Search results for: genetic algorithm optimization
6412 High-Risk Gene Variant Profiling Models Ethnic Disparities in Diabetes Vulnerability
Authors: Jianhua Zhang, Weiping Chen, Guanjie Chen, Jason Flannick, Emma Fikse, Glenda Smerin, Yanqin Yang, Yulong Li, John A. Hanover, William F. Simonds
Abstract:
Ethnic disparities in many diseases are well recognized and reflect the consequences of genetic, behavior, and environmental factors. However, direct scientific evidence connecting the ethnic genetic variations and the disease disparities has been elusive, which may have led to the ethnic inequalities in large scale genetic studies. Through the genome-wide analysis of data representing 185,934 subjects, including 14,955 from our own studies of the African America Diabetes Mellitus, we discovered sets of genetic variants either unique to or conserved in all ethnicities. We further developed a quantitative gene function-based high-risk variant index (hrVI) of 20,428 genes to establish profiles that strongly correlate with the subjects' self-identified ethnicities. With respect to the ability to detect human essential and pathogenic genes, the hrVI analysis method is both comparable with and complementary to the well-known genetic analysis methods, pLI and VIRlof. Application of the ethnicity-specific hrVI analysis to the type 2 diabetes mellitus (T2DM) national repository, containing 20,791 cases and 24,440 controls, identified 114 candidate T2DM-associated genes, 8.8-fold greater than that of ethnicity-blind analysis. All the genes identified are defined as either pathogenic or likely-pathogenic in ClinVar database, with 33.3% diabetes-associated and 54.4% obesity-associated genes. These results demonstrate the utility of hrVI analysis and provide the first genetic evidence by clustering patterns of how genetic variations among ethnicities may impede the discovery of diabetes and foreseeably other disease-associated genes.Keywords: diabetes-associated genes, ethnic health disparities, high-risk variant index, hrVI, T2DM
Procedia PDF Downloads 1376411 Informed Urban Design: Minimizing Urban Heat Island Intensity via Stochastic Optimization
Authors: Luis Guilherme Resende Santos, Ido Nevat, Leslie Norford
Abstract:
The Urban Heat Island (UHI) is characterized by increased air temperatures in urban areas compared to undeveloped rural surrounding environments. With urbanization and densification, the intensity of UHI increases, bringing negative impacts on livability, health and economy. In order to reduce those effects, it is required to take into consideration design factors when planning future developments. Given design constraints such as population size and availability of area for development, non-trivial decisions regarding the buildings’ dimensions and their spatial distribution are required. We develop a framework for optimization of urban design in order to jointly minimize UHI intensity and buildings’ energy consumption. First, the design constraints are defined according to spatial and population limits in order to establish realistic boundaries that would be applicable in real life decisions. Second, the tools Urban Weather Generator (UWG) and EnergyPlus are used to generate outputs of UHI intensity and total buildings’ energy consumption, respectively. Those outputs are changed based on a set of variable inputs related to urban morphology aspects, such as building height, urban canyon width and population density. Lastly, an optimization problem is cast where the utility function quantifies the performance of each design candidate (e.g. minimizing a linear combination of UHI and energy consumption), and a set of constraints to be met is set. Solving this optimization problem is difficult, since there is no simple analytic form which represents the UWG and EnergyPlus models. We therefore cannot use any direct optimization techniques, but instead, develop an indirect “black box” optimization algorithm. To this end we develop a solution that is based on stochastic optimization method, known as the Cross Entropy method (CEM). The CEM translates the deterministic optimization problem into an associated stochastic optimization problem which is simple to solve analytically. We illustrate our model on a typical residential area in Singapore. Due to fast growth in population and built area and land availability generated by land reclamation, urban planning decisions are of the most importance for the country. Furthermore, the hot and humid climate in the country raises the concern for the impact of UHI. The problem presented is highly relevant to early urban design stages and the objective of such framework is to guide decision makers and assist them to include and evaluate urban microclimate and energy aspects in the process of urban planning.Keywords: building energy consumption, stochastic optimization, urban design, urban heat island, urban weather generator
Procedia PDF Downloads 1316410 Voltage and Frequency Regulation Using the Third-Party Mid-Size Battery
Authors: Roghieh A. Biroon, Zoleikha Abdollahi
Abstract:
The recent growth of renewables, e.g., solar panels, batteries, and electric vehicles (EVs) in residential and small commercial sectors, has potential impacts on the stability and operation of power grids. Considering approximately 50 percent share of the residential and the commercial sectors in the electricity demand market, the significance of these impacts, and the necessity of addressing them are more highlighted. Utilities and power system operators should manage the renewable electricity sources integration with power systems in such a way to extract the most possible advantages for the power systems. The most common effect of high penetration level of the renewables is the reverse power flow in the distribution feeders when the customers generate more power than their needs. The reverse power flow causes voltage rise and thermal issues in the power grids. To overcome the voltage rise issues in the distribution system, several techniques have been proposed including reducing transformers short circuit resistance and feeder impedance, installing autotransformers/voltage regulators along the line, absorbing the reactive power by distributed generators (DGs), and limiting the PV and battery sizes. In this study, we consider a medium-scale battery energy storage to manage the power energy and address the aforementioned issues on voltage deviation and power loss increase. We propose an optimization algorithm to find the optimum size and location for the battery. The optimization for the battery location and size is so that the battery maintains the feeder voltage deviation and power loss at a certain desired level. Moreover, the proposed optimization algorithm controls the charging/discharging profile of the battery to absorb the negative power flow from residential and commercial customers in the feeder during the peak time and sell the power back to the system during the off-peak time. The proposed battery regulates the voltage problem in the distribution system while it also can play frequency regulation role in islanded microgrids. This battery can be regulated and controlled by the utilities or a third-party ancillary service provider for the utilities to reduce the power system loss and regulate the distribution feeder voltage and frequency in standard level.Keywords: ancillary services, battery, distribution system and optimization
Procedia PDF Downloads 1316409 Improvement of the Melon (Cucumis melo L.) through Genetic Gain and Discriminant Function
Authors: M. R. Naroui Rad, H. Fanaei, A. Ghalandarzehi
Abstract:
To find out the yield of melon, the traits are vital. This research was performed with the objective to assess the impact of nine different morphological traits on the production of 20 melon landraces in the sistan weather region. For all the traits genetic variation was noted. Minimum genetical variance (9.66) along with high genetic interaction with the environment led to low heritability (0.24) of the yield. The broad sense heritability of the traits that were included into the differentiating model was more than it was in the production. In this study, the five selected traits, number of fruit, fruit weight, fruit width, flesh diameter and plant yield can differentiate the genotypes with high or low production. This demonstrated the significance of these 5 traits in plant breeding programs. Discriminant function of these 5 traits, particularly, the weight of the fruit, in case of the current outputs was employed as an all-inclusive parameter for pointing out landraces with the highest yield. 75% of variation in yield can be explained with this index, and the weight of fruit also has substantial relation with the total production (r=0.72**). This factor can be highly beneficial in case of future breeding program selections.Keywords: melon, discriminant analysis, genetic components, yield, selection
Procedia PDF Downloads 3336408 Optimal Design of Multi-Machine Power System Stabilizers Using Interactive Honey Bee Mating Optimization
Authors: Hossein Ghadimi, Alireza Alizadeh, Oveis Abedinia, Noradin Ghadimi
Abstract:
This paper presents an enhanced Honey Bee Mating Optimization (HBMO) to solve the optimal design of multi machine power system stabilizer (PSSs) parameters, which is called the Interactive Honey Bee Mating Optimization (IHBMO). Power System Stabilizers (PSSs) are now routinely used in the industry to damp out power system oscillations. The design problem of the proposed controller is formulated as an optimization problem and IHBMO algorithm is employed to search for optimal controller parameters. The proposed method is applied to multi-machine power system (MPS). The method suggested in this paper can be used for designing robust power system stabilizers for guaranteeing the required closed loop performance over a prespecified range of operating and system conditions. The simplicity in design and implementation of the proposed stabilizers makes them better suited for practical applications in real plants. The non-linear simulation results are presented under wide range of operating conditions in comparison with the PSO and CPSS base tuned stabilizer one through FD and ITAE performance indices. The results evaluation shows that the proposed control strategy achieves good robust performance for a wide range of system parameters and load changes in the presence of system nonlinearities and is superior to the other controllers.Keywords: power system stabilizer, IHBMO, multimachine, nonlinearities
Procedia PDF Downloads 5076407 Demand Forecasting Using Artificial Neural Networks Optimized by Particle Swarm Optimization
Authors: Daham Owaid Matrood, Naqaa Hussein Raheem
Abstract:
Evolutionary algorithms and Artificial neural networks (ANN) are two relatively young research areas that were subject to a steadily growing interest during the past years. This paper examines the use of Particle Swarm Optimization (PSO) to train a multi-layer feed forward neural network for demand forecasting. We use in this paper weekly demand data for packed cement and towels, which have been outfitted by the Northern General Company for Cement and General Company of prepared clothes respectively. The results showed superiority of trained neural networks using particle swarm optimization on neural networks trained using error back propagation because their ability to escape from local optima.Keywords: artificial neural network, demand forecasting, particle swarm optimization, weight optimization
Procedia PDF Downloads 4526406 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process
Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton
Abstract:
Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization
Procedia PDF Downloads 1166405 Optimal Production and Maintenance Policy for a Partially Observable Production System with Stochastic Demand
Authors: Leila Jafari, Viliam Makis
Abstract:
In this paper, the joint optimization of the economic manufacturing quantity (EMQ), safety stock level, and condition-based maintenance (CBM) is presented for a partially observable, deteriorating system subject to random failure. The demand is stochastic and it is described by a Poisson process. The stochastic model is developed and the optimization problem is formulated in the semi-Markov decision process framework. A modification of the policy iteration algorithm is developed to find the optimal policy. A numerical example is presented to compare the optimal policy with the policy considering zero safety stock.Keywords: condition-based maintenance, economic manufacturing quantity, safety stock, stochastic demand
Procedia PDF Downloads 4646404 Genetically Informed Precision Drug Repurposing for Rheumatoid Arthritis
Authors: Sahar El Shair, Laura Greco, William Reay, Murray Cairns
Abstract:
Background: Rheumatoid arthritis (RA) is a chronic, systematic, inflammatory, autoimmune disease that involves damages to joints and erosions to the associated bones and cartilage, resulting in reduced physical function and disability. RA is a multifactorial disorder influenced by heterogenous genetic and environmental factors. Whilst different medications have proven successful in reducing inflammation associated with RA, they often come with significant side effects and limited efficacy. To address this, the novel pharmagenic enrichment score (PES) algorithm was tested in self-reported RA patients from the UK Biobank (UKBB), which is a cohort of predominantly European ancestry, and identified individuals with a high genetic risk in clinically actionable biological pathways to identify novel opportunities for precision interventions and drug repurposing to treat RA. Methods and materials: Genetic association data for rheumatoid arthritis was derived from publicly available genome-wide association studies (GWAS) summary statistics (N=97173). The PES framework exploits competitive gene set enrichment to identify pathways that are associated with RA to explore novel treatment opportunities. This data is then integrated into WebGestalt, Drug Interaction database (DGIdb) and DrugBank databases to identify existing compounds with existing use or potential for repurposed use. The PES for each of these candidates was then profiled in individuals with RA in the UKBB (Ncases = 3,719, Ncontrols = 333,160). Results A total of 209 pathways with known drug targets after multiple testing correction were identified. Several pathways, including interferon gamma signaling and TID pathway (which relates to a chaperone that modulates interferon signaling), were significantly associated with self-reported RA in the UKBB when adjusting for age, sex, assessment centre month and location, RA polygenic risk and 10 principal components. These pathways have a major role in RA pathogenesis, including autoimmune attacks against certain citrullinated proteins, synovial inflammation, and bone loss. Encouragingly, many also relate to the mechanism of action of existing RA medications. The analyses also revealed statistically significant association between RA polygenic scores and self-reported RA with individual PES scorings, highlighting the potential utility of the PES algorithm in uncovering additional genetic insights that could aid in the identification of individuals at risk for RA and provide opportunities for more targeted interventions. Conclusions In this study, pharmacologically annotated genetic risk was explored through the PES framework to overcome inter-individual heterogeneity and enable precision drug repurposing in RA. The results showed a statistically significant association between RA polygenic scores and self-reported RA and individual PES scorings for 3,719 RA patients. Interestingly, several enriched PES pathways were targeted by already approved RA drugs. In addition, the analysis revealed genetically supported drug repurposing opportunities for future treatment of RA with a relatively safe profile.Keywords: rheumatoid arthritis, precision medicine, drug repurposing, system biology, bioinformatics
Procedia PDF Downloads 766403 Assessing Genetic Variation of Dog Rose (Rosa Canina L.) in Caspian Climate
Authors: Aptin Rahnavard, Ghavamaldin Asadian, Khalil Pourshamsian, Mariamalsadat Taghavi
Abstract:
Dog rose is one of the important rose species in Iran that the distant past had been considered due to nutritional value and medicinal. Despite its long history of use, due to poor information on the genetic modification of plants has been done resources inheritance. In this study was to assess the genetic diversity. Total of 30 genotypes Dog rose from areas of northern Iran in the Caspian region (provinces of Guilan and Mazandaran) were evaluated using 25 RAPD primers. The number of bands produced total of 202 and for each primer were measured in a bands with an average 8-band .The number of polymorphic bands per primer ranged from 1 to 13 and the bands were in the range of 300 to 3000 bp. Based on the results OPA-04 primer with 13 bands and PRA-1, E-09 and A-04 with 5-band were created maximum and minimum number of amplified fragments. Molecular marker genotypes showed a high degree of polymorphism. Studied genotypes based on RAPD results were divided into 2 groups and 2 subgroups. Most similar in subgroups A2 and B group was the lowest.Keywords: rosa canina spp., RAPD marker, genetic variation, caspian climate
Procedia PDF Downloads 5706402 An Optimized Approach to Generate the Possible States of Football Tournaments Final Table
Authors: Mouslem Damkhi
Abstract:
This paper focuses on possible states of a football tournament final table according to the number of participating teams. Each team holds a position in the table with which it is possible to determine the highest and lowest points for that team. This paper proposes an optimized search space based on the minimum and maximum number of points which can be gained by each team to produce and enumerate the possible states for a football tournament final table. The proposed search space minimizes producing the invalid states which cannot occur during a football tournament. The generated states are filtered by a validity checking algorithm which seeks to reach a tournament graph based on a generated state. Thus, the algorithm provides a way to determine which team’s wins, draws and loses values guarantee a particular table position. The paper also presents and discusses the experimental results of the approach on the tournaments with up to eight teams. Comparing with a blind search algorithm, our proposed approach reduces generating the invalid states up to 99.99%, which results in a considerable optimization in term of the execution time.Keywords: combinatorics, enumeration, graph, tournament
Procedia PDF Downloads 1226401 Salmonella Emerging Serotypes in Northwestern Italy: Genetic Characterization by Pulsed-Field Gel Electrophoresis
Authors: Clara Tramuta, Floris Irene, Daniela Manila Bianchi, Monica Pitti, Giulia Federica Cazzaniga, Lucia Decastelli
Abstract:
This work presents the results obtained by the Regional Reference Centre for Salmonella Typing (CeRTiS) in a retrospective study aimed to investigate, through Pulsed-field Gel Electrophoresis (PFGE) analysis, the genetic relatedness of emerging Salmonella serotypes of human origin circulating in North-West of Italy. Furthermore, the goal of this work was to create a Regional database to facilitate foodborne outbreak investigation and to monitor them at an earlier stage. A total of 112 strains, isolated from 2016 to 2018 in hospital laboratories, were included in this study. The isolates were previously identified as Salmonella according to standard microbiological techniques and serotyping was performed according to ISO 6579-3 and the Kaufmann-White scheme using O and H antisera (Statens Serum Institut®). All strains were characterized by PFGE: analysis was conducted according to a standardized PulseNet protocol. The restriction enzyme XbaI was used to generate several distinguishable genomic fragments on the agarose gel. PFGE was performed on a CHEF Mapper system, separating large fragments and generating comparable genetic patterns. The agarose gel was then stained with GelRed® and photographed under ultraviolet transillumination. The PFGE patterns obtained from the 112 strains were compared using Bionumerics version 7.6 software with the Dice coefficient with 2% band tolerance and 2% optimization. For each serotype, the data obtained with the PFGE were compared according to the geographical origin and the year in which they were isolated. Salmonella strains were identified as follow: S. Derby n. 34; S. Infantis n. 38; S. Napoli n. 40. All the isolates had appreciable restricted digestion patterns ranging from approximately 40 to 1100 kb. In general, a fairly heterogeneous distribution of pulsotypes has emerged in the different provinces. Cluster analysis indicated high genetic similarity (≥ 83%) among strains of S. Derby (n. 30; 88%), S. Infantis (n. 36; 95%) and S. Napoli (n. 38; 95%) circulating in north-western Italy. The study underlines the genomic similarities shared by the emerging Salmonella strains in Northwest Italy and allowed to create a database to detect outbreaks in an early stage. Therefore, the results confirmed that PFGE is a powerful and discriminatory tool to investigate the genetic relationships among strains in order to monitoring and control Salmonellosis outbreak spread. Pulsed-field gel electrophoresis (PFGE) still represents one of the most suitable approaches to characterize strains, in particular for the laboratories for which NGS techniques are not available.Keywords: emerging Salmonella serotypes, genetic characterization, human strains, PFGE
Procedia PDF Downloads 1056400 Energy Efficient Firefly Algorithm in Wireless Sensor Network
Authors: Wafa’ Alsharafat, Khalid Batiha, Alaa Kassab
Abstract:
Wireless sensor network (WSN) is comprised of a huge number of small and cheap devices known as sensor nodes. Usually, these sensor nodes are massively and deployed randomly as in Ad-hoc over hostile and harsh environment to sense, collect and transmit data to the needed locations (i.e., base station). One of the main advantages of WSN is that the ability to work in unattended and scattered environments regardless the presence of humans such as remote active volcanoes environments or earthquakes. In WSN expanding network, lifetime is a major concern. Clustering technique is more important to maximize network lifetime. Nature-inspired algorithms are developed and optimized to find optimized solutions for various optimization problems. We proposed Energy Efficient Firefly Algorithm to improve network lifetime as long as possible.Keywords: wireless network, SN, Firefly, energy efficiency
Procedia PDF Downloads 3896399 Synchrony between Genetic Repressilators in Sister Cells in Different Temperatures
Authors: Jerome G. Chandraseelan, Samuel M. D. Oliveira, Antti Häkkinen, Sofia Startceva, Andre S. Ribeiro
Abstract:
We used live E. coli containing synthetic genetic oscillators to study how the degree of synchrony between the genetic circuits of sister cells changes with temperature. We found that both the mean and the variability of the degree of synchrony between the fluorescence signals from sister cells are affected by temperature. Also, while most pairs of sister cells were found to be highly synchronous in each condition, the number of asynchronous pairs increased with increasing temperature, which was found to be due to disruptions in the oscillations. Finally we provide evidence that these disruptions tend to affect multiple generations as opposed to individual cells. These findings provide insight in how to design more robust synthetic circuits and in how cell division can affect their dynamics.Keywords: repressilator, robustness, synchrony, synthetic biology
Procedia PDF Downloads 4836398 Optimization of the Mechanical Performance of Fused Filament Fabrication Parts
Authors: Iván Rivet, Narges Dialami, Miguel Cervera, Michele Chiumenti
Abstract:
Process parameters in Additive Manufacturing (AM) play a critical role in the mechanical performance of the final component. In order to find the input configuration that guarantees the optimal performance of the printed part, the process-performance relationship must be found. Fused Filament Fabrication (FFF) is the selected demonstrative AM technology due to its great popularity in the industrial manufacturing world. A material model that considers the different printing patterns present in a FFF part is used. A voxelized mesh is built from the manufacturing toolpaths described in the G-Code file. An Adaptive Mesh Refinement (AMR) based on the octree strategy is used in order to reduce the complexity of the mesh while maintaining its accuracy. High-fidelity and cost-efficient Finite Element (FE) simulations are performed and the influence of key process parameters in the mechanical performance of the component is analyzed. A robust optimization process based on appropriate failure criteria is developed to find the printing direction that leads to the optimal mechanical performance of the component. The Tsai-Wu failure criterion is implemented due to the orthotropy and heterogeneity constitutive nature of FFF components and because of the differences between the strengths in tension and compression. The optimization loop implements a modified version of an Anomaly Detection (AD) algorithm and uses the computed metrics to obtain the optimal printing direction. The developed methodology is verified with a case study on an industrial demonstrator.Keywords: additive manufacturing, optimization, printing direction, mechanical performance, voxelization
Procedia PDF Downloads 636397 Proxisch: An Optimization Approach of Large-Scale Unstable Proxy Servers Scheduling
Authors: Xiaoming Jiang, Jinqiao Shi, Qingfeng Tan, Wentao Zhang, Xuebin Wang, Muqian Chen
Abstract:
Nowadays, big companies such as Google, Microsoft, which have adequate proxy servers, have perfectly implemented their web crawlers for a certain website in parallel. But due to lack of expensive proxy servers, it is still a puzzle for researchers to crawl large amounts of information from a single website in parallel. In this case, it is a good choice for researchers to use free public proxy servers which are crawled from the Internet. In order to improve efficiency of web crawler, the following two issues should be considered primarily: (1) Tasks may fail owing to the instability of free proxy servers; (2) A proxy server will be blocked if it visits a single website frequently. In this paper, we propose Proxisch, an optimization approach of large-scale unstable proxy servers scheduling, which allow anyone with extremely low cost to run a web crawler efficiently. Proxisch is designed to work efficiently by making maximum use of reliable proxy servers. To solve second problem, it establishes a frequency control mechanism which can ensure the visiting frequency of any chosen proxy server below the website’s limit. The results show that our approach performs better than the other scheduling algorithms.Keywords: proxy server, priority queue, optimization algorithm, distributed web crawling
Procedia PDF Downloads 2116396 A Hybrid-Evolutionary Optimizer for Modeling the Process of Obtaining Bricks
Authors: Marius Gavrilescu, Sabina-Adriana Floria, Florin Leon, Silvia Curteanu, Costel Anton
Abstract:
Natural sciences provide a wide range of experimental data whose related problems require study and modeling beyond the capabilities of conventional methodologies. Such problems have solution spaces whose complexity and high dimensionality require correspondingly complex regression methods for proper characterization. In this context, we propose an optimization method which consists in a hybrid dual optimizer setup: a global optimizer based on a modified variant of the popular Imperialist Competitive Algorithm (ICA), and a local optimizer based on a gradient descent approach. The ICA is modified such that intermediate solution populations are more quickly and efficiently pruned of low-fitness individuals by appropriately altering the assimilation, revolution and competition phases, which, combined with an initialization strategy based on low-discrepancy sampling, allows for a more effective exploration of the corresponding solution space. Subsequently, gradient-based optimization is used locally to seek the optimal solution in the neighborhoods of the solutions found through the modified ICA. We use this combined approach to find the optimal configuration and weights of a fully-connected neural network, resulting in regression models used to characterize the process of obtained bricks using silicon-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. Thus, the purpose of our approach is to determine by simulation the working conditions, including the manufacturing mix recipe with the addition of different materials, to minimize the emissions represented by CO and CH4. Our approach determines regression models which perform significantly better than those found using the traditional ICA for the aforementioned problem, resulting in better convergence and a substantially lower error.Keywords: optimization, biologically inspired algorithm, regression models, bricks, emissions
Procedia PDF Downloads 826395 Cytochrome B Marker Reveals Three Distinct Genetic Lineages of the Oriental Latrine Fly Chrysomya megacephala (Diptera: Calliphoridae) in Malaysia
Authors: Rajagopal Kavitha, Van Lun Low, Mohd Sofian-Azirun, Chee Dhang Chen, Mohd Yusof Farida Zuraina, Mohd Salleh Ahmad Firdaus, Navaratnam Shanti, Abdul Haiyee Zaibunnisa
Abstract:
This study investigated the hidden genetic lineages in the oriental latrine fly Chrysomya megacephala (Fabricius) across four states (i.e., Johore, Pahang, Perak and Selangor) and a federal territory (i.e., Kuala Lumpur) in Malaysia using Cytochrome b (Cyt b) genetic marker. The Cyt b phylogenetic tree and haplotype network revealed three distinct genetic lineages of Ch. megacephala. Lineage A, the basal clade was restricted to flies that originated from Kuala Lumpur and Selangor, while Lineages B and C, comprised of flies from all studied populations. An overlap of the three genetically divergent groups of Ch. megacephala was observed. However, the flies from both Kuala Lumpur and Selangor populations consisted of three different lineages, indicating that they are genetically diverse compared to those from Pahang, Perak and Johore.Keywords: forensic entomology, calliphoridae, mitochondrial DNA, cryptic lineage
Procedia PDF Downloads 5126394 A Minimum Spanning Tree-Based Method for Initializing the K-Means Clustering Algorithm
Authors: J. Yang, Y. Ma, X. Zhang, S. Li, Y. Zhang
Abstract:
The traditional k-means algorithm has been widely used as a simple and efficient clustering method. However, the algorithm often converges to local minima for the reason that it is sensitive to the initial cluster centers. In this paper, an algorithm for selecting initial cluster centers on the basis of minimum spanning tree (MST) is presented. The set of vertices in MST with same degree are regarded as a whole which is used to find the skeleton data points. Furthermore, a distance measure between the skeleton data points with consideration of degree and Euclidean distance is presented. Finally, MST-based initialization method for the k-means algorithm is presented, and the corresponding time complexity is analyzed as well. The presented algorithm is tested on five data sets from the UCI Machine Learning Repository. The experimental results illustrate the effectiveness of the presented algorithm compared to three existing initialization methods.Keywords: degree, initial cluster center, k-means, minimum spanning tree
Procedia PDF Downloads 4116393 Microsatellite-Based Genetic Variations and Relationships among Some Farmed Nile Tilapia Populations in Ghana: Implications for Nile Tilapia Culture
Authors: Acheampong Addo, Emmanuel Odartei Armah, Seth Koranteng Agyakwah, Ruby Asmah, Emmanuel Tetteh-Doku Mensah, Rhoda Lims Diyie, Sena Amewu, Catherine Ragasa, Edward Kofi Abban, Mike Yaw Osei-Atweneboana
Abstract:
The study investigated genetic variation and relationships among populations of Nile tilapia cultured in small-scale fish farms in selected regions of Ghana. A total of 700 samples were collected. All samples were screened with five microsatellite markers and results were analyzed using (Genetic Analysis in Excel), (Molecular and Evolutionary Genetic Analysis software, and Genpop on the web for Heterozygosity and Shannon diversity, (Analysis of Molecular Variance), and (Principal Coordinate Analysis). Fish from the 16 populations (made up of 14 farms and 2 selectively bred populations) clustered into three groups: 7 populations clustered with the GIFT-derived strain, 4 populations clustered with the Akosombo strain, and three populations were in a separate cluster. The clustering pattern indicated groups of different strains of Nile tilapia cultured. Mantel correlation test also showed low genetic variations among the 16 populations hence the need to boost seed quality in order to accelerate aquaculture production in Ghana.Keywords: microsatellites, small- scale, Nile tilapia, akosombo strain, GIFT strain
Procedia PDF Downloads 1676392 An Optimized Association Rule Mining Algorithm
Authors: Archana Singh, Jyoti Agarwal, Ajay Rana
Abstract:
Data Mining is an efficient technology to discover patterns in large databases. Association Rule Mining techniques are used to find the correlation between the various item sets in a database, and this co-relation between various item sets are used in decision making and pattern analysis. In recent years, the problem of finding association rules from large datasets has been proposed by many researchers. Various research papers on association rule mining (ARM) are studied and analyzed first to understand the existing algorithms. Apriori algorithm is the basic ARM algorithm, but it requires so many database scans. In DIC algorithm, less amount of database scan is needed but complex data structure lattice is used. The main focus of this paper is to propose a new optimized algorithm (Friendly Algorithm) and compare its performance with the existing algorithms A data set is used to find out frequent itemsets and association rules with the help of existing and proposed (Friendly Algorithm) and it has been observed that the proposed algorithm also finds all the frequent itemsets and essential association rules from databases as compared to existing algorithms in less amount of database scan. In the proposed algorithm, an optimized data structure is used i.e. Graph and Adjacency Matrix.Keywords: association rules, data mining, dynamic item set counting, FP-growth, friendly algorithm, graph
Procedia PDF Downloads 4216391 Prediction of Fillet Weight and Fillet Yield from Body Measurements and Genetic Parameters in a Complete Diallel Cross of Three Nile Tilapia (Oreochromis niloticus) Strains
Authors: Kassaye Balkew Workagegn, Gunnar Klemetsdal, Hans Magnus Gjøen
Abstract:
In this study, the first objective was to investigate whether non-lethal or non-invasive methods, utilizing body measurements, could be used to efficiently predict fillet weight and fillet yield for a complete diallel cross of three Nile tilapia (Oreochromis niloticus) strains collected from three Ethiopian Rift Valley lakes, Lakes Ziway, Koka and Chamo. The second objective was to estimate heritability of body weight, actual and predicted fillet traits, as well as genetic correlations between these traits. A third goal was to estimate additive, reciprocal, and heterosis effects for body weight and the various fillet traits. As in females, early sexual maturation was widespread, only 958 male fish from 81 full-sib families were used, both for the prediction of fillet traits and in genetic analysis. The prediction equations from body measurements were established by forward regression analysis, choosing models with the least predicted residual error sums of squares (PRESS). The results revealed that body measurements on live Nile tilapia is well suited to predict fillet weight but not fillet yield (R²= 0.945 and 0.209, respectively), but both models were seemingly unbiased. The genetic analyses were carried out with bivariate, multibreed models. Body weight, fillet weight, and predicted fillet weight were all estimated with a heritability ranged from 0.23 to 0.28, and with genetic correlations close to one. Contrary, fillet yield was only to a minor degree heritable (0.05), while predicted fillet yield obtained a heritability of 0.19, being a resultant of two body weight variables known to have high heritability. The latter trait was estimated with genetic correlations to body weight and fillet weight traits larger than 0.82. No significant differences among strains were found for their additive genetic, reciprocal, or heterosis effects, while total heterosis effects were estimated as positive and significant (P < 0.05). As a conclusion, prediction of prediction of fillet weight based on body measurements is possible, but not for fillet yield.Keywords: additive, fillet traits, genetic correlation, heritability, heterosis, prediction, reciprocal
Procedia PDF Downloads 1886390 Improved K-Means Clustering Algorithm Using RHadoop with Combiner
Authors: Ji Eun Shin, Dong Hoon Lim
Abstract:
Data clustering is a common technique used in data analysis and is used in many applications, such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing. K-means clustering is a well-known clustering algorithm aiming to cluster a set of data points to a predefined number of clusters. In this paper, we implement K-means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. The main idea is to introduce a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. The experimental results demonstrated that K-means algorithm using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also showed that our K-means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases.Keywords: big data, combiner, K-means clustering, RHadoop
Procedia PDF Downloads 4386389 Estimates of (Co)Variance Components and Genetic Parameters for Body Weights and Growth Efficiency Traits in the New Zealand White Rabbits
Authors: M. Sakthivel, A. Devaki, D. Balasubramanyam, P. Kumarasamy, A. Raja, R. Anilkumar, H. Gopi
Abstract:
The genetic parameters of growth traits in the New Zealand White rabbits maintained at Sheep Breeding and Research Station, Sandynallah, The Nilgiris, India were estimated by partitioning the variance and covariance components. The (co)variance components of body weights at weaning (W42), post-weaning (W70) and marketing (W135) age and growth efficiency traits viz., average daily gain (ADG), relative growth rate (RGR) and Kleiber ratio (KR) estimated on a daily basis at different age intervals (1=42 to 70 days; 2=70 to 135 days and 3=42 to 135 days) from weaning to marketing were estimated by restricted maximum likelihood, fitting six animal models with various combinations of direct and maternal effects. Data were collected over a period of 15 years (1998 to 2012). A log-likelihood ratio test was used to select the most appropriate univariate model for each trait, which was subsequently used in bivariate analysis. Heritability estimates for W42, W70 and W135 were 0.42 ± 0.07, 0.40 ± 0.08 and 0.27 ± 0.07, respectively. Heritability estimates of growth efficiency traits were moderate to high (0.18 to 0.42). Of the total phenotypic variation, maternal genetic effect contributed 14 to 32% for early body weight traits (W42 and W70) and ADG1. The contribution of maternal permanent environmental effect varied from 6 to 18% for W42 and for all the growth efficiency traits except for KR2. Maternal permanent environmental effect on most of the growth efficiency traits was a carryover effect of maternal care during weaning. Direct maternal genetic correlations, for the traits in which maternal genetic effect was significant, were moderate to high in magnitude and negative in direction. Maternal effect declined as the age of the animal increased. The estimates of total heritability and maternal across year repeatability for growth traits were moderate and an optimum rate of genetic progress seems possible in the herd by mass selection. The estimates of genetic and phenotypic correlations among body weight traits were moderate to high and positive; among growth efficiency traits were low to high with varying directions; between body weights and growth efficiency traits were very low to high in magnitude and mostly negative in direction. Moderate to high heritability and higher genetic correlation in body weight traits promise good scope for genetic improvement provided measures are taken to keep the inbreeding at the lowest level.Keywords: genetic parameters, growth traits, maternal effects, rabbit genetics
Procedia PDF Downloads 4476388 Solving Weighted Number of Operation Plus Processing Time Due-Date Assignment, Weighted Scheduling and Process Planning Integration Problem Using Genetic and Simulated Annealing Search Methods
Authors: Halil Ibrahim Demir, Caner Erden, Mumtaz Ipek, Ozer Uygun
Abstract:
Traditionally, the three important manufacturing functions, which are process planning, scheduling and due-date assignment, are performed separately and sequentially. For couple of decades, hundreds of studies are done on integrated process planning and scheduling problems and numerous researches are performed on scheduling with due date assignment problem, but unfortunately the integration of these three important functions are not adequately addressed. Here, the integration of these three important functions is studied by using genetic, random-genetic hybrid, simulated annealing, random-simulated annealing hybrid and random search techniques. As well, the importance of the integration of these three functions and the power of meta-heuristics and of hybrid heuristics are studied.Keywords: process planning, weighted scheduling, weighted due-date assignment, genetic search, simulated annealing, hybrid meta-heuristics
Procedia PDF Downloads 4696387 Effects of Computer Aided Instructional Package on Performance and Retention of Genetic Concepts amongst Secondary School Students in Niger State, Nigeria
Authors: Muhammad R. Bello, Mamman A. Wasagu, Yahya M. Kamar
Abstract:
The study investigated the effects of computer-aided instructional package (CAIP) on performance and retention of genetic concepts among secondary school students in Niger State. Quasi-experimental research design i.e. pre-test-post-test experimental and control groups were adopted for the study. The population of the study was all senior secondary school three (SS3) students’ offering biology. A sample of 223 students was randomly drawn from six purposively selected secondary schools. The researchers’ developed computer aided instructional package (CAIP) on genetic concepts was used as treatment instrument for the experimental group while the control group was exposed to the conventional lecture method (CLM). The instrument for data collection was a Genetic Performance Test (GEPET) that had 50 multiple-choice questions which were validated by science educators. A Reliability coefficient of 0.92 was obtained for GEPET using Pearson Product Moment Correlation (PPMC). The data collected were analyzed using IBM SPSS Version 20 package for computation of Means, Standard deviation, t-test, and analysis of covariance (ANCOVA). The ANOVA analysis (Fcal (220) = 27.147, P < 0.05) shows that students who received instruction with CAIP outperformed the students who received instruction with CLM and also had higher retention. The findings also revealed no significant difference in performance and retention between male and female students (tcal (103) = -1.429, P > 0.05). It was recommended amongst others that teachers should use computer-aided instructional package in teaching genetic concepts in order to improve students’ performance and retention in biology subject. Keywords: Computer-aided Instructional Package, Performance, Retention and Genetic Concepts.Keywords: computer aided instructional package, performance, retention, genetic concepts, senior secondary school students
Procedia PDF Downloads 3626386 Inversion of Electrical Resistivity Data: A Review
Authors: Shrey Sharma, Gunjan Kumar Verma
Abstract:
High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.Keywords: inversion, limitations, optimization, resistivity
Procedia PDF Downloads 3656385 Detailed Quantum Circuit Design and Evaluation of Grover's Algorithm for the Bounded Degree Traveling Salesman Problem Using the Q# Language
Authors: Wenjun Hou, Marek Perkowski
Abstract:
The Traveling Salesman problem is famous in computing and graph theory. In short, it asks for the Hamiltonian cycle of the least total weight in a given graph with N nodes. All variations on this problem, such as those with K-bounded-degree nodes, are classified as NP-complete in classical computing. Although several papers propose theoretical high-level designs of quantum algorithms for the Traveling Salesman Problem, no quantum circuit implementation of these algorithms has been created up to our best knowledge. In contrast to previous papers, the goal of this paper is not to optimize some abstract complexity measures based on the number of oracle iterations, but to be able to evaluate the real circuit and time costs of the quantum computer. Using the emerging quantum programming language Q# developed by Microsoft, which runs quantum circuits in a quantum computer simulation, an implementation of the bounded-degree problem and its respective quantum circuit were created. To apply Grover’s algorithm to this problem, a quantum oracle was designed, evaluating the cost of a particular set of edges in the graph as well as its validity as a Hamiltonian cycle. Repeating the Grover algorithm with an oracle that finds successively lower cost each time allows to transform the decision problem to an optimization problem, finding the minimum cost of Hamiltonian cycles. N log₂ K qubits are put into an equiprobablistic superposition by applying the Hadamard gate on each qubit. Within these N log₂ K qubits, the method uses an encoding in which every node is mapped to a set of its encoded edges. The oracle consists of several blocks of circuits: a custom-written edge weight adder, node index calculator, uniqueness checker, and comparator, which were all created using only quantum Toffoli gates, including its special forms, which are Feynman and Pauli X. The oracle begins by using the edge encodings specified by the qubits to calculate each node that this path visits and adding up the edge weights along the way. Next, the oracle uses the calculated nodes from the previous step and check that all the nodes are unique. Finally, the oracle checks that the calculated cost is less than the previously-calculated cost. By performing the oracle an optimal number of times, a correct answer can be generated with very high probability. The oracle of the Grover Algorithm is modified using the recalculated minimum cost value, and this procedure is repeated until the cost cannot be further reduced. This algorithm and circuit design have been verified, using several datasets, to generate correct outputs.Keywords: quantum computing, quantum circuit optimization, quantum algorithms, hybrid quantum algorithms, quantum programming, Grover’s algorithm, traveling salesman problem, bounded-degree TSP, minimal cost, Q# language
Procedia PDF Downloads 1906384 Optimal Design of Wind Turbine Blades Equipped with Flaps
Authors: I. Kade Wiratama
Abstract:
As a result of the significant growth of wind turbines in size, blade load control has become the main challenge for large wind turbines. Many advanced techniques have been investigated aiming at developing control devices to ease blade loading. Amongst them, trailing edge flaps have been proven as effective devices for load alleviation. The present study aims at investigating the potential benefits of flaps in enhancing the energy capture capabilities rather than blade load alleviation. A software tool is especially developed for the aerodynamic simulation of wind turbines utilising blades equipped with flaps. As part of the aerodynamic simulation of these wind turbines, the control system must be also simulated. The simulation of the control system is carried out via solving an optimisation problem which gives the best value for the controlling parameter at each wind turbine run condition. Developing a genetic algorithm optimisation tool which is especially designed for wind turbine blades and integrating it with the aerodynamic performance evaluator, a design optimisation tool for blades equipped with flaps is constructed. The design optimisation tool is employed to carry out design case studies. The results of design case studies on wind turbine AWT 27 reveal that, as expected, the location of flap is a key parameter influencing the amount of improvement in the power extraction. The best location for placing a flap is at about 70% of the blade span from the root of the blade. The size of the flap has also significant effect on the amount of enhancement in the average power. This effect, however, reduces dramatically as the size increases. For constant speed rotors, adding flaps without re-designing the topology of the blade can improve the power extraction capability as high as of about 5%. However, with re-designing the blade pretwist the overall improvement can be reached as high as 12%.Keywords: flaps, design blade, optimisation, simulation, genetic algorithm, WTAero
Procedia PDF Downloads 3376383 Constructing the Density of States from the Parallel Wang Landau Algorithm Overlapping Data
Authors: Arman S. Kussainov, Altynbek K. Beisekov
Abstract:
This work focuses on building an efficient universal procedure to construct a single density of states from the multiple pieces of data provided by the parallel implementation of the Wang Landau Monte Carlo based algorithm. The Ising and Pott models were used as the examples of the two-dimensional spin lattices to construct their densities of states. Sampled energy space was distributed between the individual walkers with certain overlaps. This was made to include the latest development of the algorithm as the density of states replica exchange technique. Several factors of immediate importance for the seamless stitching process have being considered. These include but not limited to the speed and universality of the initial parallel algorithm implementation as well as the data post-processing to produce the expected smooth density of states.Keywords: density of states, Monte Carlo, parallel algorithm, Wang Landau algorithm
Procedia PDF Downloads 412