Search results for: pulp volume
2042 Estimation of Effective Mechanical Properties of Linear Elastic Materials with Voids Due to Volume and Surface Defects
Authors: Sergey A. Lurie, Yury O. Solyaev, Dmitry B. Volkov-Bogorodsky, Alexander V. Volkov
Abstract:
The media with voids is considered and the method of the analytical estimation of the effective mechanical properties in the theory of elastic materials with voids is proposed. The variational model of the porous media is discussed, which is based on the model of the media with fields of conserved dislocations. It is shown that this model is fully consistent with the known model of the linear elastic materials with voids. In the present work, the generalized model of the porous media is proposed in which the specific surface properties are associated with the field of defects-pores in the volume of the deformed body. Unlike typical surface elasticity model, the strain energy density of the considered model includes the special part of the surface energy with the quadratic form of the free distortion tensor. In the result, the non-classical boundary conditions take modified form of the balance equations of volume and surface stresses. The analytical approach is proposed in the present work which allows to receive the simple enough engineering estimations for effective characteristics of the media with free dilatation. In particular, the effective flexural modulus and Poisson's ratio are determined for the problem of a beam pure bending. Here, the known voids elasticity solution was expanded on the generalized model with the surface effects. Received results allow us to compare the deformed state of the porous beam with the equivalent classic beam to introduce effective bending rigidity. Obtained analytical expressions for the effective properties depend on the thickness of the beam as a parameter. It is shown that the flexural modulus of the porous beam is decreased with an increasing of its thickness and the effective Poisson's ratio of the porous beams can take negative values for the certain values of the model parameters. On the other hand, the effective shear modulus is constant under variation of all values of the non-classical model parameters. Solutions received for a beam pure bending and the hydrostatic loading of the porous media are compared. It is shown that an analytical estimation for the bulk modulus of the porous material under hydrostatic compression gives an asymptotic value for the effective bulk modulus of the porous beam in the case of beam thickness increasing. Additionally, it is shown that the scale effects appear due to the surface properties of the porous media. Obtained results allow us to offer the procedure of an experimental identification of the non-classical parameters in the theory of the linear elastic materials with voids based on the bending tests for samples with different thickness. Finally, the problem of implementation of the Saint-Venant hypothesis for the transverse stresses in the porous beam are discussed. These stresses are different from zero in the solution of the voids elasticity theory, but satisfy the integral equilibrium equations. In this work, the exact value of the introduced surface parameter was found, which provides the vanishing of the transverse stresses on the free surfaces of a beam.Keywords: effective properties, scale effects, surface defects, voids elasticity
Procedia PDF Downloads 4182041 Heat Loss Control in Stave Cooled Blast Furnace by Optimizing Gas Flow Pattern through Burden Distribution
Authors: Basant Kumar Singh, S. Subhachandhar, Vineet Ranjan Tripathi, Amit Kumar Singh, Uttam Singh, Santosh Kumar Lal
Abstract:
Productivity of Blast Furnace is largely impacted by fuel efficiency and controlling heat loss is one of the enabling parameters for achieving lower fuel rate. 'I' Blast Furnace is the latest and largest Blast Furnace of Tata Steel Jamshedpur with working volume of 3230 m³ and with rated capacity of 3.055 million tons per annum. Optimizing heat losses in Belly and Bosh zone remained major challenge for blast furnace operators after its commissioning. 'I' Blast has installed Cast Iron & Copper Staves cooling members where copper staves are installed in Belly, Bosh & Lower Stack whereas cast iron staves are installed in upper stack area. Stave cooled Blast Furnaces are prone to higher heat losses in Belly and Bosh region with an increase in coal injection rate as Bosh gas volume increases. Under these conditions, managing gas flow pattern through proper burden distribution, casting techniques & by maintaining desired raw material qualities are of utmost importance for sustaining high injection rates. This study details, the burden distribution control by Ore & Coke ratio adjustment at wall and center of Blast Furnace as the coal injection rates increased from 140 kg/thm to 210 kg/thm. Control of blowing parameters, casting philosophy, specification for raw materials & devising operational practice for controlling heat losses is also elaborated with the model that is used to visualize heat loss pattern in different zones of Blast Furnace.Keywords: blast furnace, staves, gas flow pattern, belly/bosh heat losses, ore/coke ratio, blowing parameters, casting, operation practice
Procedia PDF Downloads 3752040 Role of Matric Suction in Mechanics behind Swelling Characteristics of Expansive Soils
Authors: Saloni Pandya, Nikhil Sharma, Ajanta Sachan
Abstract:
Expansive soils in the unsaturated state are part of vadose zone and encountered in several arid and semi-arid parts of the world. Influence of high temperature, low precipitation and alternate cycles of wetting and drying are responsible for the chemical weathering of rocks, which results in the formation of expansive soils. Shrinkage-swelling (expansive) soils cover a substantial portion of area in India. Damages caused by expansive soils to various geotechnical structures are alarming. Matric suction develops in unsaturated soil due to capillarity and surface tension phenomena. Matric suction influences the geometric arrangement of soil skeleton, which induces the volume change behaviour of expansive soil. In the present study, an attempt has been made to evaluate the role of matric suction in the mechanism behind swelling characteristics of expansive soil. Four different soils have been collected from different parts of India for the current research. Soil sample S1, S2, S3 and S4 were collected from Nagpur, Bharuch, Bharuch-Dahej highway and Ahmedabad respectively. DFSI (Differential Free Swell Index) of these soils samples; S1, S2, S3, and S4; were determined to be 134%, 104%, 70% and 30% respectively. X-ray diffraction analysis of samples exhibited that percentage of Montmorillonite mineral present in the soils reduced with the decrease in DFSI. A series of constant volume swell pressure tests and in-contact filter paper tests were performed to evaluate swelling pressure and matric suction of all four soils at 30% saturation and 1.46 g/cc dry density. Results indicated that soils possessing higher DFSI exhibited higher matric suction as compared to lower DFSI expansive soils. Significant influence of matric suction on swelling pressure of expansive soils was observed with varying DFSI values. Higher matric suction of soil might govern the water uptake in the interlayer spaces of Montmorillonite mineral present in expansive soil leading to crystalline swelling.Keywords: differential free swell index, expansive soils, matric suction, swelling pressure
Procedia PDF Downloads 1662039 Plant Layout Analysis by Computer Simulation for Electronic Manufacturing Service Plant
Authors: D. Visuwan, B. Phruksaphanrat
Abstract:
In this research, computer simulation is used for Electronic Manufacturing Service (EMS) plant layout analysis. The current layout of this manufacturing plant is a process layout, which is not suitable due to the nature of an EMS that has high-volume and high-variety environment. Moreover, quick response and high flexibility are also needed. Then, cellular manufacturing layout design was determined for the selected group of products. Systematic layout planning (SLP) was used to analyse and design the possible cellular layouts for the factory. The cellular layout was selected based on the main criteria of the plant. Computer simulation was used to analyse and compare the performance of the proposed cellular layout and the current layout. It is found that the proposed cellular layout can generate better performances than the current layout. In this research, computer simulation is used for Electronic Manufacturing Service (EMS) plant layout analysis. The current layout of this manufacturing plant is a process layout, which is not suitable due to the nature of an EMS that has high-volume and high-variety environment. Moreover, quick response and high flexibility are also needed. Then, cellular manufacturing layout design was determined for the selected group of products. Systematic layout planning (SLP) was used to analyse and design the possible cellular layouts for the factory. The cellular layout was selected based on the main criteria of the plant. Computer simulation was used to analyse and compare the performance of the proposed cellular layout and the current layout. It found that the proposed cellular layout can generate better performances than the current layout.Keywords: layout, electronic manufacturing service plant, computer simulation, cellular manufacturing system
Procedia PDF Downloads 3062038 Determinants of Hospital Obstetric Unit Closures in the United States 2002-2013: Loss of Hospital Obstetric Care 2002-2013
Authors: Peiyin Hung, Katy Kozhimannil, Michelle Casey, Ira Moscovice
Abstract:
Background/Objective: The loss of obstetric services has been a pressing concern in urban and rural areas nationwide. This study aims to determine factors that contribute to the loss of obstetric care through closures of a hospital or obstetric unit. Methods: Data from 2002-2013 American Hospital Association annual surveys were used to identify hospitals providing obstetric services. We linked these data to Medicare Healthcare Cost Report Information for hospital financial indicators, the US Census Bureau’s American Community Survey for zip-code level characteristics, and Area Health Resource files for county- level clinician supply measures. A discrete-time multinomial logit model was used to determine contributing factors to obstetric unit or hospital closures. Results: Of 3,551 hospitals providing obstetrics services during 2002-2013, 82% kept units open, 12% stopped providing obstetrics services, and 6% closed down completely. State-level variations existed. Factors that significantly increased hospitals’ probability of obstetric unit closures included lower than 250 annual birth volume (adjusted marginal effects [95% confidence interval]=34.1% [28%, 40%]), closer proximity to another hospital with obstetric services (per 10 miles: -1.5% [-2.4, -0.5%]), being in a county with lower family physician supply (-7.8% [-15.0%, -0.6%), being in a zip code with higher percentage of non-white females (per 10%: 10.2% [2.1%, 18.3%]), and with lower income (per $1,000 income: -0.14% [-0.28%, -0.01%]). Conclusions: Over the past 12 years, loss of obstetric services has disproportionately affected areas served by low-volume urban and rural hospitals, non-white and low-income communities, and counties with fewer family physicians, signaling a need to address maternity care access in these communities.Keywords: access to care, obstetric care, service line discontinuation, hospital, obstetric unit closures
Procedia PDF Downloads 2222037 Thulium Laser Vaporisation and Enucleation of Prostate in Patients on Anticoagulants and Antiplatelet Agents
Authors: Abdul Fatah, Naveenchandra Acharya, Vamshi Krishna, T. Shivaprasad, Ramesh Ramayya
Abstract:
Background: Significant number of patients with bladder outlet obstruction due to BPH are on anti-platelets and anticoagulants. Prostate surgery in this group of patients either in the form of TURP or Open prostatectomy is associated with increased risk of bleeding complications requiring transfusions, packing of the prostatic fossa or ligation or embolization of internal iliac arteries. Withholding of antiplatelets and anticoagulants may be associated with cardiac and other complications. Efficacy of Thulium Laser in the above group of patients was evaluated in terms of peri-operative, postoperative and delayed bleeding complications as well as cardiac events in peri-operative and immediate postoperative period. Methods: 217 patients with a mean age of 68.8 years were enrolled between March 2009 and March 2013 (36 months), and treated for BPH with ThuLEP. Every patient was evaluated at base line according to: Digital Rectal Examination (DRE), prostate volume, Post-Voided volume (PVR), International Prostate Symptoms Score (I-PSS), PSA values, urine analysis and urine culture, uroflowmetry. The post operative complications in the form of drop in hemoglobin level, transfusion rates, post –operative cardiac events within a period of 30 days, delayed hematuria and events like deep vein thrombosis and pulmonary embolism were noted. Results: Our data showed a better post-operative outcome in terms of, postoperative bleeding requiring intervention 7 (3.2%), transfusion rate 4 (1.8%) and cardiac events within a period of 30 days 4(1.8%), delayed hematuria within 6 months 2(0.9 %) compared other series of prostatectomies. Conclusion: The thulium LASER prostatectomy is a safe and effective option for patients with cardiac comorbidties and those patients who are on antiplatelet agents and anticoagulants. The complication rate is less as compared to larger series reported with open and transurethral prostatectomies.Keywords: thulium laser, prostatectomy, antiplatelet agents, bleeding
Procedia PDF Downloads 3932036 In vitro Characterization of Mice Bone Microstructural Changes by Low-Field and High-Field Nuclear Magnetic Resonance
Authors: Q. Ni, J. A. Serna, D. Holland, X. Wang
Abstract:
The objective of this study is to develop Nuclear Magnetic Resonance (NMR) techniques to enhance bone related research applied on normal and disuse (Biglycan knockout) mice bone in vitro by using both low-field and high-field NMR simultaneously. It is known that the total amplitude of T₂ relaxation envelopes, measured by the Carr-Purcell-Meiboom-Gill NMR spin echo train (CPMG), is a representation of the liquid phase inside the pores. Therefore, the NMR CPMG magnetization amplitude can be transferred to the volume of water after calibration with the NMR signal amplitude of the known volume of the selected water. In this study, the distribution of mobile water, porosity that can be determined by using low-field (20 MHz) CPMG relaxation technique, and the pore size distributions can be determined by a computational inversion relaxation method. It is also known that the total proton intensity of magnetization from the NMR free induction decay (FID) signal is due to the water present inside the pores (mobile water), the water that has undergone hydration with the bone (bound water), and the protons in the collagen and mineral matter (solid-like protons). Therefore, the components of total mobile and bound water within bone that can be determined by low-field NMR free induction decay technique. Furthermore, the bound water in solid phase (mineral and organic constituents), especially, the dominated component of calcium hydroxyapatite (Ca₁₀(OH)₂(PO₄)₆) can be determined by using high-field (400 MHz) magic angle spinning (MAS) NMR. With MAS technique reducing NMR spectral linewidth inhomogeneous broadening and susceptibility broadening of liquid-solid mix, in particular, we can conduct further research into the ¹H and ³¹P elements and environments of bone materials to identify the locations of bound water such as OH- group within minerals and bone architecture. We hypothesize that with low-field and high-field magic angle spinning NMR can provide a more complete interpretation of water distribution, particularly, in bound water, and these data are important to access bone quality and predict the mechanical behavior of bone.Keywords: bone, mice bone, NMR, water in bone
Procedia PDF Downloads 1762035 Segmenting 3D Optical Coherence Tomography Images Using a Kalman Filter
Authors: Deniz Guven, Wil Ward, Jinming Duan, Li Bai
Abstract:
Over the past two decades or so, Optical Coherence Tomography (OCT) has been used to diagnose retina and optic nerve diseases. The retinal nerve fibre layer, for example, is a powerful diagnostic marker for detecting and staging glaucoma. With the advances in optical imaging hardware, the adoption of OCT is now commonplace in clinics. More and more OCT images are being generated, and for these OCT images to have clinical applicability, accurate automated OCT image segmentation software is needed. Oct image segmentation is still an active research area, as OCT images are inherently noisy, with the multiplicative speckling noise. Simple edge detection algorithms are unsuitable for detecting retinal layer boundaries in OCT images. Intensity fluctuation, motion artefact, and the presence of blood vessels also decrease further OCT image quality. In this paper, we introduce a new method for segmenting three-dimensional (3D) OCT images. This involves the use of a Kalman filter, which is commonly used in computer vision for object tracking. The Kalman filter is applied to the 3D OCT image volume to track the retinal layer boundaries through the slices within the volume and thus segmenting the 3D image. Specifically, after some pre-processing of the OCT images, points on the retinal layer boundaries in the first image are identified, and curve fitting is applied to them such that the layer boundaries can be represented by the coefficients of the curve equations. These coefficients then form the state space for the Kalman Filter. The filter then produces an optimal estimate of the current state of the system by updating its previous state using the measurements available in the form of a feedback control loop. The results show that the algorithm can be used to segment the retinal layers in OCT images. One of the limitations of the current algorithm is that the curve representation of the retinal layer boundary does not work well when the layer boundary is split into two, e.g., at the optic nerve, the layer boundary split into two. This maybe resolved by using a different approach to representing the boundaries, such as b-splines or level sets. The use of a Kalman filter shows promise to developing accurate and effective 3D OCT segmentation methods.Keywords: optical coherence tomography, image segmentation, Kalman filter, object tracking
Procedia PDF Downloads 4822034 Oblique Radiative Solar Nano-Polymer Gel Coating Heat Transfer and Slip Flow: Manufacturing Simulation
Authors: Anwar Beg, Sireetorn Kuharat, Rashid Mehmood, Rabil Tabassum, Meisam Babaie
Abstract:
Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics of such sol gels, the present article presents a mathematical and computational study of the steady, two-dimensional, non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The Tiwari-Das nanofluid model is deployed which features a volume fraction for the nanoparticle concentration. This approach also features a Maxwell-Garnet model for the nanofluid thermal conductivity. The conservation equations for mass, normal and tangential momentum and energy (heat) are normalized via appropriate transformations to generate a multi-degree, ordinary differential, non-linear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge-Kutta-Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a Variational Iterative Method (VIM) utilizing Langrangian multipliers. The impact of key emerging dimensionless parameters i.e. obliqueness parameter, radiation-conduction Rosseland number (Rd), thermal slip parameter (α), viscosity parameter (m), nanoparticles volume fraction (ϕ) on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures. With greater volume fraction of copper nanoparticles temperature and thermal boundary layer thickness is elevated. Streamlines are found to be skewed markedly towards the left with positive obliqueness parameter.Keywords: non-orthogonal stagnation-point heat transfer, solar nano-polymer coating, MATLAB numerical quadrature, Variational Iterative Method (VIM)
Procedia PDF Downloads 1352033 Valorization of Argan Residuals for the Treatment of Industrial Effluents
Authors: Salim Ahmed
Abstract:
The aim of this study was to recover a natural residue in the form of activated carbon prepared from Moroccan "argan pits and date pits" plant waste. After preparing the raw material for manufacture, the carbon was carbonised at 300°C and chemically activated with phosphoric acid of purity 85. The various characterisation results (moisture and ash content, specific surface area, pore volume, etc.) showed that the carbons obtained are comparable to those manufactured industrially and could therefore be tested, for example, in water treatment processes and especially for the depollution of effluents used in the agri-food and textile industries.Keywords: activated carbon, water treatment, adsorption, argan
Procedia PDF Downloads 652032 Comparative Evaluation of a Dynamic Navigation System Versus a Three-Dimensional Microscope in Retrieving Separated Endodontic Files: An in Vitro Study
Authors: Mohammed H. Karim, Bestoon M. Faraj
Abstract:
Introduction: instrument separation is a common challenge in the endodontic field. Various techniques and technologies have been developed to improve the retrieval success rate. This study aimed to compare the effectiveness of a Dynamic Navigation System (DNS) and a three-dimensional microscope in retrieving broken rotary NiTi files when using trepan burs and the extractor system. Materials and Methods: Thirty maxillary first bicuspids with sixty separate roots were split into two comparable groups based on a comprehensive Cone-Beam Computed Tomography (CBCT) analysis of the root length and curvature. After standardised access opening, glide paths, and patency attainment with the K file (sizes 10 and 15), the teeth were arranged on 3D models (three per quadrant, six per model). Subsequently, controlled-memory heat-treated NiTi rotary files (#25/0.04) were notched 4 mm from the tips and fractured at the apical third of the roots. The C-FR1 Endo file removal system was employed under both guidance to retrieve the fragments, and the success rate, canal aberration, treatment time and volumetric changes were measured. The statistical analysis was performed using IBM SPSS software at a significance level of 0.05. Results: The microscope-guided group had a higher success rate than the DNS guidance, but the difference was insignificant (p > 0.05). In addition, the microscope-guided drills resulted in a substantially lower proportion of canal aberration, required less time to retrieve the fragments and caused a minor change in the root canal volume (p < 0.05). Conclusion: Although dynamically guided trephining with the extractor can retrieve separated instruments, it is inferior to three-dimensional microscope guidance regarding treatment time, procedural errors, and volume change.Keywords: dynamic navigation system, separated instruments retrieval, trephine burs and extractor system, three-dimensional video microscope
Procedia PDF Downloads 982031 Investigating the Efficiency of Granular Sludge for Recovery of Phosphate from Wastewater
Authors: Sara Salehi, Ka Yu Cheng, Anna Heitz, Maneesha Ginige
Abstract:
This study investigated the efficiency of granular sludge for phosphorous (P) recovery from wastewater. A laboratory scale sequencing batch reactor (SBR) was operated under alternating aerobic/anaerobic conditions to enrich a P accumulating granular biomass. This study showed that an overall 45-fold increase in P concentration could be achieved by reducing the volume of the P capturing liquor by 5-fold in the anaerobic P release phase. Moreover, different fractions of the granular biomass have different individual contributions towards generating a concentrated stream of P.Keywords: granular sludge, PAOs, P recovery, SBR
Procedia PDF Downloads 4822030 Influence of Model Hydrometeor Form on Probability of Discharge Initiation from Artificial Charged Water Aerosol Cloud
Authors: A. G. Temnikov, O. S. Belova, L. L. Chernensky, T. K. Gerastenok, N. Y. Lysov, A. V. Orlov, D. S. Zhuravkova
Abstract:
Hypothesis of the lightning initiation on the arrays of large hydrometeors are in the consideration. There is no agreement about the form the hydrometeors that could be the best for the lightning initiation from the thundercloud. Artificial charged water aerosol clouds of the positive or negative polarity could help investigate the possible influence of the hydrometeor form on the peculiarities and the probability of the lightning discharge initiation between the thundercloud and the ground. Artificial charged aerosol clouds that could create the electric field strength in the range of 5-6 kV/cm to 16-18 kV/cm have been used in experiments. The array of the model hydrometeors of the volume and plate form has been disposed near the bottom cloud boundary. It was established that the different kinds of the discharge could be initiated in the presence of the model hydrometeors array – from the cloud discharges up to the diffuse and channel discharges between the charged cloud and the ground. It was found that the form of the model hydrometeors could significantly influence the channel discharge initiation from the artificial charged aerosol cloud of the negative or positive polarity correspondingly. Analysis and generalization of the experimental results have shown that the maximal probability of the channel discharge initiation and propagation stimulation has been observed for the artificial charged cloud of the positive polarity when the arrays of the model hydrometeors of the cylinder revolution form have been used. At the same time, for the artificial charged clouds of the negative polarity, application of the model hydrometeor array of the plate rhombus form has provided the maximal probability of the channel discharge formation between the charged cloud and the ground. The established influence of the form of the model hydrometeors on the channel discharge initiation and from the artificial charged water aerosol cloud and its following successful propagation has been related with the different character of the positive and negative streamer and volume leader development on the model hydrometeors array being near the bottom boundary of the charged cloud. The received experimental results have shown the possibly important role of the form of the large hail particles precipitated in thundercloud on the discharge initiation.Keywords: cloud and channel discharges, hydrometeor form, lightning initiation, negative and positive artificial charged aerosol cloud
Procedia PDF Downloads 3162029 Morphology Evolution in Titanium Dioxide Nanotubes Arrays Prepared by Electrochemical Anodization
Authors: J. Tirano, H. Zea, C. Luhrs
Abstract:
Photocatalysis has established as viable option in the development of processes for the treatment of pollutants and clean energy production. This option is based on the ability of semiconductors to generate an electron flow by means of the interaction with solar radiation. Owing to its electronic structure, TiO₂ is the most frequently used semiconductors in photocatalysis, although it has a high recombination of photogenerated charges and low solar energy absorption. An alternative to reduce these limitations is the use of nanostructured morphologies which can be produced during the synthesis of TiO₂ nanotubes (TNTs). Therefore, if possible to produce vertically oriented nanostructures it will be possible to generate a greater contact area with electrolyte and better charge transfer. At present, however, the development of these innovative structures still presents an important challenge for the development of competitive photoelectrochemical devices. This research focuses on established correlations between synthesis variables and 1D nanostructure morphology which has a direct effect on the photocatalytic performance. TNTs with controlled morphology were synthesized by two-step potentiostatic anodization of titanium foil. The anodization was carried out at room temperature in an electrolyte composed of ammonium fluoride, deionized water and ethylene glycol. Consequent thermal annealing of as-prepared TNTs was conducted in the air between 450 °C-550 °C. Morphology and crystalline phase of the TNTs were carried out by SEM, EDS and XRD analysis. As results, the synthesis conditions were established to produce nanostructures with specific morphological characteristics. Anatase was the predominant phase of TNTs after thermal treatment. Nanotubes with 10 μm in length, 40 nm in pore diameter and a surface-volume ratio of 50 are important in photoelectrochemical applications based on TiO₂ due to their 1D characteristics, high surface-volume ratio, reduced radial dimensions and high oxide/electrolyte interface. Finally, this knowledge can be used to improve the photocatalytic activity of TNTs by making additional surface modifications with dopants that improve their efficiency.Keywords: electrochemical anodization, morphology, self-organized nanotubes, TiO₂ nanotubes
Procedia PDF Downloads 1582028 Pressure Induced Phase Transition of Semiconducting Alloy TlxGa1-xAs
Authors: Madhu Sarwan, Ritu Dubey, Sadhna Singh
Abstract:
We have investigated the structural phase transition from Zinc-Blende (ZB) to Rock-Salt (RS) structure of TlxGa1-xAs by using Interaction Potential Model (IPM). The IPM consists of Coulomb interaction, Three-Body Interaction (TBI), Van Der Wall (vdW) interaction and overlap repulsive short range interaction. The structural phase transition has been computed by using the vegard’s law. The volume collapse is also computed for this alloy. We have also investigated the second order elastic constants with composition for the alloy TlxGa1-xAs.Keywords: III-V alloy, elastic moduli, phase transition, semiconductors
Procedia PDF Downloads 5432027 The Concentration of Selected Cosmogenic and Anthropogenic Radionuclides in the Ground Layer of the Atmosphere (Polar and Mid-Latitudes Regions)
Authors: A. Burakowska, M. Piotrowski, M. Kubicki, H. Trzaskowska, R. Sosnowiec, B. Myslek-Laurikainen
Abstract:
The most important source of atmospheric radioactivity are radionuclides generated as a result of the impact of primary and secondary cosmic radiation, with the nuclei of nitrogen oxygen and carbon in the upper troposphere and lower stratosphere. This creates about thirty radioisotopes of more than twenty elements. For organisms, the four of them are most important: ³H, ⁷Be, ²²Na, ¹⁴C. The natural radionuclides, which are present in Earth crust, also settle on dust and particles of water vapor. By this means, the derivatives of uranium and thorium, and long-life 40K get into the air. ¹³⁷Cs is the most widespread isotope, that is implemented by humans into the environment. To determine the concentration of radionuclides in the atmosphere, high volume air samplers were used, where the aerosol collection took place on a special filter fabric (Petrianov filter tissue FPP-15-1.5). In 2002 the high volume air sampler AZA-1000 was installed at the Polish Polar Observatory of the Polish Academy of Science in Hornsund, Spitsbergen (77°00’N, 15°33’E), designed to operate in all weather conditions of the cold polar region. Since 1991 (with short breaks) the ASS-500 air sampler has been working, which is located in Swider at the Kalinowski Geophysical Observatory of Geophysics Institute of the Polish Academy of Science (52°07’N, 21°15’E). The following results of radionuclides concentrations were obtained from both stations using gamma spectroscopy analysis: ⁷Be, ¹³⁷Cs, ¹³⁴Cs, ²¹⁰Pb, ⁴⁰K. For gamma spectroscopy analysis HPGe (High Purity Germanium) detector were used. These data were compared with each other. The preliminary results gave evidence that radioactivity measured in aerosols is not proportional to the amount of dust for both studied regions. Furthermore, the results indicate annual variability (seasonal fluctuations) as well as a decrease in the average activity of ⁷Be with increasing latitude. The content of ⁷Be in surface air also indicates the relationship with solar activity cycles.Keywords: aerosols, air filters, atmospheric beryllium, environmental radionuclides, gamma spectroscopy, mid-latitude regions radionuclides, polar regions radionuclides, solar cycles
Procedia PDF Downloads 1402026 Investigation of the Working Processes in Thermocompressor Operating on Cryogenic Working Fluid
Authors: Evgeny V. Blagin, Aleksandr I. Dovgjallo, Dmitry A. Uglanov
Abstract:
This article deals with research of the working process in the thermocompressor which operates on cryogenic working fluid. Thermocompressor is device suited for the conversation of heat energy directly to the potential energy of pressure. Suggested thermocompressor is suited for operation during liquid natural gas (LNG) re-gasification and is placed after evaporator. Such application of thermocompressor allows using of the LNG cold energy for rising of working fluid pressure, which then can be used for electricity generation or another purpose. Thermocompressor consists of two chambers divided by the regenerative heat exchanger. Calculation algorithm for unsteady calculation of thermocompressor working process was suggested. The results of this investigation are to change of thermocompressor’s chambers temperature and pressure during the working cycle. These distributions help to find out the parameters, which significantly influence thermocompressor efficiency. These parameters include regenerative heat exchanger coefficient of the performance (COP) dead volume of the chambers, working frequency of the thermocompressor etc. Exergy analysis was performed to estimate thermocompressor efficiency. Cryogenic thermocompressor operated on nitrogen working fluid was chosen as a prototype. Calculation of the temperature and pressure change was performed with taking into account heat fluxes through regenerator and thermocompressor walls. Temperature of the cold chamber significantly differs from the results of steady calculation, which is caused by friction of the working fluid in regenerator and heat fluxes from the hot chamber. The rise of the cold chamber temperature leads to decreasing of thermocompressor delivery volume. Temperature of hot chamber differs negligibly because losses due to heat fluxes to a cold chamber are compensated by the friction of the working fluid in the regenerator. Optimal working frequency was selected. Main results of the investigation: -theoretical confirmation of thermocompressor operation capability on the cryogenic working fluid; -optimal working frequency was found; -value of the cold chamber temperature differs from the starting value much more than the temperature of the hot chamber; -main parameters which influence thermocompressor performance are regenerative heat exchanger COP and heat fluxes through regenerator and thermocompressor walls.Keywords: cold energy, liquid natural gas, thermocompressor, regenerative heat exchanger
Procedia PDF Downloads 5822025 Ultrasound/Microwave Assisted Extraction Recovery and Identification of Bioactive Compounds (Polyphenols) from Tarbush (Fluorensia cernua)
Authors: Marisol Rodriguez-Duarte, Aide Saenz-Galindo, Carolina Flores-Gallegos, Raul Rodriguez-Herrera, Juan Ascacio-Valdes
Abstract:
The plant known as tarbush (Fluorensia cernua) is a plant originating in northern Mexico, mainly in the states of Coahuila, Durango, San Luis Potosí, Zacatecas and Chihuahua. It is a branched shrub that belongs to the family Asteraceae, has oval leaves of 6 to 11 cm in length and also has small yellow flowers. In Mexico, the tarbush is a very appreciated plant because it has been used as a traditional medicinal agent, for the treatment of gastrointestinal diseases, skin infections and as a healing agent. This plant has been used mainly as an infusion. Due to its traditional use, the content and type of phytochemicals present in the plant are currently unknown and are responsible for its biological properties, so its recovery and identification is very important because the compounds that it contains have relevant applications in the field of food, pharmaceuticals and medicine. The objective of this work was to determine the best extraction condition of phytochemical compounds (mainly polyphenolic compounds) from the leaf using ultrasound/microwave assisted extraction (U/M-AE). To reach the objective, U/M-AE extractions were performed evaluating three mass/volume ratios (1:8, 1:12, 1:16), three ethanol/water solvent concentrations (0%, 30% and 70%), ultrasound extraction time of 20 min and 5 min at 70°C of microwave treatment. All experiments were performed using a fractional factorial experimental design. Once the best extraction condition was defined, the compounds were recovered by liquid column chromatography using Amberlite XAD-16, the polyphenolic fraction was recovered with ethanol and then evaporated. The recovered polyphenolic compounds were quantified by spectrophotometric techniques and identified by HPLC/ESI/MS. The results obtained showed that the best extraction condition of the compounds was using a mass/volume ratio of 1:8 and solvent ethanol/water concentration of 70%. The concentration obtained from polyphenolic compounds using this condition was 22.74 mg/g and finally, 16 compounds of polyphenolic origin were identified. The results obtained in this work allow us to postulate the Mexican plant known as tarbush as a relevant source of bioactive polyphenolic compounds of food, pharmaceutical and medicinal interest.Keywords: U/M-AE, tarbush, polyphenols, identification
Procedia PDF Downloads 1632024 Candida antartica Lipase Assisted Enrichment of n-3 PUFA in Indian Sardine Oil
Authors: Prasanna Belur, P. R. Ashwini, Sampath Charanyaa, I. Regupathi
Abstract:
Indian oil sardine (Sardinella longiceps) are one of the richest and cheapest sources of n-3 polyunsaturated fatty acids (n-3 PUFA) such as Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA). The health benefits conferred by n-3 PUFA upon consumption, in the prevention and treatment of coronary, neuromuscular, immunological disorders and allergic conditions are well documented. Natural refined Indian Sardine oil generally contain about 25% (w/w) n-3 PUFA along with various unsaturated and saturated fatty acids in the form of mono, di, and triglycerides. Having high concentration of n-3 PUFA content in the glyceride form is most desirable for human consumption to avail maximum health benefits. Thus, enhancing the n-3 PUFA content while retaining it in the glyceride form with green technology is the need of the hour. In this study, refined Indian Sardine oil was subjected to selective hydrolysis by Candida antartica lipase to enhance n-3 PUFA content. The degree of hydrolysis and enhancement of n-3 PUFA content was estimated by determining acid value, Iodine value, EPA and DHA content (by Gas Chromatographic methods after derivitization) before and after hydrolysis. Various reaction parameters such as pH, temperature, enzyme load, lipid to aqueous phase volume ratio and incubation time were optimized by conducting trials with one parameter at a time approach. Incubating enzyme solution with refined sardine oil with a volume ratio of 1:1, at pH 7.0, for 60 minutes at 50 °C, with an enzyme load of 60 mg/ml was found to be optimum. After enzymatic treatment, the oil was subjected to refining to remove free fatty acids and moisture content using previously optimized refining technology. Enzymatic treatment at the optimal conditions resulted in 12.11 % enhancement in Degree of hydrolysis. Iodine number had increased by 9.7 % and n-3 PUFA content was enhanced by 112 % (w/w). Selective enhancement of n-3 PUFA glycerides, eliminating saturated and unsaturated fatty acids from the oil using enzyme is an interesting preposition as this technique is environment-friendly, cost effective and provide natural source of n-3 PUFA rich oil.Keywords: Candida antartica, lipase, n-3 polyunsaturated fatty acids, sardine oil
Procedia PDF Downloads 2332023 Ligandless Extraction and Determination of Trace Amounts of Lead in Pomegranate, Zucchini and Lettuce Samples after Dispersive Liquid-Liquid Microextraction with Ultrasonic Bath and Optimization of Extraction Condition with RSM Design
Authors: Fariba Tadayon, Elmira Hassanlou, Hasan Bagheri, Mostafa Jafarian
Abstract:
Heavy metals are released into water, plants, soil, and food by natural and human activities. Lead has toxic roles in the human body and may cause serious problems even in low concentrations, since it may have several adverse effects on human. Therefore, determination of lead in different samples is an important procedure in the studies of environmental pollution. In this work, an ultrasonic assisted-ionic liquid based-liquid-liquid microextraction (UA-IL-DLLME) procedure for the determination of lead in zucchini, pomegranate, and lettuce has been established and developed by using flame atomic absorption spectrometer (FAAS). For UA-IL-DLLME procedure, 10 mL of the sample solution containing Pb2+ was adjusted to pH=5 in a glass test tube with a conical bottom; then, 120 μL of 1-Hexyl-3-methylimidazolium hexafluoro phosphate (CMIM)(PF6) was rapidly injected into the sample solution with a microsyringe. After that, the resulting cloudy mixture was treated by ultrasonic for 5 min, then the separation of two phases was obtained by centrifugation for 5 min at 3000 rpm and IL-phase diluted with 1 cc ethanol, and the analytes were determined by FAAS. The effect of different experimental parameters in the extraction step including: ionic liquid volume, sonication time and pH was studied and optimized simultaneously by using Response Surface Methodology (RSM) employing a central composite design (CCD). The optimal conditions were determined to be an ionic liquid volume of 120 μL, sonication time of 5 min, and pH=5. The linear ranges of the calibration curve for the determination by FAAS of lead were 0.1-4 ppm with R2=0.992. Under optimized conditions, the limit of detection (LOD) for lead was 0.062 μg.mL-1, the enrichment factor (EF) was 93, and the relative standard deviation (RSD) for lead was calculated as 2.29%. The levels of lead for pomegranate, zucchini, and lettuce were calculated as 2.88 μg.g-1, 1.54 μg.g-1, 2.18 μg.g-1, respectively. Therefore, this method has been successfully applied for the analysis of the content of lead in different food samples by FAAS.Keywords: Dispersive liquid-liquid microextraction, Central composite design, Food samples, Flame atomic absorption spectrometry.
Procedia PDF Downloads 2832022 Development of a Bead Based Fully Automated Mutiplex Tool to Simultaneously Diagnose FIV, FeLV and FIP/FCoV
Authors: Andreas Latz, Daniela Heinz, Fatima Hashemi, Melek Baygül
Abstract:
Introduction: Feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), and feline coronavirus (FCoV) are serious infectious diseases affecting cats worldwide. Transmission of these viruses occurs primarily through close contact with infected cats (via saliva, nasal secretions, faeces, etc.). FeLV, FIV, and FCoV infections can occur in combination and are expressed in similar clinical symptoms. Diagnosis can therefore be challenging: Symptoms are variable and often non-specific. Sick cats show very similar clinical symptoms: apathy, anorexia, fever, immunodeficiency syndrome, anemia, etc. Sample volume for small companion animals for diagnostic purposes can be challenging to collect. In addition, multiplex diagnosis of diseases can contribute to an easier, cheaper, and faster workflow in the lab as well as to the better differential diagnosis of diseases. For this reason, we wanted to develop a new diagnostic tool that utilizes less sample volume, reagents, and consumables than multiplesingleplex ELISA assays Methods: The Multiplier from Dynextechonogies (USA) has been used as platform to develop a Multiplex diagnostic tool for the detection of antibodies against FIV and FCoV/FIP and antigens for FeLV. Multiplex diagnostics. The Dynex®Multiplier®is a fully automated chemiluminescence immunoassay analyzer that significantly simplifies laboratory workflow. The Multiplier®ease-of-use reduces pre-analytical steps by combining the power of efficiently multiplexing multiple assays with the simplicity of automated microplate processing. Plastic beads have been coated with antigens for FIV and FCoV/FIP, as well as antibodies for FeLV. Feline blood samples are incubated with the beads. Read out of results is performed via chemiluminescence Results: Bead coating was optimized for each individual antigen or capture antibody and then combined in the multiplex diagnostic tool. HRP: Antibody conjugates for FIV and FCoV antibodies, as well as detection antibodies for FeLV antigen, have been adjusted and mixed. 3 individual prototyple batches of the assay have been produced. We analyzed for each disease 50 well defined positive and negative samples. Results show an excellent diagnostic performance of the simultaneous detection of antibodies or antigens against these feline diseases in a fully automated system. A 100% concordance with singleplex methods like ELISA or IFA can be observed. Intra- and Inter-Assays showed a high precision of the test with CV values below 10% for each individual bead. Accelerated stability testing indicate a shelf life of at least 1 year. Conclusion: The new tool can be used for multiplex diagnostics of the most important feline infectious diseases. Only a very small sample volume is required. Fully automation results in a very convenient and fast method for diagnosing animal diseases.With its large specimen capacity to process over 576 samples per 8-hours shift and provide up to 3,456 results, very high laboratory productivity and reagent savings can be achieved.Keywords: Multiplex, FIV, FeLV, FCoV, FIP
Procedia PDF Downloads 1042021 Impact of Climate Change on Some Physiological Parameters of Cyclic Female Egyptian Buffalo
Authors: Nabil Abu-Heakal, Ismail Abo-Ghanema, Basma Hamed Merghani
Abstract:
The aim of this investigation is to study the effect of seasonal variations in Egypt on hematological parameters, reproductive and metabolic hormones of Egyptian buffalo-cows. This study lasted one year extending from December 2009 to November 2010 and was conducted on sixty buffalo-cows. Group of 5 buffalo-cows at estrus phase were selected monthly. Then, after blood sampling through tail vein puncture in the 2nd day after natural service, they were divided in two samples: one with anticoagulant for hematological analysis and the other without anticoagulant for serum separation. Results of this investigation revealed that the highest atmospheric temperature was in hot summer 32.61±1.12°C versus 26.18±1.67°C in spring and 19.92±0.70°C in winter season, while the highest relative humidity % was in winter season 43.50±1.60% versus 32.50±2.29% in summer season. The rise in temperature-humidity index from 63.73±1.29 in winter to 78.53±1.58 in summer indicates severe heat stress which is associated with significant reduction in total red blood cell count (3.20±0.15×106), hemoglobin concentration (8.83±0.43 g/dl), packed cell volume (30.73±0.12%), lymphocytes % (40.66±2.33 %), serum progesterone hormone concentration (0.56±0.03 ng/mll), estradiol17-B concentration (16.8±0.64 ng/ml), triiodothyronin (T3) concentration (2.33±0.33 ng/ml) and thyroxin hormone (T4) concentration (21.66±1.66 ng/ml), while hot summer resulted in significant increase in mean cell volume (96.55±2.25 fl), mean cell hemoglobin (30.81±1.33 pg), total white blood cell count (10.63±0.97×103), neutrophils % (49.66±2.33%), serum prolactin hormone (PRL) concentration (23.45±1.72 ng/ml) and cortisol hormone concentration (4.47±0.33 ng/ml) compared to winter season. There was no significant seasonal variation in mean cell hemoglobin concentration (MCHC). It was concluded that in Egypt there was a seasonal variation in atmospheric temperature, relative humidity, temperature humidity index (THI) and the rise in THI above the upper critical level (72 units), which, for lactating buffalo-cows in Egypt is the major constraint on buffalo-cows' hematological parameters and hormonal secretion that affects animal reproduction. Hence, we should improve climatic conditions inside the dairy farm to eliminate or reduce summer infertility.Keywords: buffalo, climate change, Egypt, physiological parameters
Procedia PDF Downloads 6602020 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data
Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz
Abstract:
In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.Keywords: real-time spatial big data, quality of service, vertical partitioning, horizontal partitioning, matching algorithm, hamming distance, stream query
Procedia PDF Downloads 1572019 Topographic Characteristics Derived from UAV Images to Detect Ephemeral Gully Channels
Authors: Recep Gundogan, Turgay Dindaroglu, Hikmet Gunal, Mustafa Ulukavak, Ron Bingner
Abstract:
A majority of total soil losses in agricultural areas could be attributed to ephemeral gullies caused by heavy rains in conventionally tilled fields; however, ephemeral gully erosion is often ignored in conventional soil erosion assessments. Ephemeral gullies are often easily filled from normal soil tillage operations, which makes capturing the existing ephemeral gullies in croplands difficult. This study was carried out to determine topographic features, including slope and aspect composite topographic index (CTI) and initiation points of gully channels, using images obtained from unmanned aerial vehicle (UAV) images. The study area was located in Topcu stream watershed in the eastern Mediterranean Region, where intense rainfall events occur over very short time periods. The slope varied between 0.7 and 99.5%, and the average slope was 24.7%. The UAV (multi-propeller hexacopter) was used as the carrier platform, and images were obtained with the RGB camera mounted on the UAV. The digital terrain models (DTM) of Topçu stream micro catchment produced using UAV images and manual field Global Positioning System (GPS) measurements were compared to assess the accuracy of UAV based measurements. Eighty-one gully channels were detected in the study area. The mean slope and CTI values in the micro-catchment obtained from DTMs generated using UAV images were 19.2% and 3.64, respectively, and both slope and CTI values were lower than those obtained using GPS measurements. The total length and volume of the gully channels were 868.2 m and 5.52 m³, respectively. Topographic characteristics and information on ephemeral gully channels (location of initial point, volume, and length) were estimated with high accuracy using the UAV images. The results reveal that UAV-based measuring techniques can be used in lieu of existing GPS and total station techniques by using images obtained with high-resolution UAVs.Keywords: aspect, compound topographic index, digital terrain model, initial gully point, slope, unmanned aerial vehicle
Procedia PDF Downloads 1142018 Oncoplastic Augmentation Mastopexy: Aesthetic Revisional Surgery in Breast Conserving Therapy
Authors: Bar Y. Ainuz, Harry M. Salinas, Aleeza Ali, Eli B. Levitt, Austin J. Pourmoussa, Antoun Bouz, Miguel A. Medina
Abstract:
Introduction: Breast conservation therapy remains the mainstay surgical treatment for early breast cancer. Oncoplastic techniques, in conjunction with lumpectomy and adjuvant radiotherapy, have been demonstrated to achieve good aesthetic results without adversely affecting cancer outcomes in the treatment of patients with macromastia or significant ptosis. In our patient population, many women present for breast conservation with pre-existing cosmetic implants or with breast volumes too small for soft tissue, only oncoplastic techniques. Our study evaluated a consecutive series of patients presenting for breast conservation undergoing concomitant oncoplastic-augmentation-mastopexy (OAM) with a contralateral augmentation-mastopexy for symmetry. Methods: OAM surgical technique involves simultaneous lumpectomy with exchange or placement of implants, oncoplastic mastopexy, and concomitant contralateral augmentation mastopexy for symmetry. Patients undergoing lumpectomy for breast conservation as outpatients were identified via retrospective chart review at a high volume private academic affiliated community-based cancer center. Patients with ptosis and either pre-existing breast implants or insufficient breast volume undergoing oncoplastic implant placement (or exchange) and mastopexy were included in the study. Operative details, aesthetic outcomes, and complications were assessed. Results: Over a continuous three-year period, with a two-surgeon cohort, 30 consecutive patients (56 breasts, 4 unilateral procedures) were identified. Patients had an average age of 52.5 years and an average BMI of 27.5, with 40% smokers or former smokers. The average operative time was 2.5 hours, the average implant size removed was 352 cc, and the average implant size placed was 300 cc. All new implants were smooth silicone, with the majority (92%) placed in a retropectoral fashion. 40% of patients received chemotherapy, and 80% of patients received whole breast adjuvant photon radiotherapy with a total radiation dose of either 42.56 or 52.56 Gy. The average and median length of follow-up were both 8.2 months. Of the 24 patients that received radiotherapy, 21% had asymmetry due to capsular contracture. A total of 7 patients (29.2%) underwent revisions for either positive margins (12.5%), capsular contracture (8.3%), implant loss (4.2%), or cosmetic concerns (4.2%). One patient developed a pulmonary embolism in the acute postoperative period and was treated with anticoagulant therapy. Conclusion: Oncoplastic augmentation mastopexy is a safe technique with good aesthetic outcomes and acceptable complication rates for ptotic patients with breast cancer and a paucity of breast volume or pre-existing implants who wish to pursue breast-conserving therapy. The revision rates compare favorably with single-stage cosmetic augmentation procedures as well as other oncoplastic techniques described in the literature. The short-term capsular contracture rates seem lower than the rates in patients undergoing radiation after mastectomy and implant-based reconstruction. Long term capsular contractures and revision rates are too early to know in this cohort.Keywords: breast conserving therapy, oncoplastic augmentation mastopexy, capsular contracture, breast reconstruction
Procedia PDF Downloads 1372017 Factors Influencing Resolution of Anaphora with Collective Nominals in Russian
Authors: Anna Moskaleva
Abstract:
A prolific body of research in theoretical and experimental linguistics claims that a preference for conceptual or grammatical information in the process of agreement greatly depends on the type of agreement dependency. According to the agreement hierarchy, an anaphoric agreement is more sensitive to semantic or conceptual rather than grammatical information of an antecedent. Furthermore, a higher linear distance between a pronoun and its antecedent is assumed to trigger semantic agreement, yet the hierarchical distance is hardly examined in the research field, and the contribution of each distance factor is unclear. Apart from that, working memory volume is deemed to play a role in maintaining grammatical information during language comprehension. The aim of this study is to observe distance and working memory effects in resolution of anaphora with collective nominals (e.g., team) and to have a closer look at the interaction of the factors. Collective nominals in many languages can have a holistic or distributive meaning and can be addressed by a singular or a plural pronoun, respectively. We investigated linguistic factors of linear and rhetorical (hierarchical) distance and a more general factor of working memory volume in their ability to facilitate the interpretation of the number feature of a collective noun in Russian. An eye-tracking reading experiment on comprehension has been conducted where university students were presented with composed texts, including collective nouns and personal pronouns alluding to them. Different eye-tracking measures were calculated using statistical methods. The results have shown that a significant increase in reading time in the case of a singular pronoun was demonstrated when both distances were high, and no such effect was observed when just one of the distances was high. A decrease in reading time has been obtained with distance in the case of a plural pronoun. The working memory effect was not revealed in the experiment. The resonance of distance factors indicates that not only the linear distance but also the hierarchical distance is of great importance in interpreting pronouns. The experimental findings also suggest that, apart from the agreement hierarchy, the preference for conceptual or grammatical information correlates with the distance between a pronoun and its antecedent.Keywords: collective nouns, agreement hierarchy, anaphora resolution, eye-tracking, language comprehension
Procedia PDF Downloads 382016 A Nutrient Formulation Affects Brain Myelination in Infants: An Investigative Randomized Controlled Trial
Authors: N. Schneider, M. Bruchhage, M. Hartweg, G. Mutungi, J. O Regan, S. Deoni
Abstract:
Observational neuroimaging studies suggest differences between breast-fed and formula-fed infants in developmental myelination, a key brain process for learning and cognitive development. However, the possible effects of a nutrient formulation on myelin development in healthy term infants in an intervention study have not been investigated. Objective was, therefore, to investigate the efficacy of a nutrient formulation with higher levels of myelin-relevant nutrients as compared to a control formulation with lower levels of the same nutrients on brain myelination and cognitive development in the first 6 months of life. The study is an ongoing randomized, controlled, double-blind, two-center, parallel-group clinical trial with a nonrandomized, non-blinded arm of exclusively breastfed infants. The current findings result from a staged statistical analysis at 6 months; the recruitment and intervention period has been completed for all participants. Follow-up visits at 12, 18 and 24 months are still ongoing. N= 81 enrolled full term, neurotypical infants of both sexes were randomized into either the investigational (N= 42) or the control group (N= 39), and N= 108 children in the breast-fed arm served as a natural reference group. The effect of a blend of docosahexaenoic acid, arachidonic acid, iron, vitamin B12, folic acid as well as sphingomyelin from a uniquely proceed whey protein concentrate enriched in alpha-lactalbumin and phospholipids in an infant nutrition product matrix was investigated. The main outcomes for the staged statistical analyses at 6 months included brain myelination measures derived from MRI. Additional outcomes were brain volume, cognitive development and safety. The full analyses set at 6 months comprised N= 66 infants. Higher levels of myelin-relevant nutrients compared to lower levels resulted in significant differences in myelin structure, volume, and rate of myelination as early as 3 and 6 months of life. The cross-sectional change of means between groups for whole-brain myelin volume was 8.4% for investigational versus control formulation (3.5% versus the breastfeeding reference) group at 3 months and increased to 36.4% for investigational versus control formulation (14.1% versus breastfeeding reference) at 6 months. No statistically significant differences were detected for early cognition scores. Safety findings were largely similar across groups. This is the first pediatric nutritional neuroimaging study demonstrating the efficacy of a myelin nutrient blend on developmental myelination in well-nourished term infants. Myelination is a critical process in learning and development. The effects were demonstrated across the brain, particularly in temporal and parietal regions, known to be functionally involved in sensory, motor and language skills. These first results add to the field of nutritional neuroscience by demonstrating early life nutrition benefits for brain architecture which may be foundational for later cognitive and behavioral outcomes. ClinicalTrials.gov Identifier: NCT03111927 (Infant Nutrition and Brain Development - Full-Text View - ClinicalTrials.gov).Keywords: brain development, infant nutrition, MRI, myelination
Procedia PDF Downloads 1952015 Exercise Training for Management Hypertensive Patients: A Systematic Review and Meta-Analysis
Authors: Noor F. Ilias, Mazlifah Omar, Hashbullah Ismail
Abstract:
Exercise training has been shown to improve functional capacity and is recommended as a therapy for management of blood pressure. Our purpose was to establish whether different exercise capacity produces different effect size for Cardiorespiratory Fitness (CRF), systolic (SBP) and diastolic (DBP) blood pressure in patients with hypertension. Exercise characteristic is required in order to have optimal benefit from the training, but optimal exercise capacity is still unwarranted. A MEDLINE search (1985 to 2015) was conducted for exercise based rehabilitation trials in hypertensive patients. Thirty-seven studies met the selection criteria. Of these, 31 (83.7%) were aerobic exercise and 6 (16.3%) aerobic with additional resistance exercise, providing a total of 1318 exercise subjects and 819 control, the total of subjects was 2137. We calculated exercise volume and energy expenditure through the description of exercise characteristics. 4 studies (18.2%) were 451kcal - 900 kcal, 12 (54.5%) were 900 kcal – 1350 kcal and 6 (27.3%) >1351kcal per week. Peak oxygen consumption (peak VO2) increased by mean difference of 1.44 ml/kg/min (95% confidence interval [CI]: 1.08 to 1.79 ml/kg/min; p = 0.00001) with weighted mean 21.2% for aerobic exercise compare to aerobic with additional resistance exercise 4.50 ml/kg/min (95% confidence interval [CI]: 3.57 to 5.42 ml/kg/min; p = 0.00001) with weighted mean 14.5%. SBP was clinically reduce for both aerobic and aerobic with resistance training by mean difference of -4.66 mmHg (95% confidence interval [CI]: -5.68 to -3.63 mmHg; p = 0.00001) weighted mean 6% reduction and -5.06 mmHg (95% confidence interval [CI]: -7.32 to -2.8 mmHg; p = 0.0001) weighted mean 5% reduction respectively. Result for DBP was clinically reduce for aerobic by mean difference of -1.62 mmHg (95% confidence interval [CI]: -2.09 to -1.15 mmHg; p = 0.00001) weighted mean 4% reduction and aerobic with resistance training reduce by mean difference of -3.26 mmHg (95% confidence interval [CI]: -4.87 to -1.65 mmHg; p = 0.0001) weighted mean 6% reduction. Optimum exercise capacity for 451 kcal – 900 kcal showed greater improvement in peak VO2 and SBP by 2.76 ml/kg/min (95% confidence interval [CI]: 1.47 to 4.05 ml/kg/min; p = 0.0001) with weighted mean 40.6% and -16.66 mmHg (95% confidence interval [CI]: -21.72 to -11.60 mmHg; p = 0.00001) weighted mean 9.8% respectively. Our data demonstrated that aerobic exercise with total volume of 451 kcal – 900 kcal/ week energy expenditure may elicit greater changes in cardiorespiratory fitness and blood pressure in hypertensive patients. Higher exercise capacity weekly does not seem better result in management hypertensive patients.Keywords: blood Pressure, exercise, hypertension, peak VO2
Procedia PDF Downloads 2822014 Double Functionalization of Magnetic Colloids with Electroactive Molecules and Antibody for Platelet Detection and Separation
Authors: Feixiong Chen, Naoufel Haddour, Marie Frenea-Robin, Yves MéRieux, Yann Chevolot, Virginie Monnier
Abstract:
Neonatal thrombopenia occurs when the mother generates antibodies against her baby’s platelet antigens. It is particularly critical for newborns because it can cause coagulation troubles leading to intracranial hemorrhage. In this case, diagnosis must be done quickly to make platelets transfusion immediately after birth. Before transfusion, platelet antigens must be tested carefully to avoid rejection. The majority of thrombopenia (95 %) are caused by antibodies directed against Human Platelet Antigen 1a (HPA-1a) or 5b (HPA-5b). The common method for antigen platelets detection is polymerase chain reaction allowing for identification of gene sequence. However, it is expensive, time-consuming and requires significant blood volume which is not suitable for newborns. We propose to develop a point-of-care device based on double functionalized magnetic colloids with 1) antibodies specific to antigen platelets and 2) highly sensitive electroactive molecules in order to be detected by an electrochemical microsensor. These magnetic colloids will be used first to isolate platelets from other blood components, then to capture specifically platelets bearing HPA-1a and HPA-5b antigens and finally to attract them close to sensor working electrode for improved electrochemical signal. The expected advantages are an assay time lower than 20 min starting from blood volume smaller than 100 µL. Our functionalization procedure based on amine dendrimers and NHS-ester modification of initial carboxyl colloids will be presented. Functionalization efficiency was evaluated by colorimetric titration of surface chemical groups, zeta potential measurements, infrared spectroscopy, fluorescence scanning and cyclic voltammetry. Our results showed that electroactive molecules and antibodies can be immobilized successfully onto magnetic colloids. Application of a magnetic field onto working electrode increased the detected electrochemical signal. Magnetic colloids were able to capture specific purified antigens extracted from platelets.Keywords: Magnetic Nanoparticles , Electroactive Molecules, Antibody, Platelet
Procedia PDF Downloads 2702013 Remote Sensing Reversion of Water Depths and Water Management for Waterbird Habitats: A Case Study on the Stopover Site of Siberian Cranes at Momoge, China
Authors: Chunyue Liu, Hongxing Jiang
Abstract:
Traditional water depth survey of wetland habitats used by waterbirds needs intensive labor, time and money. The optical remote sensing image relies on passive multispectral scanner data has been widely employed to study estimate water depth. This paper presents an innovative method for developing the water depth model based on the characteristics of visible and thermal infrared spectra of Landsat ETM+ image, combing with 441 field water depth data at Etoupao shallow wetland. The wetland is located at Momoge National Nature Reserve of Northeast China, where the largest stopover habitat along the eastern flyway of globally, critically-endangered Siberian Cranes are. The cranes mainly feed on the tubers of emergent aquatic plants such as Scirpus planiculmis and S. nipponicus. The effective water control is a critical step for maintaining the production of tubers and food availability for this crane. The model employing multi-band approach can effectively simulate water depth for this shallow wetland. The model parameters of NDVI and GREEN indicated the vegetation growth and coverage affecting the reflectance from water column change are uneven. Combining with the field-observed water level at the same date of image acquisition, the digital elevation model (DEM) for the underwater terrain was generated. The wetland area and water volume of different water levels were then calculated from the DEM using the function of Area and Volume Statistics under the 3D Analyst of ArcGIS 10.0. The findings provide good references to effectively monitor changes in water level and water demand, develop practical plan for water level regulation and water management, and to create best foraging habitats for the cranes. The methods here can be adopted for the bottom topography simulation and water management in waterbirds’ habitats, especially in the shallow wetlands.Keywords: remote sensing, water depth reversion, shallow wetland habitat management, siberian crane
Procedia PDF Downloads 252