Search results for: computational calculations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2806

Search results for: computational calculations

2026 Novel Technique for calculating Surface Potential Gradient of Overhead Line Conductors

Authors: Sudip Sudhir Godbole

Abstract:

In transmission line surface potential gradient is a critical design parameter for planning overhead line, as it determines the level of corona loss (CL), radio interference (RI) and audible noise (AN).With increase of transmission line voltage level bulk power transfer is possible, using bundle conductor configuration used, it is more complex to find accurate surface stress in bundle configuration. The majority of existing models for surface gradient calculations are based on analytical methods which restrict their application in simulating complex surface geometry. This paper proposes a novel technique which utilizes both analytical and numerical procedure to predict the surface gradient. One of 400 kV transmission line configurations has been selected as an example to compare the results for different methods. The different strand shapes are a key variable in determining.

Keywords: surface gradient, Maxwell potential coefficient method, market and Mengele’s method, successive images method, charge simulation method, finite element method

Procedia PDF Downloads 529
2025 Thermal Analysis and Computational Fluid Dynamics Simulation of Large-Scale Cryopump

Authors: Yue Shuai Zhao, Rong Ping Shao, Wei Sun, Guo Hua Ren, Yong Wang, Li Chen Sun

Abstract:

A large-scale cryopump (DN1250) used in large vacuum leak detecting system was designed and its performance experimentally investigated by Beijing Institute of Spacecraft Environment Engineering. The cryopump was cooled by four closed cycle helium refrigerators (two dual stage refrigerators and two single stage refrigerators). Detailed numerical analysis of the heat transfer in the first stage array and the second stage array were performed by using computational fluid dynamic method (CFD). Several design parameters were considered to find the effect on the temperature distribution and the cooldown time. The variation of thermal conductivity and heat capacity with temperature was taken into account. The thermal analysis method based on numerical techniques was introduced in this study, the heat transfer in the first stage array and the second stage cryopanel was carefully analyzed to determine important considerations in the thermal design of the cryopump. A performance test system according to the RNEUROP standards was built to test main performance of the cryopump. The experimental results showed that the structure of first stage array which was optimized by the method could meet the requirement of the cryopump well. The temperature of the cryopanel was down to 10K within 300 min, and the result of the experiment was accordant with theoretical analysis' conclusion. The test also showed that the pumping speed for N2 of the pump was up to 57,000 L/s, and the crossover was over than 300,000 Pa•L.

Keywords: cryopump, temperature distribution, thermal analysis, CFD Simulation

Procedia PDF Downloads 295
2024 Non-Reacting Numerical Simulation of Axisymmetric Trapped Vortex Combustor

Authors: Heval Serhat Uluk, Sam M. Dakka, Kuldeep Singh, Richard Jefferson-Loveday

Abstract:

This paper will focus on the suitability of a trapped vortex combustor as a candidate for gas turbine combustor objectives to minimize pressure drop across the combustor and investigate aerodynamic performance. Non-reacting simulation of axisymmetric cavity trapped vortex combustors were simulated to investigate the pressure drop for various cavity aspect ratios of 0.3, 0.6, and 1 and for air mass flow rates of 14 m/s, 28 m/s, and 42 m/s. A numerical study of an axisymmetric trapped vortex combustor was carried out by using two-dimensional and three-dimensional computational domains. A comparison study was conducted between Reynolds Averaged Navier Stokes (RANS) k-ε Realizable with enhanced wall treatment and RANS k-ω Shear Stress Transport (SST) models to find the most suitable turbulence model. It was found that the k-ω SST model gives relatively close results to experimental outcomes. The numerical results were validated and showed good agreement with the experimental data. Pressure drop rises with increasing air mass flow rate, and the lowest pressure drop was observed at 0.6 cavity aspect ratio for all air mass flow rates tested, which agrees with the experimental outcome. A mixing enhancement study showed that 30-degree angle air injectors provide improved fuel-air mixing.

Keywords: aerodynamic, computational fluid dynamics, propulsion, trapped vortex combustor

Procedia PDF Downloads 79
2023 Concentrated Winding Permanent Magnet Axial Flux Motor with Soft Magnetic Composite Core

Authors: N. Aliyu, G. Atkinson, N. Stannard

Abstract:

Compacted insulated iron powder is a key material in high volume electric motors manufacturing. It offers high production rates, dimensionally stable components, and low scrap volumes. It is the aim of this paper to develop a three-phase compact single sided concentrated winding axial flux PM motor with soft magnetic composite (SMC) core for reducing core losses and cost. To succeed the motor would need to be designed in such a way as to exploit the isotropic magnetic properties of the material and open slot constructions with surface mounted PM for higher speed up to 6000 rpm, without excessive rotor losses. Higher fill factor up to 70% was achieved by compacting the coils, which offered a significant improvement in performance. A finite-element analysis was performed for accurate parameters calculation and the simulation results are thoroughly presented and agree with the theoretical calculations very well.

Keywords: SMC core, axial gap motor, high efficiency, torque

Procedia PDF Downloads 324
2022 Oxygen Transport in Blood Flows Pasts Staggered Fiber Arrays: A Computational Fluid Dynamics Study of an Oxygenator in Artificial Lung

Authors: Yu-Chen Hsu, Kuang C. Lin

Abstract:

The artificial lung called extracorporeal membrane oxygenation (ECMO) is an important medical machine that supports persons whose heart and lungs dysfunction. Previously, investigation of steady deoxygenated blood flows passing through hollow fibers for oxygen transport was carried out experimentally and computationally. The present study computationally analyzes the effect of biological pulsatile flow on the oxygen transport in blood. A 2-D model with a pulsatile flow condition is employed. The power law model is used to describe the non-Newtonian flow and the Hill equation is utilized to simulate the oxygen saturation of hemoglobin. The dimensionless parameters for the physical model include Reynolds numbers (Re), Womersley parameters (α), pulsation amplitudes (A), Sherwood number (Sh) and Schmidt number (Sc). The present model with steady-state flow conditions is well validated against previous experiment and simulations. It is observed that pulsating flow amplitudes significantly influence the velocity profile, pressure of oxygen (PO2), saturation of oxygen (SO2) and the oxygen mass transfer rates (m ̇_O2). In comparison between steady-state and pulsating flows, our findings suggest that the consideration of pulsating flow in the computational model is needed when Re is raised from 2 to 10 in a typical range for flow in artificial lung.

Keywords: artificial lung, oxygen transport, non-Newtonian flows, pulsating flows

Procedia PDF Downloads 303
2021 Character and Evolution of Electronic Waste: A Technologically Developing Country's Experience

Authors: Karen C. Olufokunbi, Odetunji A. Odejobi

Abstract:

The discourse of this paper is the examination of the generation, accumulation and growth of e-waste in a developing country. Images and other data about computer e-waste were collected using a digital camera, 290 copies of questionnaire and three structured interviews using Obafemi Awolowo University (OAU), Ile-Ife, Nigeria environment as a case study. The numerical data were analysed using R data analysis and process tool. Automata-based techniques and Petri net modeling tool were used to design and simulate a computational model for the recovery of saleable materials from e-waste. The R analysis showed that at a 95 percent confidence level, the computer equipment that will be disposed by 2020 will be 417 units. Compared to the 800 units in circulation in 2014, 50 percent of personal computer components will become e-waste. This indicates that personal computer components were in high demand due to their low costs and will be disposed more rapidly when replaced by new computer equipment Also, 57 percent of the respondents discarded their computer e-waste by throwing it into the garbage bin or by dumping it. The simulated model using Coloured Petri net modelling tool for the process showed that the e-waste dynamics is a forward sequential process in the form of a pipeline meaning that an e-waste recovery of saleable materials process occurs in identifiable discrete stages indicating that e-waste will continue to accumulate and grow in volume with time.

Keywords: Coloured Petri net, computational modelling, electronic waste, electronic waste process dynamics

Procedia PDF Downloads 158
2020 Assessment of Interior Environmental Quality and Airborne Infectious Risk in a Commuter Bus Cabin by Using Computational Fluid Dynamics with Computer Simulated Person

Authors: Yutaro Kyuma, Sung-Jun Yoo, Kazuhide Ito

Abstract:

A commuter bus remains important as a means to network public transportation between railway stations and terminals within cities. In some cases, the boarding time becomes longer, and the boarding rate tends to be higher corresponding to the development of urban cities. The interior environmental quality, e.g. temperature and air quality, in a commuter bus is relatively heterogeneous and complex compared to that of an indoor environment in buildings due to several factors: solar radiative heat – which comes from large-area windows –, inadequate ventilation rate caused by high density of commuters, and metabolic heat generation from travelers themselves. In addition to this, under conditions where many passengers ride in the enclosed space, contact and airborne infectious risk have attracted considerable attention in terms of public health. From this point of view, it is essential to develop the prediction method for assessment of interior environmental quality and infection risk in commuter bus cabins. In this study, we developed a numerical commuter bus model integrated with computer simulated persons to reproduce realistic indoor environment conditions with high occupancy during commuting. Here, computer simulated persons were newly designed considering different types of geometries, e.g., standing position, seating position, and individual differences. Here we conducted coupled computational fluid dynamics (CFD) analysis with radiative heat transfer analysis under steady state condition. Distributions of heterogeneous air flow patterns, temperature, and moisture surrounding the human body under some different ventilation system were analyzed by using CFD technique, and skin surface temperature distributions were analyzed using thermoregulation model that integrated into computer simulated person. Through these analyses, we discussed the interior environmental quality in specific commuter bus cabins. Further, inhaled air quality of each passenger was also analyzed. This study may have possibility to design the ventilation system in bus for improving thermal comfort of occupants.

Keywords: computational fluid dynamics, CFD, computer simulated person, CSP, contaminant, indoor environment, public health, ventilation

Procedia PDF Downloads 243
2019 Learner's Difficulties Acquiring English: The Case of Native Speakers of Rio de La Plata Spanish Towards Justifying the Need for Corpora

Authors: Maria Zinnia Bardas Hoffmann

Abstract:

Contrastive Analysis (CA) is the systematic comparison between two languages. It stems from the notion that errors are caused by interference of the L1 system in the acquisition process of an L2. CA represents a useful tool to understand the nature of learning and acquisition. Also, this particular method promises a path to un-derstand the nature of underlying cognitive processes, even when other factors such as intrinsic motivation and teaching strategies were found to best explain student’s problems in acquisition. CA study is justified not only from the need to get a deeper understanding of the nature of SLA, but as an invaluable source to provide clues, at a cognitive level, for those general processes involved in rule formation and abstract thought. It is relevant for cross disciplinary studies and the fields of Computational Thought, Natural Language processing, Applied Linguistics, Cognitive Linguistics and Math Theory. That being said, this paper intends to address here as well its own set of constraints and limitations. Finally, this paper: (a) aims at identifying some of the difficulties students may find in their learning process due to the nature of their specific variety of L1, Rio de la Plata Spanish (RPS), (b) represents an attempt to discuss the necessity for specific models to approach CA.

Keywords: second language acquisition, applied linguistics, contrastive analysis, applied contrastive analysis English language department, meta-linguistic rules, cross-linguistics studies, computational thought, natural language processing

Procedia PDF Downloads 139
2018 A Case Study for User Rating Prediction on Automobile Recommendation System Using Mapreduce

Authors: Jiao Sun, Li Pan, Shijun Liu

Abstract:

Recommender systems have been widely used in contemporary industry, and plenty of work has been done in this field to help users to identify items of interest. Collaborative Filtering (CF, for short) algorithm is an important technology in recommender systems. However, less work has been done in automobile recommendation system with the sharp increase of the amount of automobiles. What’s more, the computational speed is a major weakness for collaborative filtering technology. Therefore, using MapReduce framework to optimize the CF algorithm is a vital solution to this performance problem. In this paper, we present a recommendation of the users’ comment on industrial automobiles with various properties based on real world industrial datasets of user-automobile comment data collection, and provide recommendation for automobile providers and help them predict users’ comment on automobiles with new-coming property. Firstly, we solve the sparseness of matrix using previous construction of score matrix. Secondly, we solve the data normalization problem by removing dimensional effects from the raw data of automobiles, where different dimensions of automobile properties bring great error to the calculation of CF. Finally, we use the MapReduce framework to optimize the CF algorithm, and the computational speed has been improved times. UV decomposition used in this paper is an often used matrix factorization technology in CF algorithm, without calculating the interpolation weight of neighbors, which will be more convenient in industry.

Keywords: collaborative filtering, recommendation, data normalization, mapreduce

Procedia PDF Downloads 212
2017 LES Simulation of a Thermal Plasma Jet with Modeled Anode Arc Attachment Effects

Authors: N. Agon, T. Kavka, J. Vierendeels, M. Hrabovský, G. Van Oost

Abstract:

A plasma jet model was developed with a rigorous method for calculating the thermophysical properties of the gas mixture without mixing rules. A simplified model approach to account for the anode effects was incorporated in this model to allow the valorization of the simulations with experimental results. The radial heat transfer was under-predicted by the model because of the limitations of the radiation model, but the calculated evolution of centerline temperature, velocity and gas composition downstream of the torch exit corresponded well with the measured values. The CFD modeling of thermal plasmas is either focused on development of the plasma arc or the flow of the plasma jet outside of the plasma torch. In the former case, the Maxwell equations are coupled with the Navier-Stokes equations to account for electromagnetic effects which control the movements of the anode arc attachment. In plasma jet simulations, however, the computational domain starts from the exit nozzle of the plasma torch and the influence of the arc attachment fluctuations on the plasma jet flow field is not included in the calculations. In that case, the thermal plasma flow is described by temperature, velocity and concentration profiles at the torch exit nozzle and no electromagnetic effects are taken into account. This simplified approach is widely used in literature and generally acceptable for plasma torches with a circular anode inside the torch chamber. The unique DC hybrid water/gas-stabilized plasma torch developed at the Institute of Plasma Physics of the Czech Academy of Sciences on the other hand, consists of a rotating anode disk, located outside of the torch chamber. Neglecting the effects of the anode arc attachment downstream of the torch exit nozzle leads to erroneous predictions of the flow field. With the simplified approach introduced in this model, the Joule heating between the exit nozzle and the anode attachment position of the plasma arc is modeled by a volume heat source and the jet deflection caused by the anode processes by a momentum source at the anode surface. Furthermore, radiation effects are included by the net emission coefficient (NEC) method and diffusion is modeled with the combined diffusion coefficient method. The time-averaged simulation results are compared with numerous experimental measurements. The radial temperature profiles were obtained by spectroscopic measurements at different axial positions downstream of the exit nozzle. The velocity profiles were evaluated from the time-dependent evolution of flow structures, recorded by photodiode arrays. The shape of the plasma jet was compared with charge-coupled device (CCD) camera pictures. In the cooler regions, the temperature was measured by enthalpy probe downstream of the exit nozzle and by thermocouples in radial direction around the torch nozzle. The model results correspond well with the experimental measurements. The decrease in centerline temperature and velocity is predicted within an acceptable range and the shape of the jet closely resembles the jet structure in the recorded images. The temperatures at the edge of the jet are underestimated due to the absence of radial radiative heat transfer in the model.

Keywords: anode arc attachment, CFD modeling, experimental comparison, thermal plasma jet

Procedia PDF Downloads 359
2016 Theoretical and Experimental Electrostatic Potential around the M-Nitrophenol Compound

Authors: Drissi Mokhtaria, Chouaih Abdelkader, Fodil Hamzaoui

Abstract:

Our work is about a comparison of experimental and theoretical results of the electron charge density distribution and the electrostatic potential around the M-Nitrophenol Molecule (m-NPH) kwon for its interesting physical characteristics. The molecular experimental results have been obtained from a high-resolution X-ray diffraction study. Theoretical investigations were performed under the Gaussian program using the Density Functional Theory at B3LYP level of theory at 6-31G*. The multipolar model of Hansen and Coppens was used for the experimental electron charge density distribution around the molecule, while we used the DFT methods for the theoretical calculations. The electron charge density obtained in both methods allowed us to find out the different molecular properties such us the electrostatic potential and the dipole moment which were finally subject to a comparison leading to an outcome of a good matching results obtained in both methods.

Keywords: electron charge density, m-nitrophenol, nonlinear optical compound, electrostatic potential, optimized geometric

Procedia PDF Downloads 264
2015 Computationally Efficient Stacking Sequence Blending for Composite Structures with a Large Number of Design Regions Using Cellular Automata

Authors: Ellen Van Den Oord, Julien Marie Jan Ferdinand Van Campen

Abstract:

This article introduces a computationally efficient method for stacking sequence blending of composite structures. The computational efficiency makes the presented method especially interesting for composite structures with a large number of design regions. Optimization of composite structures with an unequal load distribution may lead to locally optimized thicknesses and ply orientations that are incompatible with one another. Blending constraints can be enforced to achieve structural continuity. In literature, many methods can be found to implement structural continuity by means of stacking sequence blending in one way or another. The complexity of the problem makes the blending of a structure with a large number of adjacent design regions, and thus stacking sequences, prohibitive. In this work the local stacking sequence optimization is preconditioned using a method found in the literature that couples the mechanical behavior of the laminate, in the form of lamination parameters, to blending constraints, yielding near-optimal easy-to-blend designs. The preconditioned design is then fed to the scheme using cellular automata that have been developed by the authors. The method is applied to the benchmark 18-panel horseshoe blending problem to demonstrate its performance. The computational efficiency of the proposed method makes it especially suited for composite structures with a large number of design regions.

Keywords: composite, blending, optimization, lamination parameters

Procedia PDF Downloads 219
2014 Investigation of Heat Transfer of Nanofluids in Circular Microchannels

Authors: Bayram Sahin, Hourieh Bayramian, Emre Mandev, Murat Ceylan

Abstract:

In industrial applications, the demand for the enhancement of heat transfer is a common engineering problem. The use of additives to heat transfer fluid is a technique applied to enhance the heat transfer performance of base fluids. In this study, the thermal performance of nanofluids consisting of SiO2 particles and deionized water in circular microchannels was investigated experimentally. SiO2 nanoparticles with diameter of 15 nm were added to water to prepare nanofluids with 0.2% and 0.4% volume fractions. Heat transfer characteristics were calculated by using temperature, flow and pressure measurements. The thermal conductivity and viscosity values required for the calculations are measured separately. It is observed that the Nusselt number increases at the all volume fraction of particles, by increasing the Reynolds number and the volumetric ratios of the particles. The highest heat transfer enhancement is obtained at Re = 2160 and 0.4 % vol. by 14% under the condition of a constant pumping power.

Keywords: nanofluid, microchannel, heat transfer, SiO2-water nanofluid

Procedia PDF Downloads 376
2013 Computational Fluid Dynamics Analysis of Convergent–Divergent Nozzle and Comparison against Theoretical and Experimental Results

Authors: Stewart A. Keir, Faik A. Hamad

Abstract:

This study aims to use both analytical and experimental methods of analysis to examine the accuracy of Computational Fluid Dynamics (CFD) models that can then be used for more complex analyses, accurately representing more elaborate flow phenomena such as internal shockwaves and boundary layers. The geometry used in the analytical study and CFD model is taken from the experimental rig. The analytical study is undertaken using isentropic and adiabatic relationships and the output of the analytical study, the 'shockwave location tool', is created. The results from the analytical study are then used to optimize the redesign an experimental rig for more favorable placement of pressure taps and gain a much better representation of the shockwaves occurring in the divergent section of the nozzle. The CFD model is then optimized through the selection of different parameters, e.g. turbulence models (Spalart-Almaras, Realizable k-epsilon & Standard k-omega) in order to develop an accurate, robust model. The results from the CFD model can then be directly compared to experimental and analytical results in order to gauge the accuracy of each method of analysis. The CFD model will be used to visualize the variation of various parameters such as velocity/Mach number, pressure and turbulence across the shock. The CFD results will be used to investigate the interaction between the shock wave and the boundary layer. The validated model can then be used to modify the nozzle designs which may offer better performance and ease of manufacture and may present feasible improvements to existing high-speed flow applications.

Keywords: CFD, nozzle, fluent, gas dynamics, shock-wave

Procedia PDF Downloads 228
2012 Development of a Compact Permanent Magnet Axial Flux Motor Using Soft Magnetic Composite

Authors: Nasiru Aliyu, Glyn Atkinson, Nick Stannard

Abstract:

With increasing demand for electric motors used in nearly all sectors of our day to day activities, which range from the motor that rotates the washing machine and dishwasher to the tens of thousands of motors used in domestic appliance. The number of applications for soft magnetic composites (SMC) material is growing significantly. This paper presents the development of a compact single sided concentrated winding axial flux PM motor using soft magnetic composite as core for reducing core losses and cost. The effects of changing the flux carrying component to pressed SMC parts are investigated based on a comprehensive understanding of the properties of the material. A 3-D finite-element analysis is performed for accurate parameter calculation. To validate the simulation, a new static test measurement was fully conducted on a prototype motor and agree with the theoretical calculations and old measured static test.

Keywords: SMC, compact development, axial field motor, 3DFA

Procedia PDF Downloads 318
2011 Hydrodynamics of Wound Ballistics

Authors: Harpreet Kaur, Er. Arjun, Kirandeep Kaur, P. K. Mittal

Abstract:

Simulation of a human body from 20% gelatin & 80% water mixture is examined from wound ballistics point of view. Parameters such as incapacitation energy & temporary to permanent cavity size & tools of hydrodynamics have been employed to arrive at a model of human body similar to the one adopted by NATO. Calculations using equations of motion yield a value of 339 µs in which a temporary cavity with maximum size settles down to permanent cavity. This occurs for a 10mm size bullets & settle down to permanent cavity in case of 4 different bullets i.e. 5.45, 5.56, 7.62,10 mm sizes The obtained results are in excellent agreement with the body as right circular cylinder of 15 cm height & 10 cm diameter. An effort is made here in this work to present a sound theoretical base to parameters commonly used in wound ballistics from field experience discussed by Col Coats & Major Beyer. Keywords. Gelatin, gunshot, hydrodynamic model, oscillation time, temporary cavity and permanent cavity, Wound Ballistic.

Keywords: gelatin, gunshot, wound, cavity

Procedia PDF Downloads 94
2010 Evaluation of Sloshing in Process Equipment for Floating Cryogenic Application

Authors: Bo Jin

Abstract:

A variety of process equipment having flow in and out is widely used in industrial land-based cryogenic facilities. In some of this equipment, such as vapor-liquid separator, a liquid level is established during the steady operation. As the implementation of such industrial processes extends to off-shore floating facilities, it is important to investigate the effect of sea motion on the process equipment partially filled with liquid. One important aspect to consider is the occurrence of sloshing therein. The flow characteristics are different from the classical study of sloshing, where the fluid is enclosed inside a vessel (e.g., storage tank) with no flow in or out. Liquid inside process equipment continuously flows in and out of the system. To understand this key difference, a Computational Fluid Dynamics (CFD) model is developed to simulate the liquid motion inside a partially filled cylinder with and without continuous flow in and out. For a partially filled vertical cylinder without any continuous flow in and out, the CFD model is found to be able to capture the well-known sloshing behavior documented in the literature. For the cylinder with a continuous steady flow in and out, the CFD simulation results demonstrate that the continuous flow suppresses sloshing. Given typical cryogenic fluid has very low viscosity, an analysis based on potential flow theory is developed to explain why flow into and out of the cylinder changes the natural frequency of the system and thereby suppresses sloshing. This analysis further validates the CFD results.

Keywords: computational fluid dynamics, CFD, cryogenic process equipment, off-shore floating processes, sloshing

Procedia PDF Downloads 123
2009 Thermodynamic Analysis of Hydrogen Plasma Reduction of TiCl₄

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

With increasing demands for high performance materials, intensive interest on the Ti has been focused. Especially, low cost production process of Ti has been extremely necessitated from wide parts and various industries. Tetrachloride (TiCl₄) is produced by fluidized bed using high TiO₂ feedstock and used as an intermediate product for the production of metal titanium sponge. Reduction of TiCl₄ is usually conducted by Kroll process using magnesium as a reduction reagent, producing metallic Ti in the shape of sponge. The process is batch type and takes very long time including post processes treating sponge. As an alternative reduction reagent, hydrogen in the state of plasma has long been strongly recommended. Experimental confirmation has not been completely reported yet and more strict analysis is required. In the present study, hydrogen plasma reduction process has been thermodynamically analyzed focusing the effects of temperature, pressure and concentration. All thermodynamic calculations were performed using the FactSage® thermodynamical software.

Keywords: TiCl₄, titanium, hydrogen, plasma, reduction, thermodynamic calculation

Procedia PDF Downloads 317
2008 Streamlines: Paths of Fluid Flow through Sandstone Samples Based on Computed Microtomography

Authors: Ł. Kaczmarek, T. Wejrzanowski, M. Maksimczuk

Abstract:

The study presents the use of the numerical calculations based on high-resolution computed microtomography in analysis of fluid flow through Miocene sandstones. Therefore, the permeability studies of rocks were performed. Miocene samples were taken from well S-3, located in the eastern part of the Carpathian Foredeep. For aforementioned analysis, two series of X-ray irradiation were performed. The first set of samples was selected to obtain the spatial distribution of grains and pores. At this stage of the study length of voxel side amounted 27 microns. The next set of X-ray irradation enabled recognition of microstructural components as well as petrophysical features. The length of voxel side in this stage was up to 2 µm. Based on this study, the samples were broken down into two distinct groups. The first one represents conventional reservoir deposits, in opposite to second one - unconventional type. Appropriate identification of petrophysical parameters such as porosity and permeability of the formation is a key element for optimization of the reservoir development.

Keywords: grains, permeability, pores, pressure distribution

Procedia PDF Downloads 243
2007 Numerical Simulation of Two-Dimensional Flow over a Stationary Circular Cylinder Using Feedback Forcing Scheme Based Immersed Boundary Finite Volume Method

Authors: Ranjith Maniyeri, Ahamed C. Saleel

Abstract:

Two-dimensional fluid flow over a stationary circular cylinder is one of the bench mark problem in the field of fluid-structure interaction in computational fluid dynamics (CFD). Motivated by this, in the present work, a two-dimensional computational model is developed using an improved version of immersed boundary method which combines the feedback forcing scheme of the virtual boundary method with Peskin’s regularized delta function approach. Lagrangian coordinates are used to represent the cylinder and Eulerian coordinates are used to describe the fluid flow. A two-dimensional Dirac delta function is used to transfer the quantities between the sold to fluid domain. Further, continuity and momentum equations governing the fluid flow are solved using fractional step based finite volume method on a staggered Cartesian grid system. The developed code is validated by comparing the values of drag coefficient obtained for different Reynolds numbers with that of other researcher’s results. Also, through numerical simulations for different Reynolds numbers flow behavior is well captured. The stability analysis of the improved version of immersed boundary method is tested for different values of feedback forcing coefficients.

Keywords: Feedback Forcing Scheme, Finite Volume Method, Immersed Boundary Method, Navier-Stokes Equations

Procedia PDF Downloads 298
2006 An Investigation of the Quantitative Correlation between Urban Spatial Morphology Indicators and Block Wind Environment

Authors: Di Wei, Xing Hu, Yangjun Chen, Baofeng Li, Hong Chen

Abstract:

To achieve the research purpose of guiding the spatial morphology design of blocks through the indicators to obtain a good wind environment, it is necessary to find the most suitable type and value range of each urban spatial morphology indicator. At present, most of the relevant researches is based on the numerical simulation of the ideal block shape and rarely proposes the results based on the complex actual block types. Therefore, this paper firstly attempted to make theoretical speculation on the main factors influencing indicators' effectiveness by analyzing the physical significance and formulating the principle of each indicator. Then it was verified by the field wind environment measurement and statistical analysis, indicating that Porosity(P₀) can be used as an important indicator to guide the design of block wind environment in the case of deep street canyons, while Frontal Area Density (λF) can be used as a supplement in the case of shallow street canyons with no height difference. Finally, computational fluid dynamics (CFD) was used to quantify the impact of block height difference and street canyons depth on λF and P₀, finding the suitable type and value range of λF and P₀. This paper would provide a feasible wind environment index system for urban designers.

Keywords: urban spatial morphology indicator, urban microclimate, computational fluid dynamics, block ventilation, correlation analysis

Procedia PDF Downloads 125
2005 An in silico Approach for Exploring the Intercellular Communication in Cancer Cells

Authors: M. Cardenas-Garcia, P. P. Gonzalez-Perez

Abstract:

Intercellular communication is a necessary condition for cellular functions and it allows a group of cells to survive as a population. Throughout this interaction, the cells work in a coordinated and collaborative way which facilitates their survival. In the case of cancerous cells, these take advantage of intercellular communication to preserve their malignancy, since through these physical unions they can send signs of malignancy. The Wnt/β-catenin signaling pathway plays an important role in the formation of intercellular communications, being also involved in a large number of cellular processes such as proliferation, differentiation, adhesion, cell survival, and cell death. The modeling and simulation of cellular signaling systems have found valuable support in a wide range of modeling approaches, which cover a wide spectrum ranging from mathematical models; e.g., ordinary differential equations, statistical methods, and numerical methods– to computational models; e.g., process algebra for modeling behavior and variation in molecular systems. Based on these models, different simulation tools have been developed from mathematical ones to computational ones. Regarding cellular and molecular processes in cancer, its study has also found a valuable support in different simulation tools that, covering a spectrum as mentioned above, have allowed the in silico experimentation of this phenomenon at the cellular and molecular level. In this work, we simulate and explore the complex interaction patterns of intercellular communication in cancer cells using the Cellulat bioinformatics tool, a computational simulation tool developed by us and motivated by two key elements: 1) a biochemically inspired model of self-organizing coordination in tuple spaces, and 2) the Gillespie’s algorithm, a stochastic simulation algorithm typically used to mimic systems of chemical/biochemical reactions in an efficient and accurate way. The main idea behind the Cellulat simulation tool is to provide an in silico experimentation environment that complements and guides in vitro experimentation in intra and intercellular signaling networks. Unlike most of the cell signaling simulation tools, such as E-Cell, BetaWB and Cell Illustrator which provides abstractions to model only intracellular behavior, Cellulat is appropriate for modeling both intracellular signaling and intercellular communication, providing the abstractions required to model –and as a result, simulate– the interaction mechanisms that involve two or more cells, that is essential in the scenario discussed in this work. During the development of this work we made evident the application of our computational simulation tool (Cellulat) for the modeling and simulation of intercellular communication between normal and cancerous cells, and in this way, propose key molecules that may prevent the arrival of malignant signals to the cells that surround the tumor cells. In this manner, we could identify the significant role that has the Wnt/β-catenin signaling pathway in cellular communication, and therefore, in the dissemination of cancer cells. We verified, using in silico experiments, how the inhibition of this signaling pathway prevents that the cells that surround a cancerous cell are transformed.

Keywords: cancer cells, in silico approach, intercellular communication, key molecules, modeling and simulation

Procedia PDF Downloads 245
2004 Material Characterization and Numerical Simulation of a Rubber Bumper

Authors: Tamás Mankovits, Dávid Huri, Imre Kállai, Imre Kocsis, Tamás Szabó

Abstract:

Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. In this paper, a comprehensive investigation is introduced including laboratory measurements, mesh density analysis and complex finite element simulations to obtain the load-displacement curve of the chosen rubber bumper. Contact and friction effects are also taken into consideration. The aim of this research is to elaborate an FEM model which is accurate and competitive for a future shape optimization task.

Keywords: rubber bumper, finite element analysis, compression test, Mooney-Rivlin material model

Procedia PDF Downloads 499
2003 Investigation of the Evolutionary Equations of the Two-Planetary Problem of Three Bodies with Variable Masses

Authors: Zhanar Imanova

Abstract:

Masses of real celestial bodies change anisotropically and reactive forces appear, and they need to be taken into account in the study of these bodies' dynamics. We studied the two-planet problem of three bodies with variable masses in the presence of reactive forces and obtained the equations of perturbed motion in Newton’s form equations. The motion equations in the orbital coordinate system, unlike the Lagrange equation, are convenient for taking into account the reactive forces. The perturbing force is expanded in terms of osculating elements. The expansion of perturbing functions is a time-consuming analytical calculation and results in very cumber some analytical expressions. In the considered problem, we obtained expansions of perturbing functions by small parameters up to and including the second degree. In the non resonant case, we obtained evolution equations in the Newton equation form. All symbolic calculations were done in Wolfram Mathematica.

Keywords: two-planet, three-body problem, variable mass, evolutionary equations

Procedia PDF Downloads 49
2002 Theoretical Study on the Nonlinear Optical Responses of Peptide Bonds Created between Alanine and Some Unnatural Amino Acids

Authors: S. N. Derrar, M. Sekkal-Rahal

Abstract:

The Nonlinear optics (NLO) technique is widely used in the field of biological imaging. In fact, grafting biological entities with a high NLO response on tissues and cells enhances the NLO responses of these latter, and ameliorates, consequently, their biological imaging quality. In this optics, we carried out a theoretical study, in the aim of analyzing the peptide bonds created between alanine amino acid and both unnatural amino acids: L-Dopa and Azatryptophan, respectively. Ramachandran plots have been performed for these systems, and their structural parameters have been analyzed. The NLO responses of these peptides have been reported by calculating the first hyperpolarizability values of all the minima found on the plots. The use of such unnatural amino acids as endogenous probing molecules has been investigated through this study. The Density Functional Theory (DFT) has been used for structural properties, while the Second-order Møller-Plesset Perturbation Theory (MP2) has been employed for the NLO calculations.

Keywords: biological imaging, hyperpolarizability, nonlinear optics, probing molecule

Procedia PDF Downloads 368
2001 Review of Concepts and Tools Applied to Assess Risks Associated with Food Imports

Authors: A. Falenski, A. Kaesbohrer, M. Filter

Abstract:

Introduction: Risk assessments can be performed in various ways and in different degrees of complexity. In order to assess risks associated with imported foods additional information needs to be taken into account compared to a risk assessment on regional products. The present review is an overview on currently available best practise approaches and data sources used for food import risk assessments (IRAs). Methods: A literature review has been performed. PubMed was searched for articles about food IRAs published in the years 2004 to 2014 (English and German texts only, search string “(English [la] OR German [la]) (2004:2014 [dp]) import [ti] risk”). Titles and abstracts were screened for import risks in the context of IRAs. The finally selected publications were analysed according to a predefined questionnaire extracting the following information: risk assessment guidelines followed, modelling methods used, data and software applied, existence of an analysis of uncertainty and variability. IRAs cited in these publications were also included in the analysis. Results: The PubMed search resulted in 49 publications, 17 of which contained information about import risks and risk assessments. Within these 19 cross references were identified to be of interest for the present study. These included original articles, reviews and guidelines. At least one of the guidelines of the World Organisation for Animal Health (OIE) and the Codex Alimentarius Commission were referenced in any of the IRAs, either for import of animals or for imports concerning foods, respectively. Interestingly, also a combination of both was used to assess the risk associated with the import of live animals serving as the source of food. Methods ranged from full quantitative IRAs using probabilistic models and dose-response models to qualitative IRA in which decision trees or severity tables were set up using parameter estimations based on expert opinions. Calculations were done using @Risk, R or Excel. Most heterogeneous was the type of data used, ranging from general information on imported goods (food, live animals) to pathogen prevalence in the country of origin. These data were either publicly available in databases or lists (e.g., OIE WAHID and Handystatus II, FAOSTAT, Eurostat, TRACES), accessible on a national level (e.g., herd information) or only open to a small group of people (flight passenger import data at national airport customs office). In the IRAs, an uncertainty analysis has been mentioned in some cases, but calculations have been performed only in a few cases. Conclusion: The current state-of-the-art in the assessment of risks of imported foods is characterized by a great heterogeneity in relation to general methodology and data used. Often information is gathered on a case-by-case basis and reformatted by hand in order to perform the IRA. This analysis therefore illustrates the need for a flexible, modular framework supporting the connection of existing data sources with data analysis and modelling tools. Such an infrastructure could pave the way to IRA workflows applicable ad-hoc, e.g. in case of a crisis situation.

Keywords: import risk assessment, review, tools, food import

Procedia PDF Downloads 297
2000 Symmetry-Protected Dirac Semi-Metallic Phases in Transition Metal Dichalcogenides

Authors: Mohammad Saeed Bahramy

Abstract:

Transition metal dichalcogenides have experienced a resurgence of interest in the past few years owing to their rich properties, ranging from metals and superconductors to strongly spin-orbit-coupled semiconductors and charge-density-wave systems. In all these cases, the transition metal d-electrons mainly determine the ground state properties. This presentation focuses on the chalcogen-derived states. Combining density-functional theory calculations with spin- and angle-resolved photoemission, it is shown that these states generically host a coexistence of type I and type II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. It will be discussed how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across many compounds. Our finding opens a new route to design topological materials with advanced functionalities.

Keywords: topology, electronic structure, Dirac semimetals, transition metal dichalcogenides

Procedia PDF Downloads 150
1999 The Effect of Sumatra Fault Earthquakes on West Malaysia

Authors: Noushin Naraghi Araghi, M. Nawawi, Syed Mustafizur Rahman

Abstract:

This paper presents the effect of Sumatra fault earthquakes on west Malaysia by calculating the peak horizontal ground acceleration (PGA). PGA is calculated by a probabilistic seismic hazard assessment (PSHA). A uniform catalog of earthquakes for the interest region has been provided. We used empirical relations to convert all magnitudes to Moment Magnitude. After eliminating foreshocks and aftershocks in order to achieve more reliable results, the completeness of the catalog and uncertainty of magnitudes have been estimated and seismicity parameters were calculated. Our seismic source model considers the Sumatran strike slip fault that is known historically to generate large earthquakes. The calculations were done using the logic tree method and four attenuation relationships and slip rates for different part of this fault. Seismic hazard assessment carried out for 48 grid points. Eventually, two seismic hazard maps based PGA for 5% and 10% probability of exceedance in 50 year are presented.

Keywords: Sumatra fault, west Malaysia, PGA, seismic parameters

Procedia PDF Downloads 396
1998 Preliminary Seismic Hazard Mapping of Papua New Guinea

Authors: Hadi Ghasemi, Mark Leonard, Spiliopoulos Spiro, Phil Cummins, Mathew Moihoi, Felix Taranu, Eric Buri, Chris Mckee

Abstract:

In this study the level of seismic hazard in terms of Peak Ground Acceleration (PGA) was calculated for return period of 475 years, using modeled seismic sources and assigned ground-motion equations. The calculations were performed for bedrock site conditions (Vs30=760 m/s). From the results it is evident that the seismic hazard reaches its maximum level (i.e. PGA≈1g for 475 yr return period) at the Huon Peninsula and southern New Britain regions. Disaggregation analysis revealed that moderate to large earthquakes occurring along the New Britain Trench mainly control the level of hazard at these locations. The open-source computer program OpenQuake developed by Global Earthquake Model foundation was used for the seismic hazard computations. It should be emphasized that the presented results are still preliminary and should not be interpreted as our final assessment of seismic hazard in PNG.

Keywords: probabilistic seismic hazard assessment, Papua New Guinea, building code, OpenQuake

Procedia PDF Downloads 542
1997 Analysis of Drilling Parameters for Al-Mg2-Si Metal Matrix Composite

Authors: S. Jahangir, S. H. I. Jaffery, M. Khan, Z. Zareef, A. Yar, A. Mubashir, S. Butt, L. Ali

Abstract:

In this work, drilling responses and behavior of MMC was investigated in Al-Mg2Si composites. For the purpose Al-15% wt. Mg2Si, was selected from the hypereutectic region of Al- Mg2Si phase diagram. Based on hardness and tensile strength, drill bit of appropriate material and morphology was selected. The performance of different drill bits of different morphology and material was studied and analysed using experimental data. For theoretical calculations of axial thrust force and required power calculation, material factor “K” was obtained from different data charts and at the same time cutting forces (drilling forces) were practically obtained using a Peizo electric force dynamometer. These results show the role of reinforcement particles on the machinability of MMCs and provide a useful guide for a better control and optimized drilling parameters for the drilling process. Furthermore, in this work, comparison of MMC with non -reinforced Aluminum Alloy regarding drilling operation was also studied.

Keywords: drilling, metal matrix composite (MMC), cutting forces, thrust force

Procedia PDF Downloads 419