, equivalent to 2.5 months water usage for general public in Taiwan. The amount is equal to 710 billion bottles of 600 ml cola, 170 thousand international standard swimming pools of 2,500 tons, irrigation water applied to 40 thousand hectares of rice fields, or 1.7 Taipei Feitsui Reservoir of reservoir storage. This study demonstrated promoting effects of environmental impact assessment commitments on water recycling, and therefore water resource sustainable development. It also confirms the value of EIA Act for environmental protection. Economic development should go hand in hand with environmental protection, and it’s a mainstream. It clearly shows the EIA regulation can minimize harmful effects caused by development activity to the environment, as well as pursuit water resources sustainable development.

Keywords: the environmental impact assessment act, water recycling environmental assessment commitment, water resource sustainable development, water recycling, water reuse

Procedia PDF Downloads 237
8468 Governance of the Waters in the Upper Iguazu Watershed: Case Study in Passaúna and Miringuava Watersheds

Authors: Matheus Fonseca Durães, Bruno da Silva Pereira, Bruna Stewart

Abstract:

The concept of Brazil’s water governance has been the topic of discussion and has undergone legal and organizational improvements due to the need to promote a more effective and sustainable relationship with natural resources and stemming from conflicts related to shortcomings in decision-making. The Waters Act has enabled Brazil to create interesting mechanisms for integrated management, but, on the other hand, it has created a challenge that involves the implementation of the principles established in this legal framework. This study aims to evaluate some challenges and opportunities for water governance in two watersheds based on data collection and analysis of concessions, the water use register, and flow data. The elements presented demonstrated, via an analysis of legally instituted criteria, that the level of commitment of water resources is high, especially to public supply, and the adoption of the reference flow constituted one of the main barriers to implementing an efficient system, demonstrating the need for a regulatory policy that considers the hydrological behavior of the watersheds. Finally, the current water management model presents challenges to be addressed to achieve the objectives proposed by the water policy, such as ensuring sustainable, rational, and integrated use of water resources.

Keywords: management, hydrology, public policies, Brazil

Procedia PDF Downloads 87
8467 Review of Suitable Advanced Oxidation Processes for Degradation of Organic Compounds in Produced Water during Enhanced Oil Recovery

Authors: Smita Krishnan, Krittika Chandran, Chandra Mohan Sinnathambi

Abstract:

Produced water and its treatment and management are growing challenges in all producing regions. This water is generally considered as a nonrevenue product, but it can have significant value in enhanced oil recovery techniques if it meets the required quality standards. There is also an interest in the beneficial uses of produced water for agricultural and industrial applications. Advanced Oxidation Process is a chemical technology that has been growing recently in the wastewater treatment industry, and it is highly recommended for non-easily removal of organic compounds. The efficiency of AOPs is compound specific, therefore, the optimization of each process should be done based on different aspects.

Keywords: advanced oxidation process, photochemical processes, degradation, organic contaminants

Procedia PDF Downloads 497
8466 Investigation of Textile Laminates Structure and Electrical Resistance

Authors: A. Gulbiniene, V. Jankauskaite

Abstract:

Textile laminates with breathable membranes are used extensively in protective footwear. Such polymeric membranes act as a barrier to liquid water and soil entry from the environment, but are sufficiently permeable to water vapour to allow significant amounts of sweat to evaporate and affect the comfort of the wearer. In this paper the influence of absorbed humidity amount on the electrical properties of textiles lining laminates with and without polymeric membrane is presented. It was shown that textile laminate structure and its layers have a great influence on the water vapour absorption. Laminates with polyurethane foam layers show lower ability to absorb water vapour. Semi-permeable membrane increases absorbed humidity amount. The increase of water vapour absorption ability decreases textile laminates' electrical resistance. However, the intensity of the decrease in electrical resistance depends on the textile laminate layers' nature. Laminates with polyamide layers show significantly lower electrical resistance values.

Keywords: electrical resistance, humid atmosphere, textiles laminate, water vapour absorption

Procedia PDF Downloads 234
8465 Towards a Smart Irrigation System Based on Wireless Sensor Networks

Authors: Loubna Hamami, Bouchaib Nassereddine

Abstract:

Due to the evolution of technologies, the need to observe and manage hostile environments, and reduction in size, wireless sensor networks (WSNs) are becoming essential and implicated in the most fields of life. WSNs enable us to change the style of living, working and interacting with the physical environment. The agricultural sector is one of such sectors where WSNs are successfully used to get various benefits. For successful agricultural production, the irrigation system is one of the most important factors, and it plays a tactical role in the process of agriculture domain. However, it is considered as the largest consumer of freshwater. Besides, the scarcity of water, the drought, the waste of the limited available water resources are among the critical issues that touch the almost sectors, notably agricultural services. These facts are leading all governments around the world to rethink about saving water and reducing the volume of water used; this requires the development of irrigation practices in order to have a complete and independent system that is more efficient in the management of irrigation. Consequently, the selection of WSNs in irrigation system has been a benefit for developing the agriculture sector. In this work, we propose a prototype for a complete and intelligent irrigation system based on wireless sensor networks and we present and discuss the design of this prototype. This latter aims at saving water, energy and time. The proposed prototype controls water system for irrigation by monitoring the soil temperature, soil moisture and weather conditions for estimation of water requirements of each plant.

Keywords: precision irrigation, sensor, wireless sensor networks, water resources

Procedia PDF Downloads 144
8464 Use of Multivariate Statistical Techniques for Water Quality Monitoring Network Assessment, Case of Study: Jequetepeque River Basin

Authors: Jose Flores, Nadia Gamboa

Abstract:

A proper water quality management requires the establishment of a monitoring network. Therefore, evaluation of the efficiency of water quality monitoring networks is needed to ensure high-quality data collection of critical quality chemical parameters. Unfortunately, in some Latin American countries water quality monitoring programs are not sustainable in terms of recording historical data or environmentally representative sites wasting time, money and valuable information. In this study, multivariate statistical techniques, such as principal components analysis (PCA) and hierarchical cluster analysis (HCA), are applied for identifying the most significant monitoring sites as well as critical water quality parameters in the monitoring network of the Jequetepeque River basin, in northern Peru. The Jequetepeque River basin, like others in Peru, shows socio-environmental conflicts due to economical activities developed in this area. Water pollution by trace elements in the upper part of the basin is mainly related with mining activity, and agricultural land lost due to salinization is caused by the extensive use of groundwater in the lower part of the basin. Since the 1980s, the water quality in the basin has been non-continuously assessed by public and private organizations, and recently the National Water Authority had established permanent water quality networks in 45 basins in Peru. Despite many countries use multivariate statistical techniques for assessing water quality monitoring networks, those instruments have never been applied for that purpose in Peru. For this reason, the main contribution of this study is to demonstrate that application of the multivariate statistical techniques could serve as an instrument that allows the optimization of monitoring networks using least number of monitoring sites as well as the most significant water quality parameters, which would reduce costs concerns and improve the water quality management in Peru. Main socio-economical activities developed and the principal stakeholders related to the water management in the basin are also identified. Finally, water quality management programs will also be discussed in terms of their efficiency and sustainability.

Keywords: PCA, HCA, Jequetepeque, multivariate statistical

Procedia PDF Downloads 347
8463 Synthesis and Characterization of AFe₂O₄ (A=CA, Co, CU) Nano-Spinels: Application to Hydrogen Photochemical Production under Visible Light Irradiation

Authors: H. Medjadji, A. Boulahouache, N. Salhi, A. Boudjemaa, M. Trari

Abstract:

Hydrogen from renewable sources, such as solar, is referred to as green hydrogen. The splitting water process using semiconductors, such as photocatalysts, has attracted significant attention due to its potential application for solving the energy crisis and environmental pollution. Spinel ferrites of the MF₂O₄ type have shown broad interest in diverse energy conversion processes, including fuel cells and photo electrocatalytic water splitting. This work focuses on preparing nano-spinels based on iron AFe₂O₄ (A= Ca, Co, and Cu) as photocatalysts using the nitrate method. These materials were characterized both physically and optically and subsequently tested for hydrogen generation under visible light irradiation. Various techniques were used to investigate the properties of the materials, including TGA-DT, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), UV-visible spectroscopy, Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX) and X-ray Photoelectron Spectroscopy (XPS) was also undertaken. XRD analysis confirmed the formation of pure phases at 850°C, with crystalline sizes of 31 nm for CaFe₂O₄, 27 nm for CoFe₂O₄, and 40 nm for CuFe₂O₄. The energy gaps, calculated from recorded diffuse reflection data, are 1.85 eV for CaFe₂O₄, 1.27 eV for CoFe₂O₄, and 1.64 eV for CuFe₂O₄. SEM micrographs showed homogeneous grains with uniform shapes and medium porosity in all samples. EDX elemental analysis determined the absence of any contaminating elements, highlighting the high purity of the prepared materials via the nitrate route. XPS spectra revealed the presence of Fe3+ and O in all samples. Additionally, XPS analysis revealed the presence of Ca²⁺, Co²⁺, and Cu²⁺ on the surface of CaFe₂O₄ and CoFe₂O₄ spinels, respectively. The photocatalytic activity was successfully evaluated by measuring H₂ evolution through the water-splitting process. The best performance was achieved with CaFe₂O₄ in a neutral medium (pH ~ 7), yielding 189 µmol at an optimal temperature of ~50°C. The highest hydrogen production rates for CoFe₂O₄ and CuFe₂O₄ were obtained at pH ~ 12 with release rates of 65 and 85 µmol, respectively, under visible light irradiation at the same optimal temperature. Various conditions were investigated including the pH of the solution, the hole sensors utilization and recyclability.

Keywords: hydrogen, MFe₂O₄, nitrate route, spinel ferrite

Procedia PDF Downloads 13
8462 Laying Performance of Itik Pinas (Anas platyrynchos Linnaeus) as Affected by Garlic (Allium sativum) Powder in Drinking Water

Authors: Gianne Bianca P. Manalo, Ernesto A. Martin, Vanessa V. Velasco

Abstract:

The laying performance, egg quality, egg classification, and income over feed cost of Improved Philippine Mallard duck (Itik Pinas) were examined as influenced by garlic powder in drinking water. A total of 48 ducks (42 females and 6 males) were used in the study. The ducks were allocated into two treatments - with garlic powder (GP) and without garlic powder (control) in drinking water. Each treatment had three replicates with eight ducks (7 females and 1 male) per replication. The results showed that there was a significant (P = 0.03) difference in average egg weight where higher values were attained by ducks with GP (77.67 g ± 0.64) than the control (75.64 g ± 0.43). The supplementation of garlic powder in drinking water, however, did not affect the egg production, feed intake, FCR, egg mass, livability, egg quality and egg classification. The Itik Pinas with GP in drinking water had numerically higher income over feed cost than those without. GP in drinking water can be considered in raising Itik Pinas. Further studies on increasing level of GP and long feeding duration also merit consideration to substantiate the findings.

Keywords: phytogenic, garlic powder, Itik-Pinas, egg weight, egg production

Procedia PDF Downloads 74
8461 Studies on Effect of Nano Size and Surface Coating on Enhancement of Bioavailability and Toxicity of Berberine Chloride; A p-gp Substrate

Authors: Sanjay Singh, Parameswara Rao Vuddanda

Abstract:

The aim of the present study is study the factual benefit of nano size and surface coating of p-gp efflux inhibitor on enhancement of bioavailability of Berberine chloride (BBR); a p-gp substrate. In addition, 28 days sub acute oral toxicity study was also conducted to assess the toxicity of the formulation on chronic administration. BBR loaded polymeric nanoparticles (BBR-NP) were prepared by nanoprecipitation method. BBR NP were surface coated (BBR-SCNP) with the 1 % w/v of vitamin E TPGS. For bioavailability study, total five groups (n=6) of rat were treated as follows first; pure BBR, second; physical mixture of BBR, carrier and vitamin E TPGS, third; BBR-NP, fourth; BBR-SCNP and fifth; BBR and verapamil (widely used p-gp inhibitor). Blood was withdrawn at pre-set timing points in 24 hrs study and drug was quantified by HPLC method. In oral chronic toxicity study, total four groups (n=6) were treated as follows first (control); water, second; pure BBR, third; BBR surface coated nanoparticles and fourth; placebo BBR surface coated nanoparticles. Biochemical levels of liver (AST, ALP and ALT) and kidney (serum urea and creatinine) along with their histopathological studies were also examined (0-28 days). The AUC of BBR-SCNP was significantly 3.5 folds higher compared to all other groups. The AUC of BBR-NP was 3.23 and 1.52 folds higher compared to BBR solution and BBR with verapamil group, respectively. The physical mixture treated group showed slightly higher AUC than BBR solution treated group but significantly low compared to other groups. It indicates that encapsulation of BBR in nanosize form can circumvent P-gp efflux effect. BBR-NP showed pharmacokinetic parameters (Cmax and AUC) which are near to BBR-SCNP. However, the difference in values of T1/2 and clearance indicate that surface coating with vitamin E TPGS not only avoids the P-gp efflux at its absorption site (intestine) but also at organs which are responsible for metabolism and excretion (kidney and liver). It may be the reason for observed decrease in clearance of BBR-SCNP. No toxicity signs were observed either in biochemical or histopathological examination of liver and kidney during toxicity studies. The results indicate that administration of BBR in surface coated nanoformulation would be beneficial for enhancement of its bioavailability and longer retention in systemic circulation. Further, sub acute oral dose toxicity studies for 28 days such as evaluation of intestine, liver and kidney histopathology and biochemical estimations indicated that BBR-SCNP developed were safe for long use.

Keywords: bioavailability, berberine nanoparticles, p-gp efflux inhibitor, nanoprecipitation method

Procedia PDF Downloads 378
8460 Formation of Volatile Iodine from Cesium Iodide Aerosols: A DFT Study

Authors: Houssam Hijazi, Laurent Cantrel, Jean-François Paul

Abstract:

Periodic DFT calculations were performed to study the chemistry of CsI particles and the possible release of volatile iodine from CsI surfaces for nuclear safety interest. The results show that water adsorbs at low temperature associatively on the (011) surface of CsI, while water desorbs at higher temperatures. On the other hand, removing iodine species from the surface requires oxidizing the surface one time for each removed iodide atom. The activation energy of removing I2 from the surface in the presence of two OH is 1,2 eV.

Keywords: aerosols, CSI, reactivity, DFT, water adsorption

Procedia PDF Downloads 328
8459 Traction Behavior of Linear Piezo-Viscous Lubricants in Rough Elastohydrodynamic Lubrication Contacts

Authors: Punit Kumar, Niraj Kumar

Abstract:

The traction behavior of lubricants with the linear pressure-viscosity response in EHL line contacts is investigated numerically for smooth as well as rough surfaces. The analysis involves the simultaneous solution of Reynolds, elasticity and energy equations along with the computation of lubricant properties and surface temperatures. The temperature modified Doolittle-Tait equations are used to calculate viscosity and density as functions of fluid pressure and temperature, while Carreau model is used to describe the lubricant rheology. The surface roughness is assumed to be sinusoidal and it is present on the nearly stationary surface in near-pure sliding EHL conjunction. The linear P-V oil is found to yield much lower traction coefficients and slightly thicker EHL films as compared to the synthetic oil for a given set of dimensionless speed and load parameters. Besides, the increase in traction coefficient attributed to surface roughness is much lower for the former case. The present analysis emphasizes the importance of employing realistic pressure-viscosity response for accurate prediction of EHL traction.

Keywords: EHL, linear pressure-viscosity, surface roughness, traction, water/glycol

Procedia PDF Downloads 377
8458 The Effect of Mgo and Rubber Nanofillers on Electrical Treeing Characteristic of XLPE Based Nanocomposites

Authors: Nur Amira nor Arifin, Tashia Marie Anthony, Mohd Ruzlin Mokhtar, Huzainie Shafi Abd Halim

Abstract:

Cross-linked polyethylene (XLPE) material is being used as the cable insulation for the past decades due to its higher working temperature of 90 ˚C and some other advantages. However, the use of XLPE as an insulating material for underground distribution cables may have subjected to the unforeseeable weather and uncontrollable environmental condition. These unfavorable condition when combine with high electric field may lead to the initiation and growth of water tree in XLPE insulation. There are several studies on numerous nanofillers incorporate into polymer matrix to hinder the growth of tree propagation. Hence, in this study aims to investigate the effect of MgO and rubber nanofillers at different concentration on the electrical tree of XLPE. The nanofillers and XLPE were mixed and later extruded. After extrusion, the material were then fabricated into the desired shape for experimental purposes. The result shows that the electrical tree propagation of XLPE filled with optimize concentration of nanofillers were much slower compared to pure XLPE. In this paper, the effect of nanofillers towards electrical treeing characteristic will be discussed.

Keywords: electrical trees, nanofillers, polymer nanocomposites, XLPE

Procedia PDF Downloads 133
8457 The Role of Social Capital in Community-Based Water Resources Management in Kenya's Polycentric Water Resource Governance System

Authors: Brenda Margaret Behan

Abstract:

Kenya is a water-stressed country with highly varied socio-ecological environments in its devolved county system, and is currently implementing a polycentric water governance system; this paper examines the importance of social capital in community-based natural resource management and its role in supporting good water governance systems in the Kenya context. Through a robust literature review of theory and case studies, specific aspects of social capital are examined to determine their importance in the implementation of local community-based water management arrangements which support and complement the more formal institutions outlined in the 2002 and 2016 Water Acts of Kenya. Water is an increasingly important and scarce resource not only for Kenya, but for many communities across the globe, and lessons learned in the Kenya context can be useful for other countries and communities faced with similar challenges. Changing climates, increasing populations, and increased per capita consumption of water is contributing to a situation in which the management of water resources will be vital to community resilience. Community-based natural resource management is widely recognized as a building block and component of wider water resource management systems, and when properly conducted can provide a way to enable sustainable use of resources and empower communities. Greater attention to the social and cultural norms and traditional institutions associated with a community’s social capital can lead to better results for Kenya’s polycentric governance of water. The key findings and recommendations from this research show that in Kenya, traditional institutions need to be understood and integrated into governance systems; social values and cultural norms have a significant impact on the implementation of community-based water management efforts; and social capital is a dynamic concept which influences and is influenced by policies and practices. The community-based water management approach will continue to be a key cornerstone for Kenya’s polycentric water governance structure, especially in the more remote arid and semi-arid lands; thus, the successful integration of social capital aspects into planning and implementation will contribute to a strengthened, sustainable, and more equitable national water governance system. Specific observations and recommendations from this study will help practitioners and policymakers to better craft community-based interventions.

Keywords: community-based natural resource management, social capital, traditional institutions, water governance

Procedia PDF Downloads 157
8456 Mathematical Modeling of the Water Bridge Formation in Porous Media: PEMFC Microchannels

Authors: N. Ibrahim-Rassoul, A. Kessi, E. K. Si-Ahmed, N. Djilali, J. Legrand

Abstract:

The static and dynamic formation of liquid water bridges is analyzed using a combination of visualization experiments in a microchannel with a mathematical model. This paper presents experimental and theoretical findings of water plug/capillary bridge formation in a 250 μm squared microchannel. The approach combines mathematical and numerical modeling with experimental visualization and measurements. The generality of the model is also illustrated for flow conditions encountered in manipulation of polymeric materials and formation of liquid bridges between patterned surfaces. The predictions of the model agree favorably the observations as well as with the experimental recordings.

Keywords: green energy, mathematical modeling, fuel cell, water plug, gas diffusion layer, surface of revolution

Procedia PDF Downloads 514
8455 Engaging Citizen, Sustaining Service Delivery of Rural Water Supply in Indonesia

Authors: Rahmi Yetri Kasri, Paulus Wirutomo

Abstract:

Citizen engagement approach has become increasingly important in the rural water sector. However, the question remains as to what exactly is meant by citizen engagement and how this approach can lead to sustainable service delivery. To understand citizen engagement, this paper argues that we need to understand basic elements of social life that consist of social structure, process, and culture within the realm of community’s living environment. Extracting from empirical data from Pamsimas villages in rural West Java, Indonesia, this paper will identify basic elements of social life and environment that influence and form the engagement of citizen and government in delivering and sustaining rural water supply services in Indonesia. Pamsimas or the Water Supply and Sanitation for Low Income Communities project is the biggest rural water program in Indonesia, implemented since 1993 in more than 27,000 villages. The sustainability of this sector is explored through a rural water supply service delivery life-cycle, starts with capital investment, operational and maintenance, asset expansion or renewal, strategic planning for future services and matching cost with financing. Using mixed-method data collection in case study research, this paper argues that increased citizen engagement contributes to a more sustainable rural water service delivery.

Keywords: citizen engagement, rural water supply, sustainability, Indonesia

Procedia PDF Downloads 260
8454 Passive Solar Distiller with Low Cost of Implementation, Operation and Maintenance

Authors: Valentina Alessandra Carvalho do Vale, Elmo Thiago Lins Cöuras Ford, Rudson de Sousa Lima

Abstract:

Around the planet Earth, access to clean water is a problem whose importance has increased due to population growth and its misuse. Thus, projects that seek to transform water sources improper (salty and brackish) in drinking water sources are current issues. However, this transformation generally requires a high cost of implementation, operation and maintenance. In this context, the aim of this work is the development of a passive solar distiller for brackish water, made from recycled and durable materials such as aluminum, cement, glass and PVC basins. The results reveal factors that influence the performance and viability of the expansion project.

Keywords: solar distiller, passive distiller, distiller with pyramidal roof, ecologically correct

Procedia PDF Downloads 399
8453 Influence of Silica Surface Hydrophilicity on Adsorbed Water and Isopropanol Studied by in-situ NMR

Authors: Hyung T. Kwak, Jun Gao, Yao An, Alfred Kleinhammes, Yue Wu

Abstract:

Surface wettability is a crucial factor in oil recovery. In oil industry, the rock wettability involves the interplay between water, oil, and solid surface. Therefore, studying the interplay between adsorptions of water and hydrocarbon molecules on solid surface would be very informative for understanding rock wettability. Here we use the in-situ Nuclear Magnetic Resonance (NMR) gas isotherm technique to study competitive adsorptions of water and isopropanol, an intermediate step from hydrocarbons. This in-situ NMR technique obtains information on thermodynamic properties such as the isotherm, molecular dynamics via spin relaxation measurements, and adsorption kinetics such as how fast the system can reach thermal equilibrium after changes of vapor pressures. Using surfaces of silica glass beads, which can be modified from hydrophilic to hydrophobic, we obtained information on the influence of surface hydrophilicity on the state of surface water via obtained thermodynamic and dynamic properties.

Keywords: Wettability, NMR, Gas Isotherm, Hydrophilicity, adsorption

Procedia PDF Downloads 168