Search results for: fork split trees
237 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction
Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan
Abstract:
Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.Keywords: decision trees, neural network, myocardial infarction, Data Mining
Procedia PDF Downloads 429236 Evolutionary Prediction of the Viral RNA-Dependent RNA Polymerase of Chandipura vesiculovirus and Related Viral Species
Authors: Maneesh Kumar, Roshan Kamal Topno, Manas Ranjan Dikhit, Vahab Ali, Ganesh Chandra Sahoo, Bhawana, Major Madhukar, Rishikesh Kumar, Krishna Pandey, Pradeep Das
Abstract:
Chandipura vesiculovirus is an emerging (-) ssRNA viral entity belonging to the genus Vesiculovirus of the family Rhabdoviridae, associated with fatal encephalitis in tropical regions. The multi-functionally active viral RNA-dependent RNA polymerase (vRdRp) that has been incorporated with conserved amino acid residues in the pathogens, assigned to synthesize distinct viral polypeptides. The lack of proofreading ability of the vRdRp produces many mutated variants. Here, we have performed the evolutionary analysis of 20 viral protein sequences of vRdRp of different strains of Chandipura vesiculovirus along with other viral species from genus Vesiculovirus inferred in MEGA6.06, employing the Neighbour-Joining method. The p-distance algorithmic method has been used to calculate the optimum tree which showed the sum of branch length of about 1.436. The percentage of replicate trees in which the associated taxa are clustered together in the bootstrap test (1000 replicates), is shown next to the branches. No mutation was observed in the Indian strains of Chandipura vesiculovirus. In vRdRp, 1230(His) and 1231(Arg) are actively participated in catalysis and, are found conserved in different strains of Chandipura vesiculovirus. Both amino acid residues were also conserved in the other viral species from genus Vesiculovirus. Many isolates exhibited maximum number of mutations in catalytic regions in strains of Chandipura vesiculovirus at position 26(Ser→Ala), 47 (Ser→Ala), 90(Ser→Tyr), 172(Gly→Ile, Val), 172(Ser→Tyr), 387(Asn→Ser), 1301(Thr→Ala), 1330(Ala→Glu), 2015(Phe→Ser) and 2065(Thr→Val) which make them variants under different tropical conditions from where they evolved. The result clarifies the actual concept of RNA evolution using vRdRp to develop as an evolutionary marker. Although, a limited number of vRdRp protein sequence similarities for Chandipura vesiculovirus and other species. This might endow with possibilities to identify the virulence level during viral multiplication in a host.Keywords: Chandipura, (-) ssRNA, viral RNA-dependent RNA polymerase, neighbour-joining method, p-distance algorithmic, evolutionary marker
Procedia PDF Downloads 197235 Machine Learning in Agriculture: A Brief Review
Authors: Aishi Kundu, Elhan Raza
Abstract:
"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting
Procedia PDF Downloads 105234 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy
Authors: Kemal Efe Eseller, Göktuğ Yazici
Abstract:
Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing
Procedia PDF Downloads 87233 Testing Supportive Feedback Strategies in Second/Foreign Language Vocabulary Acquisition between Typically Developing Children and Children with Learning Disabilities
Authors: Panagiota A. Kotsoni, George S. Ypsilandis
Abstract:
Learning an L2 is a demanding process for all students and in particular for those with learning disabilities (LD) who demonstrate an inability to catch up with their classmates’ progress in a given period of time. This area of study, i.e. examining children with learning disabilities in L2 has not (yet) attracted the growing interest that is registered in L1 and thus remains comparatively neglected. It is this scientific field that this study wishes to contribute to. The longitudinal purpose of this study is to locate effective Supportive Feedback Strategies (SFS) and add to the quality of learning in second language vocabulary in both typically developing (TD) and LD children. Specifically, this study aims at investigating and comparing the performance of TD with LD children on two different types of SFSs related to vocabulary short and long-term retention. In this study two different SFSs have been examined to a total of ten (10) unknown vocabulary items. Both strategies provided morphosyntactic clarifications upon new contextualized vocabulary items. The traditional SFS (direct) provided the information only in one hypertext page with a selection on the relevant item. The experimental SFS (engaging) provided the exact same split information in three successive hypertext pages in the form of a hybrid dialogue asking from the subjects to move on to the next page by selecting the relevant link. It was hypothesized that this way the subjects would engage in their own learning process by actively asking for more information which would further lead to their better retention. The participants were fifty-two (52) foreign language learners (33 TD and 19 LD) aged from 9 to 12, attending an English language school at the level of A1 (CEFR). The design of the study followed a typical pre-post-post test procedure after an hour and after a week. The results indicated statistically significant group differences with TD children performing significantly better than the LD group in both short and long-term memory measurements and in both SFSs. As regards the effectiveness of one SFS over another the initial hypothesis was not supported by the evidence as the traditional SFS was more effective compared to the experimental one in both TD and LD children. This difference proved to be statistically significant only in the long-term memory measurement and only in the TD group. It may be concluded that the human brain seems to adapt to different SFS although it shows a small preference when information is provided in a direct manner.Keywords: learning disabilities, memory, second/foreign language acquisition, supportive feedback
Procedia PDF Downloads 284232 A Systematic Approach to Mitigate the Impact of Increased Temperature and Air Pollution in Urban Settings
Authors: Samain Sabrin, Joshua Pratt, Joshua Bryk, Maryam Karimi
Abstract:
Globally, extreme heat events have led to a surge in the number of heat-related moralities. These incidents are further exacerbated in high-density population centers due to the Urban Heat Island (UHI) effect. Varieties of anthropogenic activities such as unsupervised land surface modifications, expansion of impervious areas, and lack of use of vegetation are all contributors to an increase in the amount of heat flux trapped by an urban canopy which intensifies the UHI effect. This project aims to propose a systematic approach to measure the impact of air quality and increased temperature based on urban morphology in the selected metropolitan cities. This project will measure the impact of build environment for urban and regional planning using human biometeorological evaluations (mean radiant temperature, Tmrt). We utilized the Rayman model (capable of calculating short and long wave radiation fluxes affecting the human body) to estimate the Tmrt in an urban environment incorporating location and height of buildings and trees as a supplemental tool in urban planning, and street design. Our current results suggest a strong correlation between building height and increased surface temperature in megacities. This model will help with; 1. Quantify the impacts of the built environment and surface properties on surrounding temperature, 2. Identify priority urban neighborhoods by analyzing Tmrt and air quality data at pedestrian level, 3. Characterizing the need for urban green infrastructure or better urban planning- maximizing the cooling benefit from existing Urban Green Infrastructure (UGI), and 4. Developing a hierarchy of streets for new UGI integration and propose new UGI based on site characteristics and cooling potential.Keywords: air quality, heat mitigation, human-biometeorological indices, increased temperature, mean radiant temperature, radiation flux, sustainable development, thermal comfort, urban canopy, urban planning
Procedia PDF Downloads 141231 Destigmatising Generalised Anxiety Disorder: The Differential Effects of Causal Explanations on Stigma
Authors: John McDowall, Lucy Lightfoot
Abstract:
Stigma constitutes a significant barrier to the recovery and social integration of individuals affected by mental illness. Although there is some debate in the literature regarding the definition and utility of stigma as a concept, it is widely accepted that it comprises three components: stereotypical beliefs, prejudicial reactions, and discrimination. Stereotypical beliefs describe the cognitive knowledge-based component of stigma, referring to beliefs (often negative) about members of a group that is based on cultural and societal norms (e.g. ‘People with anxiety are just weak’). Prejudice refers to the affective/evaluative component of stigma and describes the endorsement of negative stereotypes and the resulting negative emotional reactions (e.g. ‘People with anxiety are just weak, and they frustrate me’). Discrimination refers to the behavioural component of stigma, which is arguably the most problematic, as it exerts a direct effect on the stigmatized person and may lead people to behave in a hostile or avoidant way towards them (i.e. refusal to hire them). Research exploring anti-stigma initiatives focus primarily on an educational approach, with the view that accurate information will replace misconceptions and decrease stigma. Many approaches take a biogenetic stance, emphasising brain and biochemical deficits - the idea being that ‘mental illness is an illness like any other.' While this approach tends to effectively reduce blame, it has also demonstrated negative effects such as increasing prognostic pessimism, the desire for social distance and perceptions of stereotypes. In the present study 144 participants were split into three groups and read one of three vignettes presenting causal explanations for Generalised Anxiety Disorder (GAD): One explanation emphasized biogenetic factors as being important in the etiology of GAD, another emphasised psychosocial factors (e.g. aversive life events, poverty, etc.), and a third stressed the adaptive features of the disorder from an evolutionary viewpoint. A variety of measures tapping the various components of stigma were administered following the vignettes. No difference in stigma measures as a function of causal explanation was found. People who had contact with mental illness in the past were significantly less stigmatising across a wide range of measures, but this did not interact with the type of causal explanation.Keywords: generalised anxiety disorder, discrimination, prejudice, stigma
Procedia PDF Downloads 286230 Evidence of a Negativity Bias in the Keywords of Scientific Papers
Authors: Kseniia Zviagintseva, Brett Buttliere
Abstract:
Science is fundamentally a problem-solving enterprise, and scientists pay more attention to the negative things, that cause them dissonance and negative affective state of uncertainty or contradiction. While this is agreed upon by philosophers of science, there are few empirical demonstrations. Here we examine the keywords from those papers published by PLoS in 2014 and show with several sentiment analyzers that negative keywords are studied more than positive keywords. Our dataset is the 927,406 keywords of 32,870 scientific articles in all fields published in 2014 by the journal PLOS ONE (collected from Altmetric.com). Counting how often the 47,415 unique keywords are used, we can examine whether those negative topics are studied more than positive. In order to find the sentiment of the keywords, we utilized two sentiment analysis tools, Hu and Liu (2004) and SentiStrength (2014). The results below are for Hu and Liu as these are the less convincing results. The average keyword was utilized 19.56 times, with half of the keywords being utilized only 1 time and the maximum number of uses being 18,589 times. The keywords identified as negative were utilized 37.39 times, on average, with the positive keywords being utilized 14.72 times and the neutral keywords - 19.29, on average. This difference is only marginally significant, with an F value of 2.82, with a p of .05, but one must keep in mind that more than half of the keywords are utilized only 1 time, artificially increasing the variance and driving the effect size down. To examine more closely, we looked at those top 25 most utilized keywords that have a sentiment. Among the top 25, there are only two positive words, ‘care’ and ‘dynamics’, in position numbers 5 and 13 respectively, with all the rest being identified as negative. ‘Diseases’ is the most studied keyword with 8,790 uses, with ‘cancer’ and ‘infectious’ being the second and fourth most utilized sentiment-laden keywords. The sentiment analysis is not perfect though, as the words ‘diseases’ and ‘disease’ are split by taking 1st and 3rd positions. Combining them, they remain as the most common sentiment-laden keyword, being utilized 13,236 times. More than just splitting the words, the sentiment analyzer logs ‘regression’ and ‘rat’ as negative, and these should probably be considered false positives. Despite these potential problems, the effect is apparent, as even the positive keywords like ‘care’ could or should be considered negative, since this word is most commonly utilized as a part of ‘health care’, ‘critical care’ or ‘quality of care’ and generally associated with how to improve it. All in all, the results suggest that negative concepts are studied more, also providing support for the notion that science is most generally a problem-solving enterprise. The results also provide evidence that negativity and contradiction are related to greater productivity and positive outcomes.Keywords: bibliometrics, keywords analysis, negativity bias, positive and negative words, scientific papers, scientometrics
Procedia PDF Downloads 186229 Algorithm for Improved Tree Counting and Detection through Adaptive Machine Learning Approach with the Integration of Watershed Transformation and Local Maxima Analysis
Authors: Jigg Pelayo, Ricardo Villar
Abstract:
The Philippines is long considered as a valuable producer of high value crops globally. The country’s employment and economy have been dependent on agriculture, thus increasing its demand for the efficient agricultural mechanism. Remote sensing and geographic information technology have proven to effectively provide applications for precision agriculture through image-processing technique considering the development of the aerial scanning technology in the country. Accurate information concerning the spatial correlation within the field is very important for precision farming of high value crops, especially. The availability of height information and high spatial resolution images obtained from aerial scanning together with the development of new image analysis methods are offering relevant influence to precision agriculture techniques and applications. In this study, an algorithm was developed and implemented to detect and count high value crops simultaneously through adaptive scaling of support vector machine (SVM) algorithm subjected to object-oriented approach combining watershed transformation and local maxima filter in enhancing tree counting and detection. The methodology is compared to cutting-edge template matching algorithm procedures to demonstrate its effectiveness on a demanding tree is counting recognition and delineation problem. Since common data and image processing techniques are utilized, thus can be easily implemented in production processes to cover large agricultural areas. The algorithm is tested on high value crops like Palm, Mango and Coconut located in Misamis Oriental, Philippines - showing a good performance in particular for young adult and adult trees, significantly 90% above. The s inventories or database updating, allowing for the reduction of field work and manual interpretation tasks.Keywords: high value crop, LiDAR, OBIA, precision agriculture
Procedia PDF Downloads 402228 The Effects of Different Agroforestry Practices on Glomalin Related Soil Protein, Soil Aggregate Stability and Organic Carbon-Association with Soil Aggregates in Southern Ethiopia
Authors: Nebiyou Masebo
Abstract:
The severities of land degradation in southern Ethiopia has been increasing due to high population density, replacement of an age-old agroforestry (AF) based agricultural system with monocropping. The consequences of these activities combined with climate change have been impaired soil biota, soil organic carbon (SOC), soil glomalin, soil aggregation and aggregate stability. The AF systems could curb these problems due it is an ecologically and economically sustainable. This study was aimed to determine the effect of agroforestry practices (AFPs) on soil glomalin, soil aggregate stability (SAS), and aggregate association with SOC. Soil samples (from two depth level: 0-30 & 30-60 cm) and woody species were collected from homegarden based agroforestry practice (HAFP), cropland based agroforestry practice (ClAFP), woodlot based agroforestry practice (WlAFP) and trees on soil and water conservation based agroforestry practice (TSWAFP) using systematic sampling. In this study, both easily extractable glomalin related soil protein (EEGRSP) and total glomalin related soil protein (TGRSP) were significantly (p<0.05) higher in HAFP compared to others, with decreasing order HAFP>WlAFP>TSWAFP>ClAFP at upper surface but in subsurface in decreasing order: WlAFP>HAFP>TSWAFP>ClAFP. On the other hand, the macroaggregate fraction of AFPs ranged from 22.64-36.51% where the lowest was in ClAFP, while the highest was in HAFP, moreover, the order for subsurface was also the same but SAS decreased with the increasing of soil depths. The micro-aggregate fraction ranged from 15.9–24.56%, where the lowest was in HAFP, but the highest was in ClAFP. Besides, the association of OC with both macro-and micro-aggregates was greatest in HAFP and followed by WlAFP. The findings also showed that both glomalin and SAS were significantly high with woody species diversity and richness. Thus, AFP with good management practice can play role on maintenance of biodiversity, glomalin content and other soil quality parameters with future implications for a stable ecosystem.Keywords: agroforestry, soil aggregate stability, glomalin, aggregate-associated carbon, HAFP, ClAFP, WlAFP, TSWAFP.
Procedia PDF Downloads 107227 Evaluating the Challenges of Large Scale Urban Redevelopment Projects for Central Government Employee Housing in Delhi
Authors: Parul Kapoor, Dheeraj Bhardwaj
Abstract:
Delhi and other Indian cities accommodate thousands of Central Government employees in housing complexes called ‘General Pool Residential Accommodation’ (GPRA), located in prime parcels of the city. These residential colonies are now undergoing redevelopment at a massive scale, significantly impacting the ecology of the surrounding areas. Essentially, these colonies were low-rise, low-density planned developments with a dense tree cover and minimal parking requirements. But with increasing urbanisation and spike in parking demand, the proposed built form is an aggregate of high-rise gated complexes, redefining the skyline of the city which is a huge departure from the mediocre setup of Low-rise Walk-up apartments. The complexity of these developments is further aggravated by the need for parking which necessitates cutting huge number of trees to accommodate multiple layers of parking beneath the structures thus sidelining the authentic character of these areas which is laden with a dense tree cover. The aftermath of this whole process is the generation of a huge carbon footprint on the surrounding areas, which is unaccounted for, in the planning and design practice. These developments are currently planned as mix-use compounds with large commercial built-up spaces which have additional parking requirements over and above the residential parking. Also, they are perceived as gated complexes and not as neighborhood units, thus project isolated images of high-rise, dense systems with little context to the surroundings. The paper would analyze case studies of GPRA Redevelopment projects in Delhi, and the lack of relevant development control regulations which have led to abnormalities and complications in the entire redevelopment process. It would also suggest policy guidelines which can establish comprehensive codes for effective planning of these settlements.Keywords: gated complexes, GPRA Redevelopment projects, increased densities, huge carbon footprint, mixed-use development
Procedia PDF Downloads 124226 Classification of Forest Types Using Remote Sensing and Self-Organizing Maps
Authors: Wanderson Goncalves e Goncalves, José Alberto Silva de Sá
Abstract:
Human actions are a threat to the balance and conservation of the Amazon forest. Therefore the environmental monitoring services play an important role as the preservation and maintenance of this environment. This study classified forest types using data from a forest inventory provided by the 'Florestal e da Biodiversidade do Estado do Pará' (IDEFLOR-BIO), located between the municipalities of Santarém, Juruti and Aveiro, in the state of Pará, Brazil, covering an area approximately of 600,000 hectares, Bands 3, 4 and 5 of the TM-Landsat satellite image, and Self - Organizing Maps. The information from the satellite images was extracted using QGIS software 2.8.1 Wien and was used as a database for training the neural network. The midpoints of each sample of forest inventory have been linked to images. Later the Digital Numbers of the pixels have been extracted, composing the database that fed the training process and testing of the classifier. The neural network was trained to classify two forest types: Rain Forest of Lowland Emerging Canopy (Dbe) and Rain Forest of Lowland Emerging Canopy plus Open with palm trees (Dbe + Abp) in the Mamuru Arapiuns glebes of Pará State, and the number of examples in the training data set was 400, 200 examples for each class (Dbe and Dbe + Abp), and the size of the test data set was 100, with 50 examples for each class (Dbe and Dbe + Abp). Therefore, total mass of data consisted of 500 examples. The classifier was compiled in Orange Data Mining 2.7 Software and was evaluated in terms of the confusion matrix indicators. The results of the classifier were considered satisfactory, and being obtained values of the global accuracy equal to 89% and Kappa coefficient equal to 78% and F1 score equal to 0,88. It evaluated also the efficiency of the classifier by the ROC plot (receiver operating characteristics), obtaining results close to ideal ratings, showing it to be a very good classifier, and demonstrating the potential of this methodology to provide ecosystem services, particularly in anthropogenic areas in the Amazon.Keywords: artificial neural network, computational intelligence, pattern recognition, unsupervised learning
Procedia PDF Downloads 361225 Design-Based Elements to Sustain Participant Activity in Massive Open Online Courses: A Case Study
Authors: C. Zimmermann, E. Lackner, M. Ebner
Abstract:
Massive Open Online Courses (MOOCs) are increasingly popular learning hubs that are boasting considerable participant numbers, innovative technical features, and a multitude of instructional resources. Still, there is a high level of evidence showing that almost all MOOCs suffer from a declining frequency of participant activity and fairly low completion rates. In this paper, we would like to share the lessons learned in implementing several design patterns that have been suggested in order to foster participant activity. Our conclusions are based on experiences with the ‘Dr. Internet’ MOOC, which was created as an xMOOC to raise awareness for a more critical approach to online health information: participants had to diagnose medical case studies. There is a growing body of recommendations (based on Learning Analytics results from earlier xMOOCs) as to how the decline in participant activity can be alleviated. One promising focus in this regard is instructional design patterns, since they have a tremendous influence on the learner’s motivation, which in turn is a crucial trigger of learning processes. Since Medieval Age storytelling, micro-learning units and specific comprehensible, narrative structures were chosen to animate the audience to follow narration. Hence, MOOC participants are not likely to abandon a course or information channel when their curiosity is kept at a continuously high level. Critical aspects that warrant consideration in this regard include shorter course duration, a narrative structure with suspense peaks (according to the ‘storytelling’ approach), and a course schedule that is diversified and stimulating, yet easy to follow. All of these criteria have been observed within the design of the Dr. Internet MOOC: 1) the standard eight week course duration was shortened down to six weeks, 2) all six case studies had a special quiz format and a corresponding resolution video which was made available in the subsequent week, 3) two out of six case studies were split up in serial video sequences to be presented over the span of two weeks, and 4) the videos were generally scheduled in a less predictable sequence. However, the statistical results from the first run of the MOOC do not indicate any strong influences on the retention rate, so we conclude with some suggestions as to why this might be and what aspects need further consideration.Keywords: case study, Dr. internet, experience, MOOCs, design patterns
Procedia PDF Downloads 266224 Evaluation of Buckwheat Genotypes to Different Planting Geometries and Fertility Levels in Northern Transition Zone of Karnataka
Authors: U. K. Hulihalli, Shantveerayya
Abstract:
Buckwheat (Fagopyrum esculentum Moench) is an annual crop belongs to family Poligonaceae. The cultivated buckwheat species are notable for their exceptional nutritive values. It is an important source of carbohydrates, fibre, macro, and microelements such as K, Ca, Mg, Na and Mn, Zn, Se, and Cu. It also contains rutin, flavonoids, riboflavin, pyridoxine and many amino acids which have beneficial effects on human health, including lowering both blood lipid and sugar levels. Rutin, quercetin and some other polyphenols are potent carcinogens against colon and other cancers. Buckwheat has significant nutritive value and plenty of uses. Cultivation of buckwheat in Sothern part of India is very meager. Hence, a study was planned with an objective to know the performance of buckwheat genotypes to different planting geometries and fertility levels. The field experiment was conducted at Main Agriculture Research Station, University of Agriculture Sciences, Dharwad, India, during 2017 Kharif. The experiment was laid-out in split-plot design with three replications having three planting geometries as main plots, two genotypes as sub plots and three fertility levels as sub-sub plot treatments. The soil of the experimental site was vertisol. The standard procedures are followed to record the observations. The planting geometry of 30*10 cm was recorded significantly higher seed yield (893 kg/ha⁻¹), stover yield (1507 kg ha⁻¹), clusters plant⁻¹ (7.4), seeds clusters⁻¹ (7.9) and 1000 seed weight (26.1 g) as compared to 40*10 cm and 20*10 cm planting geometries. Between the genotypes, significantly higher seed yield (943 kg ha⁻¹) and harvest index (45.1) was observed with genotype IC-79147 as compared to PRB-1 genotype (687 kg ha⁻¹ and 34.2, respectively). However, the genotype PRB-1 recorded significantly higher stover yield (1344 kg ha⁻¹) as compared to genotype IC-79147 (1173 kg ha⁻¹). The genotype IC-79147 was recorded significantly higher clusters plant⁻¹ (7.1), seeds clusters⁻¹ (7.9) and 1000 seed weight (24.5 g) as compared PRB-1 (5.4, 5.8 and 22.3 g, respectively). Among the fertility levels tried, the fertility level of 60:30 NP kg ha⁻¹ recorded significantly higher seed yield (845 kg ha-1) and stover yield (1359 kg ha⁻¹) as compared to 40:20 NP kg ha-1 (808 and 1259 kg ha⁻¹ respectively) and 20:10 NP kg ha-1 (793 and 1144 kg ha⁻¹ respectively). Within the treatment combinations, IC 79147 genotype having 30*10 cm planting geometry with 60:30 NP kg ha⁻¹ recorded significantly higher seed yield (1070 kg ha⁻¹), clusters plant⁻¹ (10.3), seeds clusters⁻¹ (9.9) and 1000 seed weight (27.3 g) compared to other treatment combinations.Keywords: buckwheat, planting geometry, genotypes, fertility levels
Procedia PDF Downloads 175223 Heritage Preservation and Cultural Tourism; The 'Pueblos Mágicos' Program and Its Role in Preserving Traditional Architecture in Mexico
Authors: Claudia Rodríguez Espinosa, Erika Elizabeth Pérez Múzquiz
Abstract:
The Pueblos Mágicos federal program tries to preserve the traditional environment of small towns (under 20,000 inhabitants), through economic investments, legislation, and legal aid. To access the program, it’s important to cover 8 requirements; one of them is the fourth, which considers ‘Promotion of symbolic and differentiated touristic attractions, such as architecture, emblematic buildings, festivities and traditions, artisan production, traditional cuisine, and touristic services that guarantee their commercialization along with assistantship and security services’. With this objective in mind, the Federal government of Mexico had developed local programs to protect emblematic public buildings in each of the 83 towns included in the Pueblos Mágicos program that involved federal and local administrations as well as local civil associations, like Adopte una Obra de Arte. In this paper, we present 3 different intervention cases: first the restoration project (now concluded) of the 16th century monastery of Santa María Magdalena in Cuitzeo, an enormous building which took 6 years to be completely restored. Second case, the public spaces intervention in Pátzcuaro, included the Plaza Grande or Vasco de Quiroga square, and the access to the arts and crafts house known as Casa de los once patios or eleven backyards house. The third case is the recovery project of the 16th century atrium of the Tzintzuntzan monastery that included the original olive trees brought by Franciscans monks to this town in the middle 1500’s. This paper tries to present successful preservation projects in 3 different scales: building, urban spaces and landscape; and in 3 different towns with the objective to preserve public architecture, public spaces and cultural traditions. Learn from foreign experiences, different ways to manage preservation projects focused on public architecture and public spaces.Keywords: cultural tourism, heritage preservation, traditional architecture, public policies
Procedia PDF Downloads 289222 Relatively High Heart-Rate Variability Predicts Greater Survival Chances in Patients with Covid-19
Authors: Yori Gidron, Maartje Mol, Norbert Foudraine, Frits Van Osch, Joop Van Den Bergh, Moshe Farchi, Maud Straus
Abstract:
Background: The worldwide pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-COV2), which began in 2019, also known as Covid-19, has infected over 136 million people and tragically took the lives of over 2.9 million people worldwide. Many of the complications and deaths are predicted by the inflammatory “cytokine storm.” One way to progress in the prevention of death is by finding a predictive and protective factor that inhibits inflammation, on the one hand, and which also increases anti-viral immunity on the other hand. The vagal nerve does precisely both actions. This study examined whether vagal nerve activity, indexed by heart-rate variability (HRV), predicts survival in patients with Covid-19. Method: We performed a pseudo-prospective study, where we retroactively obtained ECGs of 271 Covid-19 patients arriving at a large regional hospital in The Netherlands. HRV was indexed by the standard deviation of the intervals between normal heartbeats (SDNN). We examined patients’ survival at 3 weeks and took into account multiple confounders and known prognostic factors (e.g., age, heart disease, diabetes, hypertension). Results: Patients’ mean age was 68 (range: 25-95) and nearly 22% of the patients had died by 3 weeks. Their mean SDNN (17.47msec) was far below the norm (50msec). Importantly, relatively higher HRV significantly predicted a higher chance of survival, after statistically controlling for patients’ age, cardiac diseases, hypertension and diabetes (relative risk, H.R, and 95% confidence interval (95%CI): H.R = 0.49, 95%CI: 0.26 – 0.95, p < 0.05). However, since HRV declines rapidly with age and since age is a profound predictor in Covid-19, we split the sample by median age (40). Subsequently, we found that higher HRV significantly predicted greater survival in patients older than 70 (H.R = 0.35, 95%CI: 0.16 – 0.78, p = 0.01), but HRV did not predict survival in patients below age 70 years (H.R = 1.11, 95%CI: 0.37 – 3.28, p > 0.05). Conclusions: To the best of our knowledge, this is the first study showing that higher vagal nerve activity, as indexed by HRV, is an independent predictor of higher chances for survival in Covid-19. The results are in line with the protective role of the vagal nerve in diseases and extend this to a severe infectious illness. Studies should replicate these findings and then test in controlled trials whether activating the vagus nerve may prevent mortality in Covid-19.Keywords: Covid-19, heart-rate Variability, prognosis, survival, vagal nerve
Procedia PDF Downloads 175221 Water Footprint for the Palm Oil Industry in Malaysia
Authors: Vijaya Subramaniam, Loh Soh Kheang, Astimar Abdul Aziz
Abstract:
Water footprint (WFP) has gained importance due to the increase in water scarcity in the world. This study analyses the WFP for an agriculture sector, i.e., the oil palm supply chain, which produces oil palm fresh fruit bunch (FFB), crude palm oil, palm kernel, and crude palm kernel oil. The water accounting and vulnerability evaluation (WAVE) method was used. This method analyses the water depletion index (WDI) based on the local blue water scarcity. The main contribution towards the WFP at the plantation was the production of FFB from the crop itself at 0.23m³/tonne FFB. At the mill, the burden shifts to the water added during the process, which consists of the boiler and process water, which accounted for 6.91m³/tonne crude palm oil. There was a 33% reduction in the WFP when there was no dilution or water addition after the screw press at the mill. When allocation was performed, the WFP reduced by 42% as the burden was shared with the palm kernel and palm kernel shell. At the kernel crushing plant (KCP), the main contributor towards the WFP 4.96 m³/tonne crude palm kernel oil which came from the palm kernel which carried the burden from upstream followed by electricity, 0.33 m³/tonne crude palm kernel oil used for the process and 0.08 m³/tonne crude palm kernel oil for transportation of the palm kernel. A comparison was carried out for mills with biogas capture versus no biogas capture, and the WFP had no difference for both scenarios. The comparison when the KCPs operate in the proximity of mills as compared to those operating in the proximity of ports only gave a reduction of 6% for the WFP. Both these scenarios showed no difference and insignificant difference, which differed from previous life cycle assessment studies on the carbon footprint, which showed significant differences. This shows that findings change when only certain impact categories are focused on. It can be concluded that the impact from the water used by the oil palm tree is low due to the practice of no irrigation at the plantations and the high availability of water from rainfall in Malaysia. This reiterates the importance of planting oil palm trees in regions with high rainfall all year long, like the tropics. The milling stage had the most significant impact on the WFP. Mills should avoid dilution to reduce this impact.Keywords: life cycle assessment, water footprint, crude palm oil, crude palm kernel oil, WAVE method
Procedia PDF Downloads 175220 Presenting of 'Local Wishes Map' as a Tool for Promoting Dialogue and Developing Healthy Cities
Authors: Ana Maria G. Sperandio, Murilo U. Malek-Zadeh, João Luiz de S. Areas, Jussara C. Guarnieri
Abstract:
Intersectoral governance is a requirement for developing healthy cities. However, this achievement is difficult to be succeeded, especially in regions at low resources condition. Therefore, it was developed a cheap investigative procedure to diagnose sectoral wishes related to urban planning and health promotion. This procedure is composed of two phases, which can be applied to different groups in order to compare the results. The first phase is a conversation guided by a list of questions. Some of those questions aim to gather information about how individuals understand concepts such as healthy city or a health promotion and what they believe that constitutes the relation between urban planning and urban health. Other questions investigate local issues, and how citizens would like to promote dialogue between sectors. At second phase individuals stand around the investigated city (or city region) map and are asked to represent their wishes on it. They can represent it by writing text notations or inserting icons on it, with the latter representing a city element, for example, some trees, a square, a playground, a hospital, a cycle track. After groups had represented their wishes, the map can be photographed, and then the results from distinct groups can be compared. This procedure was conducted at a small city in Brazil (Holambra), in 2017 which is the first out of four years of the mayor’s term. The prefecture asked for this tool in order to make Holambra become a city of Potential Healthy Municipalities Network in Brazil. Two sectors were investigated: the government and the urban population. By the end of our investigation, the intersection from the group (i.e., population and government) maps was accounted for creating a map of common wishes. Therefore, the material produced can be used as a guide for promoting dialogue between sectors and as a tool of monitoring politics progress. The report of this procedure was directed to public managers, so they could see the common wishes between themselves and local populations, and use this tool as a guide for creating urban politics which intends to enhance health promotion and to develop a healthy city, even at low resources condition.Keywords: governance, health promotion, intersectorality, urban planning
Procedia PDF Downloads 139219 Using Photogrammetric Techniques to Map the Mars Surface
Authors: Ahmed Elaksher, Islam Omar
Abstract:
For many years, Mars surface has been a mystery for scientists. Lately with the help of geospatial data and photogrammetric procedures researchers were able to capture some insights about this planet. Two of the most imperative data sources to explore Mars are the The High Resolution Imaging Science Experiment (HiRISE) and the Mars Orbiter Laser Altimeter (MOLA). HiRISE is one of six science instruments carried by the Mars Reconnaissance Orbiter, launched August 12, 2005, and managed by NASA. The MOLA sensor is a laser altimeter carried by the Mars Global Surveyor (MGS) and launched on November 7, 1996. In this project, we used MOLA-based DEMs to orthorectify HiRISE optical images for generating a more accurate and trustful surface of Mars. The MOLA data was interpolated using the kriging interpolation technique. Corresponding tie points were digitized from both datasets. These points were employed in co-registering both datasets using GIS analysis tools. In this project, we employed three different 3D to 2D transformation models. These are the parallel projection (3D affine) transformation model; the extended parallel projection transformation model; the Direct Linear Transformation (DLT) model. A set of tie-points was digitized from both datasets. These points were split into two sets: Ground Control Points (GCPs), used to evaluate the transformation parameters using least squares adjustment techniques, and check points (ChkPs) to evaluate the computed transformation parameters. Results were evaluated using the RMSEs between the precise horizontal coordinates of the digitized check points and those estimated through the transformation models using the computed transformation parameters. For each set of GCPs, three different configurations of GCPs and check points were tested, and average RMSEs are reported. It was found that for the 2D transformation models, average RMSEs were in the range of five meters. Increasing the number of GCPs from six to ten points improve the accuracy of the results with about two and half meters. Further increasing the number of GCPs didn’t improve the results significantly. Using the 3D to 2D transformation parameters provided three to two meters accuracy. Best results were reported using the DLT transformation model. However, increasing the number of GCPS didn’t have substantial effect. The results support the use of the DLT model as it provides the required accuracy for ASPRS large scale mapping standards. However, well distributed sets of GCPs is a key to provide such accuracy. The model is simple to apply and doesn’t need substantial computations.Keywords: mars, photogrammetry, MOLA, HiRISE
Procedia PDF Downloads 57218 Use of Shipping Containers as Office Buildings in Brazil: Thermal and Energy Performance for Different Constructive Options and Climate Zones
Authors: Lucas Caldas, Pablo Paulse, Karla Hora
Abstract:
Shipping containers are present in different Brazilian cities, firstly used for transportation purposes, but which become waste materials and an environmental burden in their end-of-life cycle. In the last decade, in Brazil, some buildings made partly or totally from shipping containers started to appear, most of them for commercial and office uses. Although the use of a reused container for buildings seems a sustainable solution, it is very important to measure the thermal and energy aspects when they are used as such. In this context, this study aims to evaluate the thermal and energy performance of an office building totally made from a 12-meter-long, High Cube 40’ shipping container in different Brazilian Bioclimatic Zones. Four different constructive solutions, mostly used in Brazil were chosen: (1) container without any covering; (2) with internally insulated drywall; (3) with external fiber cement boards; (4) with both drywall and fiber cement boards. For this, the DesignBuilder with EnergyPlus was used for the computational simulation in 8760 hours. The EnergyPlus Weather File (EPW) data of six Brazilian capital cities were considered: Curitiba, Sao Paulo, Brasilia, Campo Grande, Teresina and Rio de Janeiro. Air conditioning appliance (split) was adopted for the conditioned area and the cooling setpoint was fixed at 25°C. The coefficient of performance (CoP) of air conditioning equipment was set as 3.3. Three kinds of solar absorptances were verified: 0.3, 0.6 and 0.9 of exterior layer. The building in Teresina presented the highest level of energy consumption, while the one in Curitiba presented the lowest, with a wide range of differences in results. The constructive option of external fiber cement and drywall presented the best results, although the differences were not significant compared to the solution using just drywall. The choice of absorptance showed a great impact in energy consumption, mainly compared to the case of containers without any covering and for use in the hottest cities: Teresina, Rio de Janeiro, and Campo Grande. This study brings as the main contribution the discussion of constructive aspects for design guidelines for more energy-efficient container buildings, considering local climate differences, and helps the dissemination of this cleaner constructive practice in the Brazilian building sector.Keywords: bioclimatic zones, Brazil, shipping containers, thermal and energy performance
Procedia PDF Downloads 174217 Spatial Distribution of Virus-Transmitting Aphids of Plants in Al Bahah Province, Saudi Arabia
Authors: Sabir Hussain, Muhammad Naeem, Yousif Aldryhim, Susan E. Halbert, Qingjun Wu
Abstract:
Plant viruses annually cause severe economic losses in crop production and globally, different aphid species are responsible for the transmission of such viruses. Additionally, aphids are also serious pests of trees, and agricultural crops. Al Bahah Province, Kingdom of Saudi Arabia (KSA) has a high native and introduced plant species with a temperate climate that provides ample habitats for aphids. In this study, we surveyed virus-transmitting aphids from the Province to highlight their spatial distributions and hot spot areas for their target control strategies. During our fifteen month's survey in Al Bahah Province, three hundred and seventy samples of aphids were collected using both beating sheets and yellow water pan traps. Consequently, fifty-four aphid species representing 30 genera belonging to four families were recorded from Al Bahah Province. Alarmingly, 35 aphid species from our records are virus transmitting species. The most common virus transmitting aphid species based on number of collecting samples, were Macrosiphum euphorbiae (Thomas, 1878), Brachycaudus rumexicolens (Patch, 1917), Uroleucon sonchi (Linnaeus, 1767), Brachycaudus helichrysi (Kaltenbach, 1843), and Myzus persicae (Sulzer, 1776). The numbers of samples for the forementioned species were 66, 24, 23, 22, and 20, respectively. The widest range of plant hosts were found for M. euphorbiae (39 plant species), B. helichrysi (12 plant species), M. persicae (12 plant species), B. rumexicolens (10 plant species), and U. sonchi (9 plant species). The hottest spot areas were found in Al-Baha, Al Mekhwah and Biljarashi cities of the province on the basis of their abundance. This study indicated that Al Bahah Province has relatively rich aphid diversity due to the relatively high plant diversity in a favorable climatic condition. ArcGIS tools can be helpful for biologists to implement the target control strategies against these pests in the integrated pest management, and ultimately to save money and time.Keywords: Al Bahah province, aphid-virus interaction, biodiversity, global information system
Procedia PDF Downloads 184216 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation
Authors: Jonathan Gong
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning
Procedia PDF Downloads 130215 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs
Authors: Osamede Asowata, Christo Pienaar, Johan Bekker
Abstract:
Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter
Procedia PDF Downloads 127214 Efficacy of Coconut Shell Pyrolytic Oil Distillate in Protecting Wood Against Bio-Deterioration
Authors: K. S. Shiny, R. Sundararaj
Abstract:
Coconut trees (Cocos nucifera L.) are grown in many parts of India and world because of its multiple utilities. During pyrolysis, coconut shells yield oil, which is a dark thick liquid. Upon simple distillation it produces a more or less colourless liquid, termed coconut shell pyrolytic oil distillate (CSPOD). This manuscript reports and discusses the use of coconut shell pyrolytic oil distillate as a potential wood protectant against bio-deterioration. Since botanical products as ecofriendly wood protectant is being tested worldwide, the utilization of CPSOD as wood protectant is of great importance. The efficacy of CSPOD as wood protectant was evaluated as per Bureau of Indian Standards (BIS) in terms of its antifungal, antiborer, and termiticidal activities. Specimens of Rubber wood (Hevea brasiliensis) in six replicate each for two treatment methods namely spraying and dipping (48hrs) were employed. CSPOD was found to impart total protection against termites for six months compared to control under field conditions. For assessing the efficacy of CSPOD against fungi, the treated blocks were subjected to the attack of two white rot fungi Tyromyces versicolor (L.) Fr. and Polyporus sanguineus (L.) G. Mey and two brown rot fungi, Polyporus meliae (Undrew.) Murrill. and Oligoporus placenta (Fr.) Gilb. & Ryvarden. Results indicated that treatment with CSPOD significantly protected wood from the damage caused by the decay fungi. Efficacy of CSPOD against wood borer Lyctus africanus Lesne was carried out using six pairs of male and female beetles and it gave promising results in protecting the treated wood blocks when compared to control blocks. As far as the treatment methods were concerned, dip treatment was found to be more effective when compared to spraying. The results of the present investigation indicated that CSPOD is a promising botanical compound which has the potential to replace synthetic wood protectants. As coconut shell, pyrolytic oil is a waste byproduct of coconut shell charcoal industry, its utilization as a wood preservative will expand the economic returns from such industries.Keywords: coconut shell pyrolytic oil distillate, eco-friendly wood protection, termites, wood borers, wood decay fungi
Procedia PDF Downloads 371213 Economics of Sugandhakokila (Cinnamomum Glaucescens (Nees) Dury) in Dang District of Nepal: A Value Chain Perspective
Authors: Keshav Raj Acharya, Prabina Sharma
Abstract:
Sugandhakokila (Cinnamomum glaucescens Nees. Dury) is a large evergreen native tree species; mostly confined naturally in mid-hills of Rapti Zone of Nepal. The species is identified as prioritized for agro-technology development as well as for research and development by a department of plant resources. This species is band for export outside the country without processing by the government of Nepal to encourage the value addition within the country. The present study was carried out in Chillikot village of Dang district to find out the economic contribution of C. glaucescens in the local economy and to document the major conservation threats for this species. Participatory Rural Appraisal (PRA) tools such as Household survey, key informants interviews and focus group discussions were carried out to collect the data. The present study reveals that about 1.7 million Nepalese rupees (NPR) have been contributed annually in the local economy of 29 households from the collection of C. glaucescens berries in the study area. The average annual income of each family was around NPR 67,165.38 (US$ 569.19) from the sale of the berries which contributes about 53% of the total household income. Six different value chain actors are involved in C. glaucescens business. Maximum profit margin was taken by collector followed by producer, exporter and processor. The profit margin was found minimum to regional and village traders. The total profit margin for producers was NPR 138.86/kg, and regional traders have gained NPR 17/kg. However, there is a possibility to increase the profit of producers by NPR 8.00 more for each kg of berries through the initiation of community forest user group and village cooperatives in the area. Open access resource, infestation by an insect to over matured trees and browsing by goats were identified as major conservation threats for this species. Handing over the national forest as a community forest, linking the producers with the processor through organized market channel and replacing the old tree through new plantation has been recommended for future.Keywords: community forest, conservation threats, C. glaucescens, value chain analysis
Procedia PDF Downloads 140212 Mapping and Characterizing the Jefoure Cultural Landscape Which Provides Multiple Ecosystem Services to the Gurage People in Ethiopia
Abstract:
Jefoure land use system is one of the traditional landscape human settlement patterns, and it is a cultural design and peculiar art of the people of Gurage in Ethiopia via which houses and trees flank roads left and right. Assessment of the multiple benefits of the traditional road that benefit society and development could enhance the understanding of the land use planners and decision makers to pay attention while planning and managing the land use system. Recent trend shows that the Jefoure land use is on the threshold of change as a result of flourishing road networks, overgrazing, and agricultural expansion. This study aimed to evaluate the multiple ecosystem services provided by the Jefoure land use system after characterization of the socio-ecological landscape. Information was compiled from existing data sources such as ordnance survey maps, aerial photographs, recent high resolution satellite imageries, designated questionnaires and interviews, and local authority contacts. The result generated scientific data on the characteristics, ecosystem services provision, and drivers of changes. The cultural landscape has novel characteristics and providing multiple ecosystem services to the community for long period of time. It is serving as road for humans, livestock and vehicles, habitat for plant species, regulating local temperature, climate, runoff and infiltration, and place for meeting, conducting religious and spiritual activities, holding social events such as marriage and mourning, playing station for children and court for football and other traditional games. As a result of its aesthetic quality and scenic beauty, it is considered as recreational place for improving mental and physical health. The study draws relevant land use planning and management solution in the improvement of socio-ecological resilience in the Jefoure land use system. The study suggests the landscape needs to be registrar as heritage site for recognizing the wisdom of the community and enhancing the conservation mechanisms.Keywords: cultural landscape, ecosystem services, Gurage, Jefoure
Procedia PDF Downloads 131211 Tea and Its Working Methodology in the Biomass Estimation of Poplar Species
Authors: Pratima Poudel, Austin Himes, Heidi Renninger, Eric McConnel
Abstract:
Populus spp. (poplar) are the fastest-growing trees in North America, making them ideal for a range of applications as they can achieve high yields on short rotations and regenerate by coppice. Furthermore, poplar undergoes biochemical conversion to fuels without complexity, making it one of the most promising, purpose-grown, woody perennial energy sources. Employing wood-based biomass for bioenergy offers numerous benefits, including reducing greenhouse gas (GHG) emissions compared to non-renewable traditional fuels, the preservation of robust forest ecosystems, and creating economic prospects for rural communities.In order to gain a better understanding of the potential use of poplar as a biomass feedstock for biofuel in the southeastern US, the conducted a techno-economic assessment (TEA). This assessment is an analytical approach that integrates technical and economic factors of a production system to evaluate its economic viability. the TEA specifically focused on a short rotation coppice system employing a single-pass cut-and-chip harvesting method for poplar. It encompassed all the costs associated with establishing dedicated poplar plantations, including land rent, site preparation, planting, fertilizers, and herbicides. Additionally, we performed a sensitivity analysis to evaluate how different costs can affect the economic performance of the poplar cropping system. This analysis aimed to determine the minimum average delivered selling price for one metric ton of biomass necessary to achieve a desired rate of return over the cropping period. To inform the TEA, data on the establishment, crop care activities, and crop yields were derived from a field study conducted at the Mississippi Agricultural and Forestry Experiment Station's Bearden Dairy Research Center in Oktibbeha County and Pontotoc Ridge-Flatwood Branch Experiment Station in Pontotoc County.Keywords: biomass, populus species, sensitivity analysis, technoeconomic analysis
Procedia PDF Downloads 83210 A Comprehensive Framework for Fraud Prevention and Customer Feedback Classification in E-Commerce
Authors: Samhita Mummadi, Sree Divya Nagalli, Harshini Vemuri, Saketh Charan Nakka, Sumesh K. J.
Abstract:
One of the most significant challenges faced by people in today’s digital era is an alarming increase in fraudulent activities on online platforms. The fascination with online shopping to avoid long queues in shopping malls, the availability of a variety of products, and home delivery of goods have paved the way for a rapid increase in vast online shopping platforms. This has had a major impact on increasing fraudulent activities as well. This loop of online shopping and transactions has paved the way for fraudulent users to commit fraud. For instance, consider a store that orders thousands of products all at once, but what’s fishy about this is the massive number of items purchased and their transactions turning out to be fraud, leading to a huge loss for the seller. Considering scenarios like these underscores the urgent need to introduce machine learning approaches to combat fraud in online shopping. By leveraging robust algorithms, namely KNN, Decision Trees, and Random Forest, which are highly effective in generating accurate results, this research endeavors to discern patterns indicative of fraudulent behavior within transactional data. Introducing a comprehensive solution to this problem in order to empower e-commerce administrators in timely fraud detection and prevention is the primary motive and the main focus. In addition to that, sentiment analysis is harnessed in the model so that the e-commerce admin can tailor to the customer’s and consumer’s concerns, feedback, and comments, allowing the admin to improve the user’s experience. The ultimate objective of this study is to ramp up online shopping platforms against fraud and ensure a safer shopping experience. This paper underscores a model accuracy of 84%. All the findings and observations that were noted during our work lay the groundwork for future advancements in the development of more resilient and adaptive fraud detection systems, which will become crucial as technologies continue to evolve.Keywords: behavior analysis, feature selection, Fraudulent pattern recognition, imbalanced classification, transactional anomalies
Procedia PDF Downloads 27209 Study of Climate Change Process on Hyrcanian Forests Using Dendroclimatology Indicators (Case Study of Guilan Province)
Authors: Farzad Shirzad, Bohlol Alijani, Mehry Akbary, Mohammad Saligheh
Abstract:
Climate change and global warming are very important issues today. The process of climate change, especially changes in temperature and precipitation, is the most important issue in the environmental sciences. Climate change means changing the averages in the long run. Iran is located in arid and semi-arid regions due to its proximity to the equator and its location in the subtropical high pressure zone. In this respect, the Hyrcanian forest is a green necklace between the Caspian Sea and the south of the Alborz mountain range. In the forty-third session of UNESCO, it was registered as the second natural heritage of Iran. Beech is one of the most important tree species and the most industrial species of Hyrcanian forests. In this research, using dendroclimatology, the width of the tree ring, and climatic data of temperature and precipitation from Shanderman meteorological station located in the study area, And non-parametric Mann-Kendall statistical method to investigate the trend of climate change over a time series of 202 years of growth ringsAnd Pearson statistical method was used to correlate the growth of "ring" growth rings of beech trees with climatic variables in the region. The results obtained from the time series of beech growth rings showed that the changes in beech growth rings had a downward and negative trend and were significant at the level of 5% and climate change occurred. The average minimum, medium, and maximum temperatures and evaporation in the growing season had an increasing trend, and the annual precipitation had a decreasing trend. Using Pearson method during fitting the correlation of diameter of growth rings with temperature, for the average in July, August, and September, the correlation is negative, and the average temperature in July, August, and September is negative, and for the average The average maximum temperature in February was correlation-positive and at the level of 95% was significant, and with precipitation, in June the correlation was at the level of 95% positive and significant.Keywords: climate change, dendroclimatology, hyrcanian forest, beech
Procedia PDF Downloads 104208 Cysteine Proteases of Plants That Act on the Coagulation Cascade: Approach from Bioinformatics
Authors: Tapiwa Brine Mutsauri
Abstract:
The MEROPS system is an information resource for proteases that classifies them into clans according to their catalytic type. Within the Plant kingdom, cysteine proteases are one of the best known, as they are the catalytic type on which the first studies on plant proteases were focused. Plant cysteine proteases have a similar mechanism of action to serine proteases, and some are known to have activity on factors of the blood coagulation cascade, such as a potent antithrombotic effect, and also cause increased fibrinolysis. Of a few plant cysteine proteases, the three-dimensional structure is known, so a method of interest to be able to predict their potential activity on the factors of the coagulation cascade would be to know their structure. Phylogenetics is the study of the evolutionary relationships between biological entities, often species, individuals, or genes (which can be called taxa). It is essential to identify the evolutionary position and the possible distribution of these enzymes in the plant kingdom, particularly those that act on coagulation factors. Bioinformatic tools, such as Clustal Omega / Jalview and Mega6, can be used to create phylogenetic trees. From the results of the alignment, it can be seen that although there is a certain degree of conservation (Conservation) and consensus (Consensus) among the eleven sequences, the functionally important motifs (those corresponding to the active site), the degree of conservation and consensus is very low. We could then infer that although activity on coagulation is reported for these enzymes, linked to their structural and mechanistic similarity with serine proteases, this activity may not have a direct or primary relationship with the proteolytic activity associated with their common, poorly conserved active site in this case. This ultimately could be related to modifications in the reaction mechanism of several of the enzymes studied, which would require more detailed study. Also, below, we will deal with factors that may have a greater influence on this result. The results of this work enrich the understanding of how species (and molecular sequences in general) evolve. Through phylogenetics, we learn not only how sequences came to be the way they are today but also the general principles that allow us to predict how they will change in the future. For pharmaceutical sciences, phylogenetic selection of biologically related species can help identify closely related members of a species with compounds of pharmacological importance, such as plant cysteine proteases, in addition to identifying structural features that may influence their pharmacological activity and which can be valuable for drug design.Keywords: computational simulation, proteases, coagulation, bioinformatics
Procedia PDF Downloads 17