Search results for: categorical datasets
88 The Use of Empirical Models to Estimate Soil Erosion in Arid Ecosystems and the Importance of Native Vegetation
Authors: Meshal M. Abdullah, Rusty A. Feagin, Layla Musawi
Abstract:
When humans mismanage arid landscapes, soil erosion can become a primary mechanism that leads to desertification. This study focuses on applying soil erosion models to a disturbed landscape in Umm Nigga, Kuwait, and identifying its predicted change under restoration plans, The northern portion of Umm Nigga, containing both coastal and desert ecosystems, falls within the boundaries of the Demilitarized Zone (DMZ) adjacent to Iraq, and has been fenced off to restrict public access since 1994. The central objective of this project was to utilize GIS and remote sensing to compare the MPSIAC (Modified Pacific South West Inter Agency Committee), EMP (Erosion Potential Method), and USLE (Universal Soil Loss Equation) soil erosion models and determine their applicability for arid regions such as Kuwait. Spatial analysis was used to develop the necessary datasets for factors such as soil characteristics, vegetation cover, runoff, climate, and topography. Results showed that the MPSIAC and EMP models produced a similar spatial distribution of erosion, though the MPSIAC had more variability. For the MPSIAC model, approximately 45% of the land surface ranged from moderate to high soil loss, while 35% ranged from moderate to high for the EMP model. The USLE model had contrasting results and a different spatial distribution of the soil loss, with 25% of area ranging from moderate to high erosion, and 75% ranging from low to very low. We concluded that MPSIAC and EMP were the most suitable models for arid regions in general, with the MPSIAC model best. We then applied the MPSIAC model to identify the amount of soil loss between coastal and desert areas, and fenced and unfenced sites. In the desert area, soil loss was different between fenced and unfenced sites. In these desert fenced sites, 88% of the surface was covered with vegetation and soil loss was very low, while at the desert unfenced sites it was 3% and correspondingly higher. In the coastal areas, the amount of soil loss was nearly similar between fenced and unfenced sites. These results implied that vegetation cover played an important role in reducing soil erosion, and that fencing is much more important in the desert ecosystems to protect against overgrazing. When applying the MPSIAC model predictively, we found that vegetation cover could be increased from 3% to 37% in unfenced areas, and soil erosion could then decrease by 39%. We conclude that the MPSIAC model is best to predict soil erosion for arid regions such as Kuwait.Keywords: soil erosion, GIS, modified pacific South west inter agency committee model (MPSIAC), erosion potential method (EMP), Universal soil loss equation (USLE)
Procedia PDF Downloads 29787 Colored Image Classification Using Quantum Convolutional Neural Networks Approach
Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins
Abstract:
Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning
Procedia PDF Downloads 12986 The Association of Work Stress with Job Satisfaction and Occupational Burnout in Nurse Anesthetists
Authors: I. Ling Tsai, Shu Fen Wu, Chen-Fuh Lam, Chia Yu Chen, Shu Jiuan Chen, Yen Lin Liu
Abstract:
Purpose: Following the conduction of the National Health Insurance (NHI) system in Taiwan since 1995, the demand for anesthesia services continues to increase in the operating rooms and other medical units. It has been well recognized that increased work stress not only affects the clinical performance of the medical staff, long-term work load may also result in occupational burnout. Our study aimed to determine the influence of working environment, work stress and job satisfaction on the occupational burnout in nurse anesthetists. The ultimate goal of this research project is to develop a strategy in establishing a friendly, less stressful workplace for the nurse anesthetists to enhance their job satisfaction, thereby reducing occupational burnout and increasing the career life for nurse anesthetists. Methods: This was a cross-sectional, descriptive study performed in a metropolitan teaching hospital in southern Taiwan between May 2017 to July 2017. A structured self-administered questionnaire, modified from the Practice Environment Scale of the Nursing Work Index (PES-NWI), Occupational Stress Indicator 2 (OSI-2) and Maslach Burnout Inventory (MBI) manual was collected from the nurse anesthetists. The relationships between two numeric datasets were analyzed by the Pearson correlation test (SPSS 20.0). Results: A total of 66 completed questionnaires were collected from 75 nurses (response rate 88%). The average scores for the working environment, job satisfaction, and work stress were 69.6%, 61.5%, and 63.9%, respectively. The three perspectives used to assess the occupational burnout, namely emotional exhaustion, depersonalization and sense of personal accomplishment were 26.3, 13.0 and 24.5, suggesting the presence of moderate to high degrees of burnout in our nurse anesthetists. The presence of occupational burnout was closely correlated with the unsatisfactory working environment (r=-0.385, P=0.001) and reduced job satisfaction (r=-0.430, P=0.000). Junior nurse anesthetists (<1-year clinical experience) reported having higher satisfaction in working environment than the seniors (5 to 10-year clinical experience) (P=0.02). Although the average scores for work stress, job satisfaction, and occupational burnout were lower in junior nurses, the differences were not statistically different. The linear regression model, the working environment was the independent factor that predicted occupational burnout in nurse anesthetists up to 19.8%. Conclusions: High occupational burnout is more likely to develop in senior nurse anesthetists who experienced the dissatisfied working environment, work stress and lower job satisfaction. In addition to the regulation of clinical duties, the increased workload in the supervision of the junior nurse anesthetists may result in emotional stress and burnout in senior nurse anesthetists. Therefore, appropriate adjustment of clinical and teaching loading in the senior nurse anesthetists could be helpful to improve the occupational burnout and enhance the retention rate.Keywords: nurse anesthetists, working environment, work stress, job satisfaction, occupational burnout
Procedia PDF Downloads 27885 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest
Procedia PDF Downloads 23184 Improving Predictions of Coastal Benthic Invertebrate Occurrence and Density Using a Multi-Scalar Approach
Authors: Stephanie Watson, Fabrice Stephenson, Conrad Pilditch, Carolyn Lundquist
Abstract:
Spatial data detailing both the distribution and density of functionally important marine species are needed to inform management decisions. Species distribution models (SDMs) have proven helpful in this regard; however, models often focus only on species occurrences derived from spatially expansive datasets and lack the resolution and detail required to inform regional management decisions. Boosted regression trees (BRT) were used to produce high-resolution SDMs (250 m) at two spatial scales predicting probability of occurrence, abundance (count per sample unit), density (count per km2) and uncertainty for seven coastal seafloor taxa that vary in habitat usage and distribution to examine prediction differences and implications for coastal management. We investigated if small scale regionally focussed models (82,000 km2) can provide improved predictions compared to data-rich national scale models (4.2 million km2). We explored the variability in predictions across model type (occurrence vs abundance) and model scale to determine if specific taxa models or model types are more robust to geographical variability. National scale occurrence models correlated well with broad-scale environmental predictors, resulting in higher AUC (Area under the receiver operating curve) and deviance explained scores; however, they tended to overpredict in the coastal environment and lacked spatially differentiated detail for some taxa. Regional models had lower overall performance, but for some taxa, spatial predictions were more differentiated at a localised ecological scale. National density models were often spatially refined and highlighted areas of ecological relevance producing more useful outputs than regional-scale models. The utility of a two-scale approach aids the selection of the most optimal combination of models to create a spatially informative density model, as results contrasted for specific taxa between model type and scale. However, it is vital that robust predictions of occurrence and abundance are generated as inputs for the combined density model as areas that do not spatially align between models can be discarded. This study demonstrates the variability in SDM outputs created over different geographical scales and highlights implications and opportunities for managers utilising these tools for regional conservation, particularly in data-limited environments.Keywords: Benthic ecology, spatial modelling, multi-scalar modelling, marine conservation.
Procedia PDF Downloads 7783 A Novel Chicken W Chromosome Specific Tandem Repeat
Authors: Alsu F. Saifitdinova, Alexey S. Komissarov, Svetlana A. Galkina, Elena I. Koshel, Maria M. Kulak, Stephen J. O'Brien, Elena R. Gaginskaya
Abstract:
The mystery of sex determination is one of the most ancient and still not solved until the end so far. In many species, sex determination is genetic and often accompanied by the presence of dimorphic sex chromosomes in the karyotype. Genomic sequencing gave the information about the gene content of sex chromosomes which allowed to reveal their origin from ordinary autosomes and to trace their evolutionary history. Female-specific W chromosome in birds as well as mammalian male-specific Y chromosome is characterized by the degeneration of gene content and the accumulation of repetitive DNA. Tandem repeats complicate the analysis of genomic data. Despite the best efforts chicken W chromosome assembly includes only 1.2 Mb from expected 55 Mb. Supplementing the information on the sex chromosome composition not only helps to complete the assembly of genomes but also moves us in the direction of understanding of the sex-determination systems evolution. A whole-genome survey to the assembly Gallus_gallus WASHUC 2.60 was applied for repeats search in assembled genome and performed search and assembly of high copy number repeats in unassembled reads of SRR867748 short reads datasets. For cytogenetic analysis conventional methods of fluorescent in situ hybridization was used for previously cloned W specific satellites and specifically designed directly labeled synthetic oligonucleotide DNA probe was used for bioinformatically identified repetitive sequence. Hybridization was performed with mitotic chicken chromosomes and manually isolated giant meiotic lampbrush chromosomes from growing oocytes. A novel chicken W specific satellite (GGAAA)n which is not co-localizes with any previously described classes of W specific repeats was identified and mapped with high resolution. In the composition of autosomes this repeat units was found as a part of upstream regions of gonad specific protein coding sequences. These findings may contribute to the understanding of the role of tandem repeats in sex specific differentiation regulation in birds and sex chromosome evolution. This work was supported by the postdoctoral fellowships from St. Petersburg State University (#1.50.1623.2013 and #1.50.1043.2014), the grant for Leading Scientific Schools (#3553.2014.4) and the grant from Russian foundation for basic researches (#15-04-05684). The equipment and software of Research Resource Center “Chromas” and Theodosius Dobzhansky Center for Genome Bioinformatics of Saint Petersburg State University were used.Keywords: birds, lampbrush chromosomes, sex chromosomes, tandem repeats
Procedia PDF Downloads 38982 The Usage of Negative Emotive Words in Twitter
Authors: Martina Katalin Szabó, István Üveges
Abstract:
In this paper, the usage of negative emotive words is examined on the basis of a large Hungarian twitter-database via NLP methods. The data is analysed from a gender point of view, as well as changes in language usage over time. The term negative emotive word refers to those words that, on their own, without context, have semantic content that can be associated with negative emotion, but in particular cases, they may function as intensifiers (e.g. rohadt jó ’damn good’) or a sentiment expression with positive polarity despite their negative prior polarity (e.g. brutális, ahogy ez a férfi rajzol ’it’s awesome (lit. brutal) how this guy draws’. Based on the findings of several authors, the same phenomenon can be found in other languages, so it is probably a language-independent feature. For the recent analysis, 67783 tweets were collected: 37818 tweets (19580 tweets written by females and 18238 tweets written by males) in 2016 and 48344 (18379 tweets written by females and 29965 tweets written by males) in 2021. The goal of the research was to make up two datasets comparable from the viewpoint of semantic changes, as well as from gender specificities. An exhaustive lexicon of Hungarian negative emotive intensifiers was also compiled (containing 214 words). After basic preprocessing steps, tweets were processed by ‘magyarlanc’, a toolkit is written in JAVA for the linguistic processing of Hungarian texts. Then, the frequency and collocation features of all these words in our corpus were automatically analyzed (via the analysis of parts-of-speech and sentiment values of the co-occurring words). Finally, the results of all four subcorpora were compared. Here some of the main outcomes of our analyses are provided: There are almost four times fewer cases in the male corpus compared to the female corpus when the negative emotive intensifier modified a negative polarity word in the tweet (e.g., damn bad). At the same time, male authors used these intensifiers more frequently, modifying a positive polarity or a neutral word (e.g., damn good and damn big). Results also pointed out that, in contrast to female authors, male authors used these words much more frequently as a positive polarity word as well (e.g., brutális, ahogy ez a férfi rajzol ’it’s awesome (lit. brutal) how this guy draws’). We also observed that male authors use significantly fewer types of emotive intensifiers than female authors, and the frequency proportion of the words is more balanced in the female corpus. As for changes in language usage over time, some notable differences in the frequency and collocation features of the words examined were identified: some of the words collocate with more positive words in the 2nd subcorpora than in the 1st, which points to the semantic change of these words over time.Keywords: gender differences, negative emotive words, semantic changes over time, twitter
Procedia PDF Downloads 20581 Bivariate Analyses of Factors That May Influence HIV Testing among Women Living in the Democratic Republic of the Congo
Authors: Danielle A. Walker, Kyle L. Johnson, Patrick J. Fox, Jacen S. Moore
Abstract:
The HIV Continuum of Care has become a universal model to provide context for the process of HIV testing, linkage to care, treatment, and viral suppression. HIV testing is the first step in moving toward community viral suppression. Countries with a lower socioeconomic status experience the lowest rates of testing and access to care. The Democratic Republic of the Congo is located in the heart of sub-Saharan Africa, where testing and access to care are low and women experience higher HIV prevalence compared to men. In the Democratic Republic of the Congo there is only a 21.6% HIV testing rate among women. Because a critical gap exists between a woman’s risk of contracting HIV and the decision to be tested, this study was conducted to obtain a better understanding of the relationship between factors that could influence HIV testing among women. The datasets analyzed were from the 2013-14 Democratic Republic of the Congo Demographic and Health Survey Program. The data was subset for women with an age range of 18-49 years. All missing cases were removed and one variable was recoded. The total sample size analyzed was 14,982 women. The results showed that there did not seem to be a difference in HIV testing by mean age. Out of 11 religious categories (Catholic, Protestant, Armee de salut, Kimbanguiste, Other Christians, Muslim, Bundu dia kongo, Vuvamu, Animist, no religion, and other), those who identified as Other Christians had the highest testing rate of 25.9% and those identified as Vuvamu had a 0% testing rate (p<0.001). There was a significant difference in testing by religion. Only 0.7% of women surveyed identified as having no religious affiliation. This suggests partnerships with key community and religious leaders could be a tool to increase testing. Over 60% of women who had never been tested for HIV did not know where to be tested. This highlights the need to educate communities on where testing facilities can be located. Almost 80% of women who believed HIV could be transmitted by supernatural means and/or witchcraft had never been tested before (p=0.08). Cultural beliefs could influence risk perception and testing decisions. Consequently, misconceptions need to be considered when implementing HIV testing and prevention programs. Location by province, years of education, and wealth index were also analyzed to control for socioeconomic status. Kinshasa had the highest testing rate of 54.2% of women living there, and both Equateur and Kasai-Occidental had less than a 10% testing rate (p<0.001). As the education level increased up to 12 years, testing increased (p<0.001). Women within the highest quintile of the wealth index had a 56.1% testing rate, and women within the lowest quintile had a 6.5% testing rate (p<0.001). This study concludes that further research is needed to identify culturally competent methods to increase HIV education programs, build partnerships with key community leaders, and improve knowledge on access to care.Keywords: Democratic Republic of the Congo, cultural beliefs, education, HIV testing
Procedia PDF Downloads 28780 Poster for Sickle Cell Disease and Barriers to Care in South Yorkshire from 2017 to 2023
Authors: Amardass Dhami, Clare Samuelson
Abstract:
Background: Sickle cell disease (SCD) is a complex, multisystem condition that significantly impacts patients' quality of life, characterized by acute illness episodes, progressive organ damage, and reduced life expectancy. In the UK, over 13,000 individuals are affected, with South Yorkshire having the fifth highest prevalence, including approximately 800 patients. Retinal complications in SCD can manifest as either proliferative or non-proliferative disease, with proliferative changes being more prevalent. These retinal issues can cause significant morbidity, including visual loss and increased care requirements, underscoring the need for regular monitoring. An integrated approach was applied to ensure timely interventions, ultimately enhancing patient outcomes and reduce ‘did not attend’ rates. Aim: To assess the factors which may influence attendance to Haematology and Ophthalmology Clinics with attention towards levels of deprivation towards non-attendance. Method : A retrospective study on 84 eligible patients, from the regional tertiary Centre for Sickle Cell Care (Sheffield Teaching Hospital) from 2017 to 2023. The study focused on the incidence of sickle cell eye disease, specifically examining the outcomes of patients who attended the combined haematology and ophthalmology clinics. Patients who did not attend either clinic were excluded from the analysis to ensure a clear understanding of the combined clinic's impact. This data was then compared with the United Kingdom’s Index of Multiple Deprivation (IMD) datasets to assess if inequalities of care affected this population. Results: The study concluded that the effectiveness of combining haematology and ophthalmology clinics was reduced following the intervention. The DNA rates increased to 40% for the haematology clinic. Additionally, a significant proportion of the cohort was classified as residing in areas of deprivation, suggesting a possible link between socioeconomic factors and non-attendance rates Conclusion: These findings underscore the challenges of integrating care for SCD patients, particularly in relation to socioeconomic barriers. Despite the intent to streamline care and improve patient outcomes, the increase in DNA rates points to the need for further investigation into the underlying causes of non-attendance. Addressing these issues, especially in deprived areas, could enhance the effectiveness of combined clinics and ensure that patients receive the necessary monitoring and interventions for their eye health and overall well-being. Future strategies may need to focus on improving accessibility, outreach, and support for patients to mitigate the impact of socioeconomic factors on healthcare attendance.Keywords: south yorkshire, sickle cell anemia, deprivation, factors, haematology
Procedia PDF Downloads 1379 A Prospective Study of a Clinically Significant Anatomical Change in Head and Neck Intensity-Modulated Radiation Therapy Using Transit Electronic Portal Imaging Device Images
Authors: Wilai Masanga, Chirapha Tannanonta, Sangutid Thongsawad, Sasikarn Chamchod, Todsaporn Fuangrod
Abstract:
The major factors of radiotherapy for head and neck (HN) cancers include patient’s anatomical changes and tumour shrinkage. These changes can significantly affect the planned dose distribution that causes the treatment plan deterioration. A measured transit EPID images compared to a predicted EPID images using gamma analysis has been clinically implemented to verify the dose accuracy as part of adaptive radiotherapy protocol. However, a global gamma analysis dose not sensitive to some critical organ changes as the entire treatment field is compared. The objective of this feasibility study is to evaluate the dosimetric response to patient anatomical changes during the treatment course in HN IMRT (Head and Neck Intensity-Modulated Radiation Therapy) using a novel comparison method; organ-of-interest gamma analysis. This method provides more sensitive to specific organ change detection. Random replanned 5 HN IMRT patients with causes of tumour shrinkage and patient weight loss that critically affect to the parotid size changes were selected and evaluated its transit dosimetry. A comprehensive physics-based model was used to generate a series of predicted transit EPID images for each gantry angle from original computed tomography (CT) and replan CT datasets. The patient structures; including left and right parotid, spinal cord, and planning target volume (PTV56) were projected to EPID level. The agreement between the transit images generated from original CT and replanned CT was quantified using gamma analysis with 3%, 3mm criteria. Moreover, only gamma pass-rate is calculated within each projected structure. The gamma pass-rate in right parotid and PTV56 between predicted transit of original CT and replan CT were 42.8%( ± 17.2%) and 54.7%( ± 21.5%). The gamma pass-rate for other projected organs were greater than 80%. Additionally, the results of organ-of-interest gamma analysis were compared with 3-dimensional cone-beam computed tomography (3D-CBCT) and the rational of replan by radiation oncologists. It showed that using only registration of 3D-CBCT to original CT does not provide the dosimetric impact of anatomical changes. Using transit EPID images with organ-of-interest gamma analysis can provide additional information for treatment plan suitability assessment.Keywords: re-plan, anatomical change, transit electronic portal imaging device, EPID, head, and neck
Procedia PDF Downloads 21678 Learning to Translate by Learning to Communicate to an Entailment Classifier
Authors: Szymon Rutkowski, Tomasz Korbak
Abstract:
We present a reinforcement-learning-based method of training neural machine translation models without parallel corpora. The standard encoder-decoder approach to machine translation suffers from two problems we aim to address. First, it needs parallel corpora, which are scarce, especially for low-resource languages. Second, it lacks psychological plausibility of learning procedure: learning a foreign language is about learning to communicate useful information, not merely learning to transduce from one language’s 'encoding' to another. We instead pose the problem of learning to translate as learning a policy in a communication game between two agents: the translator and the classifier. The classifier is trained beforehand on a natural language inference task (determining the entailment relation between a premise and a hypothesis) in the target language. The translator produces a sequence of actions that correspond to generating translations of both the hypothesis and premise, which are then passed to the classifier. The translator is rewarded for classifier’s performance on determining entailment between sentences translated by the translator to disciple’s native language. Translator’s performance thus reflects its ability to communicate useful information to the classifier. In effect, we train a machine translation model without the need for parallel corpora altogether. While similar reinforcement learning formulations for zero-shot translation were proposed before, there is a number of improvements we introduce. While prior research aimed at grounding the translation task in the physical world by evaluating agents on an image captioning task, we found that using a linguistic task is more sample-efficient. Natural language inference (also known as recognizing textual entailment) captures semantic properties of sentence pairs that are poorly correlated with semantic similarity, thus enforcing basic understanding of the role played by compositionality. It has been shown that models trained recognizing textual entailment produce high-quality general-purpose sentence embeddings transferrable to other tasks. We use stanford natural language inference (SNLI) dataset as well as its analogous datasets for French (XNLI) and Polish (CDSCorpus). Textual entailment corpora can be obtained relatively easily for any language, which makes our approach more extensible to low-resource languages than traditional approaches based on parallel corpora. We evaluated a number of reinforcement learning algorithms (including policy gradients and actor-critic) to solve the problem of translator’s policy optimization and found that our attempts yield some promising improvements over previous approaches to reinforcement-learning based zero-shot machine translation.Keywords: agent-based language learning, low-resource translation, natural language inference, neural machine translation, reinforcement learning
Procedia PDF Downloads 12877 Detailed Quantum Circuit Design and Evaluation of Grover's Algorithm for the Bounded Degree Traveling Salesman Problem Using the Q# Language
Authors: Wenjun Hou, Marek Perkowski
Abstract:
The Traveling Salesman problem is famous in computing and graph theory. In short, it asks for the Hamiltonian cycle of the least total weight in a given graph with N nodes. All variations on this problem, such as those with K-bounded-degree nodes, are classified as NP-complete in classical computing. Although several papers propose theoretical high-level designs of quantum algorithms for the Traveling Salesman Problem, no quantum circuit implementation of these algorithms has been created up to our best knowledge. In contrast to previous papers, the goal of this paper is not to optimize some abstract complexity measures based on the number of oracle iterations, but to be able to evaluate the real circuit and time costs of the quantum computer. Using the emerging quantum programming language Q# developed by Microsoft, which runs quantum circuits in a quantum computer simulation, an implementation of the bounded-degree problem and its respective quantum circuit were created. To apply Grover’s algorithm to this problem, a quantum oracle was designed, evaluating the cost of a particular set of edges in the graph as well as its validity as a Hamiltonian cycle. Repeating the Grover algorithm with an oracle that finds successively lower cost each time allows to transform the decision problem to an optimization problem, finding the minimum cost of Hamiltonian cycles. N log₂ K qubits are put into an equiprobablistic superposition by applying the Hadamard gate on each qubit. Within these N log₂ K qubits, the method uses an encoding in which every node is mapped to a set of its encoded edges. The oracle consists of several blocks of circuits: a custom-written edge weight adder, node index calculator, uniqueness checker, and comparator, which were all created using only quantum Toffoli gates, including its special forms, which are Feynman and Pauli X. The oracle begins by using the edge encodings specified by the qubits to calculate each node that this path visits and adding up the edge weights along the way. Next, the oracle uses the calculated nodes from the previous step and check that all the nodes are unique. Finally, the oracle checks that the calculated cost is less than the previously-calculated cost. By performing the oracle an optimal number of times, a correct answer can be generated with very high probability. The oracle of the Grover Algorithm is modified using the recalculated minimum cost value, and this procedure is repeated until the cost cannot be further reduced. This algorithm and circuit design have been verified, using several datasets, to generate correct outputs.Keywords: quantum computing, quantum circuit optimization, quantum algorithms, hybrid quantum algorithms, quantum programming, Grover’s algorithm, traveling salesman problem, bounded-degree TSP, minimal cost, Q# language
Procedia PDF Downloads 19076 An Adaptive Oversampling Technique for Imbalanced Datasets
Authors: Shaukat Ali Shahee, Usha Ananthakumar
Abstract:
A data set exhibits class imbalance problem when one class has very few examples compared to the other class, and this is also referred to as between class imbalance. The traditional classifiers fail to classify the minority class examples correctly due to its bias towards the majority class. Apart from between-class imbalance, imbalance within classes where classes are composed of a different number of sub-clusters with these sub-clusters containing different number of examples also deteriorates the performance of the classifier. Previously, many methods have been proposed for handling imbalanced dataset problem. These methods can be classified into four categories: data preprocessing, algorithmic based, cost-based methods and ensemble of classifier. Data preprocessing techniques have shown great potential as they attempt to improve data distribution rather than the classifier. Data preprocessing technique handles class imbalance either by increasing the minority class examples or by decreasing the majority class examples. Decreasing the majority class examples lead to loss of information and also when minority class has an absolute rarity, removing the majority class examples is generally not recommended. Existing methods available for handling class imbalance do not address both between-class imbalance and within-class imbalance simultaneously. In this paper, we propose a method that handles between class imbalance and within class imbalance simultaneously for binary classification problem. Removing between class imbalance and within class imbalance simultaneously eliminates the biases of the classifier towards bigger sub-clusters by minimizing the error domination of bigger sub-clusters in total error. The proposed method uses model-based clustering to find the presence of sub-clusters or sub-concepts in the dataset. The number of examples oversampled among the sub-clusters is determined based on the complexity of sub-clusters. The method also takes into consideration the scatter of the data in the feature space and also adaptively copes up with unseen test data using Lowner-John ellipsoid for increasing the accuracy of the classifier. In this study, neural network is being used as this is one such classifier where the total error is minimized and removing the between-class imbalance and within class imbalance simultaneously help the classifier in giving equal weight to all the sub-clusters irrespective of the classes. The proposed method is validated on 9 publicly available data sets and compared with three existing oversampling techniques that rely on the spatial location of minority class examples in the euclidean feature space. The experimental results show the proposed method to be statistically significantly superior to other methods in terms of various accuracy measures. Thus the proposed method can serve as a good alternative to handle various problem domains like credit scoring, customer churn prediction, financial distress, etc., that typically involve imbalanced data sets.Keywords: classification, imbalanced dataset, Lowner-John ellipsoid, model based clustering, oversampling
Procedia PDF Downloads 41875 Intelligent Campus Monitoring: YOLOv8-Based High-Accuracy Activity Recognition
Authors: A. Degale Desta, Tamirat Kebamo
Abstract:
Background: Recent advances in computer vision and pattern recognition have significantly improved activity recognition through video analysis, particularly with the application of Deep Convolutional Neural Networks (CNNs). One-stage detectors now enable efficient video-based recognition by simultaneously predicting object categories and locations. Such advancements are highly relevant in educational settings where CCTV surveillance could automatically monitor academic activities, enhancing security and classroom management. However, current datasets and recognition systems lack the specific focus on campus environments necessary for practical application in these settings.Objective: This study aims to address this gap by developing a dataset and testing an automated activity recognition system specifically tailored for educational campuses. The EthioCAD dataset was created to capture various classroom activities and teacher-student interactions, facilitating reliable recognition of academic activities using deep learning models. Method: EthioCAD, a novel video-based dataset, was created with a design science research approach to encompass teacher-student interactions across three domains and 18 distinct classroom activities. Using the Roboflow AI framework, the data was processed, with 4.224 KB of frames and 33.485 MB of images managed for frame extraction, labeling, and organization. The Ultralytics YOLOv8 model was then implemented within Google Colab to evaluate the dataset’s effectiveness, achieving high mean Average Precision (mAP) scores. Results: The YOLOv8 model demonstrated robust activity recognition within campus-like settings, achieving an mAP50 of 90.2% and an mAP50-95 of 78.6%. These results highlight the potential of EthioCAD, combined with YOLOv8, to provide reliable detection and classification of classroom activities, supporting automated surveillance needs on educational campuses. Discussion: The high performance of YOLOv8 on the EthioCAD dataset suggests that automated activity recognition for surveillance is feasible within educational environments. This system addresses current limitations in campus-specific data and tools, offering a tailored solution for academic monitoring that could enhance the effectiveness of CCTV systems in these settings. Conclusion: The EthioCAD dataset, alongside the YOLOv8 model, provides a promising framework for automated campus activity recognition. This approach lays the groundwork for future advancements in CCTV-based educational surveillance systems, enabling more refined and reliable monitoring of classroom activities.Keywords: deep CNN, EthioCAD, deep learning, YOLOv8, activity recognition
Procedia PDF Downloads 1074 Household Climate-Resilience Index Development for the Health Sector in Tanzania: Use of Demographic and Health Surveys Data Linked with Remote Sensing
Authors: Heribert R. Kaijage, Samuel N. A. Codjoe, Simon H. D. Mamuya, Mangi J. Ezekiel
Abstract:
There is strong evidence that climate has changed significantly affecting various sectors including public health. The recommended feasible solution is adopting development trajectories which combine both mitigation and adaptation measures for improving resilience pathways. This approach demands a consideration for complex interactions between climate and social-ecological systems. While other sectors such as agriculture and water have developed climate resilience indices, the public health sector in Tanzania is still lagging behind. The aim of this study was to find out how can we use Demographic and Health Surveys (DHS) linked with Remote Sensing (RS) technology and metrological information as tools to inform climate change resilient development and evaluation for the health sector. Methodological review was conducted whereby a number of studies were content analyzed to find appropriate indicators and indices for climate resilience household and their integration approach. These indicators were critically reviewed, listed, filtered and their sources determined. Preliminary identification and ranking of indicators were conducted using participatory approach of pairwise weighting by selected national stakeholders from meeting/conferences on human health and climate change sciences in Tanzania. DHS datasets were retrieved from Measure Evaluation project, processed and critically analyzed for possible climate change indicators. Other sources for indicators of climate change exposure were also identified. For the purpose of preliminary reporting, operationalization of selected indicators was discussed to produce methodological approach to be used in resilience comparative analysis study. It was found that household climate resilient index depends on the combination of three indices namely Household Adaptive and Mitigation Capacity (HC), Household Health Sensitivity (HHS) and Household Exposure Status (HES). It was also found that, DHS alone cannot complement resilient evaluation unless integrated with other data sources notably flooding data as a measure of vulnerability, remote sensing image of Normalized Vegetation Index (NDVI) and Metrological data (deviation from rainfall pattern). It can be concluded that if these indices retrieved from DHS data sets are computed and scientifically integrated can produce single climate resilience index and resilience maps could be generated at different spatial and time scales to enhance targeted interventions for climate resilient development and evaluations. However, further studies are need to test for the sensitivity of index in resilience comparative analysis among selected regions.Keywords: climate change, resilience, remote sensing, demographic and health surveys
Procedia PDF Downloads 16573 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning
Authors: Shayan Mohajer Hamidi
Abstract:
Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning
Procedia PDF Downloads 7572 Exploring Male and Female Consumers’ Perceptions of Clothing Retailers’ CSR Initiatives in South Africa
Authors: Gerhard D. Muller, Nadine C. Sonnenberg, Suné Donoghue
Abstract:
This study delves into the intricacies of male and female consumers’ perceptions of Corporate Social Responsibility (CSR) in the South African clothing retail sector, a sector experiencing increasing consumption, yet facing significant environmental and social challenges. The aim is to discern between male and female consumers’ perceptions of clothing retailers’ CSR initiatives based on the Triple Bottom Line (TBL) framework, which evaluates organizational sustainability across social, environmental, and economic domains. Methodologically, the study is embedded in a quantitative research paradigm adopting a cross-sectional survey design. A purposive sampling strategy was used to recruit male and female respondents from a diverse South African demographic background. A structured questionnaire was developed and included established consumer CSR perception scales that were adapted for the purposes of this study. The questionnaire was distributed via online platforms. The data collected from the online survey, were split by gender to allow for comparison between male and female consumers’ perceptions of clothing retailers’ CSR initiatives. Exploratory Factor Analysis (EFA) was conducted on each of the datasets. The EFA for females revealed a five-factor solution, whereas the male EFA presented a six-factor solution, with the notable addition of an Economic Performance dimension. Results indicate subtle differences in the gender groups’ CSR perceptions. While both genders seem to value clothing retailers’ focus on quality services, females seem to have more pronounced perceptions surrounding clothing retailers’ contributions to social and environmental causes. Males, on the other hand, seem to be more discerning in their perceptions surrounding clothing retailers’ support of social and environmental causes. Ethical stakeholder relationships emerged as a shared concern across genders. Still, males presented a distinct factor, Economic Performance, highlighting a gendered divergence in the weighting of economic success and financial performance in CSR evaluation. The implications of these results are multifaceted. Theoretically, the study enriches the discourse on CSR by integrating gender insights into the TBL framework, offering a greater understanding of consumers’ CSR perceptions in the South African clothing retail context. Practically, it provides actionable insights for clothing retailers, suggesting that CSR initiatives should be gender-sensitive and communicate the TBL's elements effectively to resonate with the pertinent concerns of each segment. Additionally, the findings advocate for a contextualized approach to CSR in emerging markets that aligns with local cultural and social differences.Keywords: consumer perceptions, corporate Social responsibility, gender differentiation, triple bottom line
Procedia PDF Downloads 6671 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI
Authors: James Rigor Camacho, Wansu Lim
Abstract:
Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors
Procedia PDF Downloads 10570 Automated Computer-Vision Analysis Pipeline of Calcium Imaging Neuronal Network Activity Data
Authors: David Oluigbo, Erik Hemberg, Nathan Shwatal, Wenqi Ding, Yin Yuan, Susanna Mierau
Abstract:
Introduction: Calcium imaging is an established technique in neuroscience research for detecting activity in neural networks. Bursts of action potentials in neurons lead to transient increases in intracellular calcium visualized with fluorescent indicators. Manual identification of cell bodies and their contours by experts typically takes 10-20 minutes per calcium imaging recording. Our aim, therefore, was to design an automated pipeline to facilitate and optimize calcium imaging data analysis. Our pipeline aims to accelerate cell body and contour identification and production of graphical representations reflecting changes in neuronal calcium-based fluorescence. Methods: We created a Python-based pipeline that uses OpenCV (a computer vision Python package) to accurately (1) detect neuron contours, (2) extract the mean fluorescence within the contour, and (3) identify transient changes in the fluorescence due to neuronal activity. The pipeline consisted of 3 Python scripts that could both be easily accessed through a Python Jupyter notebook. In total, we tested this pipeline on ten separate calcium imaging datasets from murine dissociate cortical cultures. We next compared our automated pipeline outputs with the outputs of manually labeled data for neuronal cell location and corresponding fluorescent times series generated by an expert neuroscientist. Results: Our results show that our automated pipeline efficiently pinpoints neuronal cell body location and neuronal contours and provides a graphical representation of neural network metrics accurately reflecting changes in neuronal calcium-based fluorescence. The pipeline detected the shape, area, and location of most neuronal cell body contours by using binary thresholding and grayscale image conversion to allow computer vision to better distinguish between cells and non-cells. Its results were also comparable to manually analyzed results but with significantly reduced result acquisition times of 2-5 minutes per recording versus 10-20 minutes per recording. Based on these findings, our next step is to precisely measure the specificity and sensitivity of the automated pipeline’s cell body and contour detection to extract more robust neural network metrics and dynamics. Conclusion: Our Python-based pipeline performed automated computer vision-based analysis of calcium image recordings from neuronal cell bodies in neuronal cell cultures. Our new goal is to improve cell body and contour detection to produce more robust, accurate neural network metrics and dynamic graphs.Keywords: calcium imaging, computer vision, neural activity, neural networks
Procedia PDF Downloads 8269 Estimating Evapotranspiration Irrigated Maize in Brazil Using a Hybrid Modelling Approach and Satellite Image Inputs
Authors: Ivo Zution Goncalves, Christopher M. U. Neale, Hiran Medeiros, Everardo Mantovani, Natalia Souza
Abstract:
Multispectral and thermal infrared imagery from satellite sensors coupled with climate and soil datasets were used to estimate evapotranspiration and biomass in center pivots planted to maize in Brazil during the 2016 season. The hybrid remote sensing based model named Spatial EvapoTranspiration Modelling Interface (SETMI) was applied using multispectral and thermal infrared imagery from the Landsat Thematic Mapper instrument. Field data collected by the IRRIGER center pivot management company included daily weather information such as maximum and minimum temperature, precipitation, relative humidity for estimating reference evapotranspiration. In addition, soil water content data were obtained every 0.20 m in the soil profile down to 0.60 m depth throughout the season. Early season soil samples were used to obtain water-holding capacity, wilting point, saturated hydraulic conductivity, initial volumetric soil water content, layer thickness, and saturated volumetric water content. Crop canopy development parameters and irrigation application depths were also inputs of the model. The modeling approach is based on the reflectance-based crop coefficient approach contained within the SETMI hybrid ET model using relationships developed in Nebraska. The model was applied to several fields located in Minas Gerais State in Brazil with approximate latitude: -16.630434 and longitude: -47.192876. The model provides estimates of real crop evapotranspiration (ET), crop irrigation requirements and all soil water balance outputs, including biomass estimation using multi-temporal satellite image inputs. An interpolation scheme based on the growing degree-day concept was used to model the periods between satellite inputs, filling the gaps between image dates and obtaining daily data. Actual and accumulated ET, accumulated cold temperature and water stress and crop water requirements estimated by the model were compared with data measured at the experimental fields. Results indicate that the SETMI modeling approach using data assimilation, showed reliable daily ET and crop water requirements for maize, interpolated between remote sensing observations, confirming the applicability of the SETMI model using new relationships developed in Nebraska for estimating mainly ET and water requirements in Brazil under tropical conditions.Keywords: basal crop coefficient, irrigation, remote sensing, SETMI
Procedia PDF Downloads 14068 Comprehensive, Up-to-Date Climate System Change Indicators, Trends and Interactions
Authors: Peter Carter
Abstract:
Comprehensive climate change indicators and trends inform the state of the climate (system) with respect to present and future climate change scenarios and the urgency of mitigation and adaptation. With data records now going back for many decades, indicator trends can complement model projections. They are provided as datasets by several climate monitoring centers, reviewed by state of the climate reports, and documented by the IPCC assessments. Up-to-date indicators are provided here. Rates of change are instructive, as are extremes. The indicators include greenhouse gas (GHG) emissions (natural and synthetic), cumulative CO2 emissions, atmospheric GHG concentrations (including CO2 equivalent), stratospheric ozone, surface ozone, radiative forcing, global average temperature increase, land temperature increase, zonal temperature increases, carbon sinks, soil moisture, sea surface temperature, ocean heat content, ocean acidification, ocean oxygen, glacier mass, Arctic temperature, Arctic sea ice (extent and volume), northern hemisphere snow cover, permafrost indices, Arctic GHG emissions, ice sheet mass, sea level rise, and stratospheric and surface ozone. Global warming is not the most reliable single metric for the climate state. Radiative forcing, atmospheric CO2 equivalent, and ocean heat content are more reliable. Global warming does not provide future commitment, whereas atmospheric CO2 equivalent does. Cumulative carbon is used for estimating carbon budgets. The forcing of aerosols is briefly addressed. Indicator interactions are included. In particular, indicators can provide insight into several crucial global warming amplifying feedback loops, which are explained. All indicators are increasing (adversely), most as fast as ever and some faster. One particularly pressing indicator is rapidly increasing global atmospheric methane. In this respect, methane emissions and sources are covered in more detail. In their application, indicators used in assessing safe planetary boundaries are included. Indicators are considered with respect to recent published papers on possible catastrophic climate change and climate system tipping thresholds. They are climate-change-policy relevant. In particular, relevant policies include the 2015 Paris Agreement on “holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels” and the 1992 UN Framework Convention on Climate change, which has “stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system.”Keywords: climate change, climate change indicators, climate change trends, climate system change interactions
Procedia PDF Downloads 10367 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning
Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi
Abstract:
Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.Keywords: agriculture, computer vision, data science, geospatial technology
Procedia PDF Downloads 13766 A Quantitative Analysis of Rural to Urban Migration in Morocco
Authors: Donald Wright
Abstract:
The ultimate goal of this study is to reinvigorate the philosophical underpinnings the study of urbanization with scientific data with the goal of circumventing what seems an inevitable future clash between rural and urban populations. To that end urban infrastructure must be sustainable economically, politically and ecologically over the course of several generations as cities continue to grow with the incorporation of climate refugees. Our research will provide data concerning the projected increase in population over the coming two decades in Morocco, and the population will shift from rural areas to urban centers during that period of time. As a result, urban infrastructure will need to be adapted, developed or built to fit the demand of future internal migrations from rural to urban centers in Morocco. This paper will also examine how past experiences of internally displaced people give insight into the challenges faced by future migrants and, beyond the gathering of data, how people react to internal migration. This study employs four different sets of research tools. First, a large part of this study is archival, which involves compiling the relevant literature on the topic and its complex history. This step also includes gathering data bout migrations in Morocco from public data sources. Once the datasets are collected, the next part of the project involves populating the attribute fields and preprocessing the data to make it understandable and usable by machine learning algorithms. In tandem with the mathematical interpretation of data and projected migrations, this study benefits from a theoretical understanding of the critical apparatus existing around urban development of the 20th and 21st centuries that give us insight into past infrastructure development and the rationale behind it. Once the data is ready to be analyzed, different machine learning algorithms will be experimented (k-clustering, support vector regression, random forest analysis) and the results compared for visualization of the data. The final computational part of this study involves analyzing the data and determining what we can learn from it. This paper helps us to understand future trends of population movements within and between regions of North Africa, which will have an impact on various sectors such as urban development, food distribution and water purification, not to mention the creation of public policy in the countries of this region. One of the strengths of this project is the multi-pronged and cross-disciplinary methodology to the research question, which enables an interchange of knowledge and experiences to facilitate innovative solutions to this complex problem. Multiple and diverse intersecting viewpoints allow an exchange of methodological models that provide fresh and informed interpretations of otherwise objective data.Keywords: climate change, machine learning, migration, Morocco, urban development
Procedia PDF Downloads 15065 EQMamba - Method Suggestion for Earthquake Detection and Phase Picking
Authors: Noga Bregman
Abstract:
Accurate and efficient earthquake detection and phase picking are crucial for seismic hazard assessment and emergency response. This study introduces EQMamba, a deep-learning method that combines the strengths of the Earthquake Transformer and the Mamba model for simultaneous earthquake detection and phase picking. EQMamba leverages the computational efficiency of Mamba layers to process longer seismic sequences while maintaining a manageable model size. The proposed architecture integrates convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and Mamba blocks. The model employs an encoder composed of convolutional layers and max pooling operations, followed by residual CNN blocks for feature extraction. Mamba blocks are applied to the outputs of BiLSTM blocks, efficiently capturing long-range dependencies in seismic data. Separate decoders are used for earthquake detection, P-wave picking, and S-wave picking. We trained and evaluated EQMamba using a subset of the STEAD dataset, a comprehensive collection of labeled seismic waveforms. The model was trained using a weighted combination of binary cross-entropy loss functions for each task, with the Adam optimizer and a scheduled learning rate. Data augmentation techniques were employed to enhance the model's robustness. Performance comparisons were conducted between EQMamba and the EQTransformer over 20 epochs on this modest-sized STEAD subset. Results demonstrate that EQMamba achieves superior performance, with higher F1 scores and faster convergence compared to EQTransformer. EQMamba reached F1 scores of 0.8 by epoch 5 and maintained higher scores throughout training. The model also exhibited more stable validation performance, indicating good generalization capabilities. While both models showed lower accuracy in phase-picking tasks compared to detection, EQMamba's overall performance suggests significant potential for improving seismic data analysis. The rapid convergence and superior F1 scores of EQMamba, even on a modest-sized dataset, indicate promising scalability for larger datasets. This study contributes to the field of earthquake engineering by presenting a computationally efficient and accurate method for simultaneous earthquake detection and phase picking. Future work will focus on incorporating Mamba layers into the P and S pickers and further optimizing the architecture for seismic data specifics. The EQMamba method holds the potential for enhancing real-time earthquake monitoring systems and improving our understanding of seismic events.Keywords: earthquake, detection, phase picking, s waves, p waves, transformer, deep learning, seismic waves
Procedia PDF Downloads 5264 A Comparison of Methods for Estimating Dichotomous Treatment Effects: A Simulation Study
Authors: Jacqueline Y. Thompson, Sam Watson, Lee Middleton, Karla Hemming
Abstract:
Introduction: The odds ratio (estimated via logistic regression) is a well-established and common approach for estimating covariate-adjusted binary treatment effects when comparing a treatment and control group with dichotomous outcomes. Its popularity is primarily because of its stability and robustness to model misspecification. However, the situation is different for the relative risk and risk difference, which are arguably easier to interpret and better suited to specific designs such as non-inferiority studies. So far, there is no equivalent, widely acceptable approach to estimate an adjusted relative risk and risk difference when conducting clinical trials. This is partly due to the lack of a comprehensive evaluation of available candidate methods. Methods/Approach: A simulation study is designed to evaluate the performance of relevant candidate methods to estimate relative risks to represent conditional and marginal estimation approaches. We consider the log-binomial, generalised linear models (GLM) with iteratively weighted least-squares (IWLS) and model-based standard errors (SE); log-binomial GLM with convex optimisation and model-based SEs; log-binomial GLM with convex optimisation and permutation tests; modified-Poisson GLM IWLS and robust SEs; log-binomial generalised estimation equations (GEE) and robust SEs; marginal standardisation and delta method SEs; and marginal standardisation and permutation test SEs. Independent and identically distributed datasets are simulated from a randomised controlled trial to evaluate these candidate methods. Simulations are replicated 10000 times for each scenario across all possible combinations of sample sizes (200, 1000, and 5000), outcomes (10%, 50%, and 80%), and covariates (ranging from -0.05 to 0.7) representing weak, moderate or strong relationships. Treatment effects (ranging from 0, -0.5, 1; on the log-scale) will consider null (H0) and alternative (H1) hypotheses to evaluate coverage and power in realistic scenarios. Performance measures (bias, mean square error (MSE), relative efficiency, and convergence rates) are evaluated across scenarios covering a range of sample sizes, event rates, covariate prognostic strength, and model misspecifications. Potential Results, Relevance & Impact: There are several methods for estimating unadjusted and adjusted relative risks. However, it is unclear which method(s) is the most efficient, preserves type-I error rate, is robust to model misspecification, or is the most powerful when adjusting for non-prognostic and prognostic covariates. GEE estimations may be biased when the outcome distributions are not from marginal binary data. Also, it seems that marginal standardisation and convex optimisation may perform better than GLM IWLS log-binomial.Keywords: binary outcomes, statistical methods, clinical trials, simulation study
Procedia PDF Downloads 11463 Using Computer Vision and Machine Learning to Improve Facility Design for Healthcare Facility Worker Safety
Authors: Hengameh Hosseini
Abstract:
Design of large healthcare facilities – such as hospitals, multi-service line clinics, and nursing facilities - that can accommodate patients with wide-ranging disabilities is a challenging endeavor and one that is poorly understood among healthcare facility managers, administrators, and executives. An even less-understood extension of this problem is the implications of weakly or insufficiently accommodative design of facilities for healthcare workers in physically-intensive jobs who may also suffer from a range of disabilities and who are therefore at increased risk of workplace accident and injury. Combine this reality with the vast range of facility types, ages, and designs, and the problem of universal accommodation becomes even more daunting and complex. In this study, we focus on the implication of facility design for healthcare workers suffering with low vision who also have physically active jobs. The points of difficulty are myriad and could span health service infrastructure, the equipment used in health facilities, and transport to and from appointments and other services can all pose a barrier to health care if they are inaccessible, less accessible, or even simply less comfortable for people with various disabilities. We conduct a series of surveys and interviews with employees and administrators of 7 facilities of a range of sizes and ownership models in the Northeastern United States and combine that corpus with in-facility observations and data collection to identify five major points of failure common to all the facilities that we concluded could pose safety threats to employees with vision impairments, ranging from very minor to severe. We determine that lack of design empathy is a major commonality among facility management and ownership. We subsequently propose three methods for remedying this lack of empathy-informed design, to remedy the dangers posed to employees: the use of an existing open-sourced Augmented Reality application to simulate the low-vision experience for designers and managers; the use of a machine learning model we develop to automatically infer facility shortcomings from large datasets of recorded patient and employee reviews and feedback; and the use of a computer vision model fine tuned on images of each facility to infer and predict facility features, locations, and workflows, that could again pose meaningful dangers to visually impaired employees of each facility. After conducting a series of real-world comparative experiments with each of these approaches, we conclude that each of these are viable solutions under particular sets of conditions, and finally characterize the range of facility types, workforce composition profiles, and work conditions under which each of these methods would be most apt and successful.Keywords: artificial intelligence, healthcare workers, facility design, disability, visually impaired, workplace safety
Procedia PDF Downloads 11662 Predicting OpenStreetMap Coverage by Means of Remote Sensing: The Case of Haiti
Authors: Ran Goldblatt, Nicholas Jones, Jennifer Mannix, Brad Bottoms
Abstract:
Accurate, complete, and up-to-date geospatial information is the foundation of successful disaster management. When the 2010 Haiti Earthquake struck, accurate and timely information on the distribution of critical infrastructure was essential for the disaster response community for effective search and rescue operations. Existing geospatial datasets such as Google Maps did not have comprehensive coverage of these features. In the days following the earthquake, many organizations released high-resolution satellite imagery, catalyzing a worldwide effort to map Haiti and support the recovery operations. Of these organizations, OpenStreetMap (OSM), a collaborative project to create a free editable map of the world, used the imagery to support volunteers to digitize roads, buildings, and other features, creating the most detailed map of Haiti in existence in just a few weeks. However, large portions of the island are still not fully covered by OSM. There is an increasing need for a tool to automatically identify which areas in Haiti, as well as in other countries vulnerable to disasters, that are not fully mapped. The objective of this project is to leverage different types of remote sensing measurements, together with machine learning approaches, in order to identify geographical areas where OSM coverage of building footprints is incomplete. Several remote sensing measures and derived products were assessed as potential predictors of OSM building footprints coverage, including: intensity of light emitted at night (based on VIIRS measurements), spectral indices derived from Sentinel-2 satellite (normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), soil-adjusted vegetation index (SAVI), urban index (UI)), surface texture (based on Sentinel-1 SAR measurements)), elevation and slope. Additional remote sensing derived products, such as Hansen Global Forest Change, DLR`s Global Urban Footprint (GUF), and World Settlement Footprint (WSF), were also evaluated as predictors, as well as OSM street and road network (including junctions). Using a supervised classification with a random forest classifier resulted in the prediction of 89% of the variation of OSM building footprint area in a given cell. These predictions allowed for the identification of cells that are predicted to be covered but are actually not mapped yet. With these results, this methodology could be adapted to any location to assist with preparing for future disastrous events and assure that essential geospatial information is available to support the response and recovery efforts during and following major disasters.Keywords: disaster management, Haiti, machine learning, OpenStreetMap, remote sensing
Procedia PDF Downloads 12561 Geomorphology and Flood Analysis Using Light Detection and Ranging
Authors: George R. Puno, Eric N. Bruno
Abstract:
The natural landscape of the Philippine archipelago plus the current realities of climate change make the country vulnerable to flood hazards. Flooding becomes the recurring natural disaster in the country resulting to lose of lives and properties. Musimusi is among the rivers which exhibited inundation particularly at the inhabited floodplain portion of its watershed. During the event, rescue operations and distribution of relief goods become a problem due to lack of high resolution flood maps to aid local government unit identify the most affected areas. In the attempt of minimizing impact of flooding, hydrologic modelling with high resolution mapping is becoming more challenging and important. This study focused on the analysis of flood extent as a function of different geomorphologic characteristics of Musimusi watershed. The methods include the delineation of morphometric parameters in the Musimusi watershed using Geographic Information System (GIS) and geometric calculations tools. Digital Terrain Model (DTM) as one of the derivatives of Light Detection and Ranging (LiDAR) technology was used to determine the extent of river inundation involving the application of Hydrologic Engineering Center-River Analysis System (HEC-RAS) and Hydrology Modelling System (HEC-HMS) models. The digital elevation model (DEM) from synthetic Aperture Radar (SAR) was used to delineate watershed boundary and river network. Datasets like mean sea level, river cross section, river stage, discharge and rainfall were also used as input parameters. Curve number (CN), vegetation, and soil properties were calibrated based on the existing condition of the site. Results showed that the drainage density value of the watershed is low which indicates that the basin is highly permeable subsoil and thick vegetative cover. The watershed’s elongation ratio value of 0.9 implies that the floodplain portion of the watershed is susceptible to flooding. The bifurcation ratio value of 2.1 indicates higher risk of flooding in localized areas of the watershed. The circularity ratio value (1.20) indicates that the basin is circular in shape, high discharge of runoff and low permeability of the subsoil condition. The heavy rainfall of 167 mm brought by Typhoon Seniang last December 29, 2014 was characterized as high intensity and long duration, with a return period of 100 years produced 316 m3s-1 outflows. Portion of the floodplain zone (1.52%) suffered inundation with 2.76 m depth at the maximum. The information generated in this study is helpful to the local disaster risk reduction management council in monitoring the affected sites for more appropriate decisions so that cost of rescue operations and relief goods distribution is minimized.Keywords: flooding, geomorphology, mapping, watershed
Procedia PDF Downloads 23060 Altmetrics of South African Journals: Implications for Scholarly Impact of South African Research on Social Media
Authors: Omwoyo Bosire Onyancha
Abstract:
The Journal Citation Reports (JCR) of the Thomson Reuters has, for decades, provided the data for bibliometrically assessing the impact of journals. In their criticism of the journal impact factor (JIF), a number of scholars such as Priem, Taraborelli, Groth and Neylon (2010) observe that the “JIF is often incorrectly used to assess the impact of individual articles. It is troubling that the exact details of the JIF are a trade secret, and that significant gaming is relatively easy”. The emergence of alternative metrics (Altmetrics) has introduced another dimension of re-assessing how the impact of journals (and other units such as articles and even individual researchers) can be measured. Altmetrics is premised upon the fact that research is increasingly being disseminated through social network sites such as ResearchGate, Mendeley, Twitter, Facebook, LinkedIn, and ImpactStory, among others. This paper adopts informetrics (including altmetrics) techniques to report on the findings of a study conducted to investigate and compare the social media impact of 274 South Africa Post Secondary Education (SAPSE)-accredited journals, which are recognized and accredited by the Department of Higher Education and Training (DHET) of South Africa (SA). We used multiple sources to extract data for the study, namely Altmetric.com and the Thomson Reuters’ Journal Citation Reports. Data was analyzed in order to determine South African journals’ presence and impact on social media as well as contrast the social media impact with Thomson Reuters’ citation impact. The Spearman correlation test was performed to compare the journals’ social media impact and JCR citation impact. Preliminary findings reveal that a total of 6360 articles published in 96 South African journals have received some attention in social media; the most commonly used social media platform was Twitter, followed by Mendeley, Facebook, News outlets, and CiteULike; there were 29 SA journals covered in the JCR in 2008 and this number has grown to 53 journals in 2014; the journals indexed in the Thomson Reuters performed much better, in terms of their altmetrics, than those journals that are not indexed in Thomson Reuters databases; nevertheless, there was high correlation among journals that featured in both datasets; the journals with the highest scores in Altmetric.com included the South African Medical Journal, African Journal of Marine Science, and Transactions of the Royal Society of South Africa while the journals with high impact factors in JCR were South African Medical Journal, Onderstepoort: Journal of Veterinary Research, and Sahara: Journal of Social Aspects of HIV-AIDS; and that Twitter has emerged as a strong avenue of sharing and communicating research published in the South African journals. Implications of the results of the study for the dissemination of research conducted in South Africa are offered. Discussions based on the research findings as well as conclusions and recommendations are offered in the full text paper.Keywords: altmetrics, citation impact, journal citation reports, journal impact factor, journals, research, scholarly publishing, social media impact, South Africa
Procedia PDF Downloads 20459 Rotterdam in Transition: A Design Case for a Low-Carbon Transport Node in Lombardijen
Authors: Halina Veloso e Zarate, Manuela Triggianese
Abstract:
The urban challenges posed by rapid population growth, climate adaptation, and sustainable living have compelled Dutch cities to reimagine their built environment and transportation systems. As a pivotal contributor to CO₂ emissions, the transportation sector in the Netherlands demands innovative solutions for transitioning to low-carbon mobility. This study investigates the potential of transit oriented development (TOD) as a strategy for achieving carbon reduction and sustainable urban transformation. Focusing on the Lombardijen station area in Rotterdam, which is targeted for significant densification, this paper presents a design-oriented exploration of a low-carbon transport node. By employing a research-by-design methodology, this study delves into multifaceted factors and scales, aiming to propose future scenarios for Lombardijen. Drawing from a synthesis of existing literature, applied research, and practical insights, a robust design framework emerges. To inform this framework, governmental data concerning the built environment and material embodied carbon are harnessed. However, the restricted access to crucial datasets, such as property ownership information from the cadastre and embodied carbon data from De Nationale Milieudatabase, underscores the need for improved data accessibility, especially during the concept design phase. The findings of this research contribute fundamental insights not only to the Lombardijen case but also to TOD studies across Rotterdam's 13 nodes and similar global contexts. Spatial data related to property ownership facilitated the identification of potential densification sites, underscoring its importance for informed urban design decisions. Additionally, the paper highlights the disparity between the essential role of embodied carbon data in environmental assessments for building permits and its limited accessibility due to proprietary barriers. Although this study lays the groundwork for sustainable urbanization through TOD-based design, it acknowledges an area of future research worthy of exploration: the socio-economic dimension. Given the complex socio-economic challenges inherent in the Lombardijen area, extending beyond spatial constraints, a comprehensive approach demands integration of mobility infrastructure expansion, land-use diversification, programmatic enhancements, and climate adaptation. While the paper adopts a TOD lens, it refrains from an in-depth examination of issues concerning equity and inclusivity, opening doors for subsequent research to address these aspects crucial for holistic urban development.Keywords: Rotterdam zuid, transport oriented development, carbon emissions, low-carbon design, cross-scale design, data-supported design
Procedia PDF Downloads 84