Search results for: cancer detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5320

Search results for: cancer detection

4540 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images

Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn

Abstract:

The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.

Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation

Procedia PDF Downloads 356
4539 Improvement of Brain Tumors Detection Using Markers and Boundaries Transform

Authors: Yousif Mohamed Y. Abdallah, Mommen A. Alkhir, Amel S. Algaddal

Abstract:

This was experimental study conducted to study segmentation of brain in MRI images using edge detection and morphology filters. For brain MRI images each film scanned using digitizer scanner then treated by using image processing program (MatLab), where the segmentation was studied. The scanned image was saved in a TIFF file format to preserve the quality of the image. Brain tissue can be easily detected in MRI image if the object has sufficient contrast from the background. We use edge detection and basic morphology tools to detect a brain. The segmentation of MRI images steps using detection and morphology filters were image reading, detection entire brain, dilation of the image, filling interior gaps inside the image, removal connected objects on borders and smoothen the object (brain). The results of this study were that it showed an alternate method for displaying the segmented object would be to place an outline around the segmented brain. Those filters approaches can help in removal of unwanted background information and increase diagnostic information of Brain MRI.

Keywords: improvement, brain, matlab, markers, boundaries

Procedia PDF Downloads 514
4538 Evolution of Cord Absorbed Dose during Larynx Cancer Radiotherapy, with 3D Treatment Planning and Tissue Equivalent Phantom

Authors: Mohammad Hassan Heidari, Amir Hossein Goodarzi, Majid Azarniush

Abstract:

Radiation doses to tissues and organs were measured using the anthropomorphic phantom as an equivalent to the human body. When high-energy X-rays are externally applied to treat laryngeal cancer, the absorbed dose at the laryngeal lumen is lower than given dose because of air space which it should pass through before reaching the lesion. Specially in case of high-energy X-rays, the loss of dose is considerable. Three-dimensional absorbed dose distributions have been computed for high-energy photon radiation therapy of laryngeal and hypo pharyngeal cancers, using a coaxial pair of opposing lateral beams in fixed positions. Treatment plans obtained under various conditions of irradiation.

Keywords: 3D treatment planning, anthropomorphic phantom, larynx cancer, radiotherapy

Procedia PDF Downloads 546
4537 Feasibility of Weakly Interacting Massive Particles as Dark Matter Candidates: Exploratory Study on The Possible Reasons for Lack of WIMP Detection

Authors: Sloka Bhushan

Abstract:

Dark matter constitutes a majority of matter in the universe, yet very little is known about it due to its extreme lack of interaction with regular matter and the fundamental forces. Weakly Interacting Massive Particles, or WIMPs, have been contested to be one of the strongest candidates for dark matter due to their promising theoretical properties. However, various endeavors to detect these elusive particles have failed. This paper explores the various particles which may be WIMPs and the detection techniques being employed to detect WIMPs (such as underground detectors, LHC experiments, and so on). There is a special focus on the reasons for the lack of detection of WIMPs so far, and the possibility of limits in detection being a reason for the lack of physical evidence of the existence of WIMPs. This paper also explores possible inconsistencies within the WIMP particle theory as a reason for the lack of physical detection. There is a brief review on the possible solutions and alternatives to these inconsistencies. Additionally, this paper also reviews the supersymmetry theory and the possibility of the supersymmetric neutralino (A possible WIMP particle) being detectable. Lastly, a review on alternate candidates for dark matter such as axions and MACHOs has been conducted. The explorative study in this paper is conducted through a series of literature reviews.

Keywords: dark matter, particle detection, supersymmetry, weakly interacting massive particles

Procedia PDF Downloads 139
4536 Selective Circular Dichroism Sensor Based on the Generation of Quantum Dots for Cadmium Ion Detection

Authors: Pradthana Sianglam, Wittaya Ngeontae

Abstract:

A new approach for the fabrication of cadmium ion (Cd2+) sensor is demonstrated. The detection principle is based on the in-situ generation of cadmium sulfide quantum dots (CdS QDs) in the presence of chiral thiol containing compound and detection by the circular dichroism spectroscopy (CD). Basically, the generation of CdS QDs can be done in the presence of Cd2+, sulfide ion and suitable capping compounds. In addition, the strong CD signal can be recorded if the generated QDs possess chiral property (from chiral capping molecule). Thus, the degree of CD signal change depends on the number of the generated CdS QDs which can be related to the concentration of Cd2+ (excess of other components). In this work, we use the mixture of cysteamine (Cys) and L-Penicillamine (LPA) as the capping molecules. The strong CD signal can be observed when the solution contains sodium sulfide, Cys, LPA, and Cd2+. Moreover, the CD signal is linearly related to the concentration of Cd2+. This approach shows excellence selectivity towards the detection of Cd2+ when comparing to other cation. The proposed CD sensor provides low limit detection limits around 70 µM and can be used with real water samples with satisfactory results.

Keywords: circular dichroism sensor, quantum dots, enaniomer, in-situ generation, chemical sensor, heavy metal ion

Procedia PDF Downloads 361
4535 Raman Spectral Fingerprints of Healthy and Cancerous Human Colorectal Tissues

Authors: Maria Karnachoriti, Ellas Spyratou, Dimitrios Lykidis, Maria Lambropoulou, Yiannis S. Raptis, Ioannis Seimenis, Efstathios P. Efstathopoulos, Athanassios G. Kontos

Abstract:

Colorectal cancer is the third most common cancer diagnosed in Europe, according to the latest incidence data provided by the World Health Organization (WHO), and early diagnosis has proved to be the key in reducing cancer-related mortality. In cases where surgical interventions are required for cancer treatment, the accurate discrimination between healthy and cancerous tissues is critical for the postoperative care of the patient. The current study focuses on the ex vivo handling of surgically excised colorectal specimens and the acquisition of their spectral fingerprints using Raman spectroscopy. Acquired data were analyzed in an effort to discriminate, in microscopic scale, between healthy and malignant margins. Raman spectroscopy is a spectroscopic technique with high detection sensitivity and spatial resolution of few micrometers. The spectral fingerprint which is produced during laser-tissue interaction is unique and characterizes the biostructure and its inflammatory or cancer state. Numerous published studies have demonstrated the potential of the technique as a tool for the discrimination between healthy and malignant tissues/cells either ex vivo or in vivo. However, the handling of the excised human specimens and the Raman measurement conditions remain challenging, unavoidably affecting measurement reliability and repeatability, as well as the technique’s overall accuracy and sensitivity. Therefore, tissue handling has to be optimized and standardized to ensure preservation of cell integrity and hydration level. Various strategies have been implemented in the past, including the use of balanced salt solutions, small humidifiers or pump-reservoir-pipette systems. In the current study, human colorectal specimens of 10X5 mm were collected from 5 patients up to now who underwent open surgery for colorectal cancer. A novel, non-toxic zinc-based fixative (Z7) was used for tissue preservation. Z7 demonstrates excellent protein preservation and protection against tissue autolysis. Micro-Raman spectra were recorded with a Renishaw Invia spectrometer from successive random 2 micrometers spots upon excitation at 785 nm to decrease fluorescent background and secure avoidance of tissue photodegradation. A temperature-controlled approach was adopted to stabilize the tissue at 2 °C, thus minimizing dehydration effects and consequent focus drift during measurement. A broad spectral range, 500-3200 cm-1,was covered with five consecutive full scans that lasted for 20 minutes in total. The average spectra were used for least square fitting analysis of the Raman modes.Subtle Raman differences were observed between normal and cancerous colorectal tissues mainly in the intensities of the 1556 cm-1 and 1628 cm-1 Raman modes which correspond to v(C=C) vibrations in porphyrins, as well as in the range of 2800-3000 cm-1 due to CH2 stretching of lipids and CH3 stretching of proteins. Raman spectra evaluation was supported by histological findings from twin specimens. This study demonstrates that Raman spectroscopy may constitute a promising tool for real-time verification of clear margins in colorectal cancer open surgery.

Keywords: colorectal cancer, Raman spectroscopy, malignant margins, spectral fingerprints

Procedia PDF Downloads 90
4534 The Effect of Vitamin D Supplementation on Prostate Cancer: A Systematic Review and Meta-Analysis of Clinical Trials

Authors: Simin Shahvazi, Sepideh Soltani, Seyed Mehdi Ahmadi, Russell J. De Souza, Amin Salehi-Abargouei

Abstract:

Background and Objectives: Vitamin D has received attention for its potential to disrupt cancer processes such as attenuating cell proliferation and exacerbating differentiation and apoptosis. However, whether there exists a role for vitamin D in the treatment of prostate cancer specifically remains controversial. We systematically review the literature to assess whether supplementation with vitamin D influences PSA response and overall survival in patients with prostate cancer. Methods: We searched PubMed, Scopus, ISI Web of Science and Google scholar from inception through up to 10 September 2017 for both before-and-after and randomized trials that evaluated the effect of vitamin D supplementation on the prostate specific antigen (PSA) response rate in participants with prostate cancer. The DerSimonian and Laird, inverse-weighted random-effects model was used to pool effect estimates from the studies. Heterogeneity and potential publication bias were evaluated. Subgroup analyses were also performed. Results: Twenty-two studies (16 before-after and 6 randomized controlled trials) were found and included in meta-analysis. The analysis on controlled clinical trials revealed that PSA change from baseline [weighted mean difference (WMD) = -1.66 ng/ml, 95%CI: -0.69, 0.36, P= 0.543)], PSA response (RR=1.18, 95%CI: 0.97, 1.45, P=0.104) and mortality rate (risk ratio (RR) = 1.05, 95% CI: 0.81-1.36; P=0.713) was not significantly different between vitamin D supplementation and placebo groups. Single arm trials revealed that vitamin D supplementation had had a modest effect on PSA response rate: 19% of those enrolled had at least a 50% reduction in PSA by the end of treatment (95% CI: 7% to 31%; p=0.002). Conclusion: We found that vitamin D modestly increases the PSA response rate in single arm studies. No effect on serum PSA levels, PSA response and mortality was seen in randomized controlled clinical trials. It does not seem patients with prostate cancer benefit from vitamin D supplementation.

Keywords: mortality, prostatic neoplasms, PSA response, vitamin D

Procedia PDF Downloads 193
4533 The Confounding Role of Graft-versus-Host Disease in Animal Models of Cancer Immunotherapy: A Systematic Review

Authors: Hami Ashraf, Mohammad Heydarnejad

Abstract:

Introduction: The landscape of cancer treatment has been revolutionized by immunotherapy, offering novel therapeutic avenues for diverse cancer types. Animal models play a pivotal role in the development and elucidation of these therapeutic modalities. Nevertheless, the manifestation of Graft-versus-Host Disease (GVHD) in such models poses significant challenges, muddling the interpretation of experimental data within the ambit of cancer immunotherapy. This study is dedicated to scrutinizing the role of GVHD as a confounding factor in animal models used for cancer immunotherapy, alongside proposing viable strategies to mitigate this complication. Method: Employing a systematic review framework, this study undertakes a comprehensive literature survey including academic journals in PubMed, Embase, and Web of Science databases and conference proceedings to collate pertinent research that delves into the impact of GVHD on animal models in cancer immunotherapy. The acquired studies undergo rigorous analysis and synthesis, aiming to assess the influence of GVHD on experimental results while identifying strategies to alleviate its confounding effects. Results: Findings indicate that GVHD incidence significantly skews the reliability and applicability of experimental outcomes, occasionally leading to erroneous interpretations. The literature surveyed also sheds light on various methodologies under exploration to counteract the GVHD dilemma, thereby bolstering the experimental integrity in this domain. Conclusion: GVHD's presence critically affects both the interpretation and validity of experimental findings, underscoring the imperative for strategies to curtail its confounding impacts. Current research endeavors are oriented towards devising solutions to this issue, aiming to augment the dependability and pertinence of experimental results. It is incumbent upon researchers to diligently consider and adjust for GVHD's effects, thereby enhancing the translational potential of animal model findings to clinical applications and propelling progress in the arena of cancer immunotherapy.

Keywords: graft-versus-host disease, cancer immunotherapy, animal models, preclinical model

Procedia PDF Downloads 50
4532 Effective Texture Features for Segmented Mammogram Images Based on Multi-Region of Interest Segmentation Method

Authors: Ramayanam Suresh, A. Nagaraja Rao, B. Eswara Reddy

Abstract:

Texture features of mammogram images are useful for finding masses or cancer cases in mammography, which have been used by radiologists. Textures are greatly succeeded for segmented images rather than normal images. It is necessary to perform segmentation for exclusive specification of cancer and non-cancer regions separately. Region of interest (ROI) is most commonly used technique for mammogram segmentation. Limitation of this method is that it is unable to explore segmentation for large collection of mammogram images. Therefore, this paper is proposed multi-ROI segmentation for addressing the above limitation. It supports greatly in finding the best texture features of mammogram images. Experimental study demonstrates the effectiveness of proposed work using benchmarked images.

Keywords: texture features, region of interest, multi-ROI segmentation, benchmarked images

Procedia PDF Downloads 305
4531 Sonodynamic Activity of Porphyrins-SWCNT

Authors: F. Bosca, F. Foglietta, F. Turci, E. Calcio Gaudino, S. Mana, F. Dosio, R. Canaparo, L. Serpe, A. Barge

Abstract:

In recent years, medical science has improved chemotherapy, radiation therapy and adjuvant therapy and has developed newer targeted therapies as well as refining surgical techniques for removing cancer. However, the chances of surviving the disease depend greatly on the type and location of the cancer and the extent of the disease at the start of treatment. Moreover, mainstream forms of cancer treatment have side effects which range from the unpleasant to the fatal. Therefore, the continuation of progress in anti-cancer therapy may depend on placing emphasis on other existing but less thoroughly investigated therapeutic approaches such as Sonodynamic Therapy (SDT). SDT is based on the local activation of a so called 'sonosensitizer', a molecule able to be excited by ultrasound, the radical production as a consequence of its relaxation processes and cell death due to different mechanisms induced by radical production. The present work deals with synthesis, characterization and preliminary in vitro test of Single Walled Carbon Nanotubes (SWCNT) decorated with porphyrins and biological vectors. The SWCNT’s surface was modified exploiting 1, 3-dipolar cycloaddition or Dies Alder reactions. For this purpose, different porphyrins scaffolds were ad-hoc synthesized using also non-conventional techniques. To increase cellular specificity of porphyrin-conjugated SWCNTs and to improve their ability to be suspended in aqueous solution, the modified nano-tubes were grafted with suitable glutamine or hyaluronic acid derivatives. These nano-sized sonosensitizers were characterized by several methodologies and tested in vitro on different cancer cell lines.

Keywords: sonodynamic therapy, porphyrins synthesis and modification, SWNCT grafting, hyaluronic acid, anti-cancer treatment

Procedia PDF Downloads 388
4530 Material Detection by Phase Shift Cavity Ring-Down Spectroscopy

Authors: Rana Muhammad Armaghan Ayaz, Yigit Uysallı, Nima Bavili, Berna Morova, Alper Kiraz

Abstract:

Traditional optical methods for example resonance wavelength shift and cavity ring-down spectroscopy used for material detection and sensing have disadvantages, for example, less resistance to laser noise, temperature fluctuations and extraction of the required information can be a difficult task like ring downtime in case of cavity ring-down spectroscopy. Phase shift cavity ring down spectroscopy is not only easy to use but is also capable of overcoming the said problems. This technique compares the phase difference between the signal coming out of the cavity with the reference signal. Detection of any material is made by the phase difference between them. By using this technique, air, water, and isopropyl alcohol can be recognized easily. This Methodology has far-reaching applications and can be used in air pollution detection, human breath analysis and many more.

Keywords: materials, noise, phase shift, resonance wavelength, sensitivity, time domain approach

Procedia PDF Downloads 147
4529 Prognostic Value of Tumor Markers in Younger Patients with Breast Cancer

Authors: Lola T. Alimkhodjaeva, Lola T. Zakirova, Soniya S. Ziyavidenova

Abstract:

Background: Breast cancer occupies the first place among the cancer in women in the world. It is urgent today to study the role of molecular markers which are capable of predicting the dynamics and outcome of the disease. The aim of this study is to define the prognostic value of the content of estrogen receptor (ER), progesterone receptor (PgR), and amplification of HER-2 / neu oncoprotein by studying 3 and 5-year overall and relapse-free survival in 470 patients with primary operable and 280 patients with locally–advanced breast cancer. Materials and methods: Study results of 3 and 5-year overall and relapse-free survival, depending on the content of RE, PgR in primary operable patients showed that ER positive (+) and PgR (+) survival was 100 (96.2%) and 97.3 (94.6%), for ER negative (-) and PgR (-) - 69.2 (60.3%) and 65.4 (57.7%), for ER positive (+) and negative PgR (-) 87.4 (80.1%) and 81.5 (79.3%), for ER negative (-) and positive PgR (+) - 97.4 (93.4%) and 90.4 (88.5%), respectively. Survival results depended also on the level of HER-2 / neu expression. In patients with HER-2 / neu negative the survival rates were as follows: 98.6 (94.7%) and 96.2 (92.3%). In group of patients with the level of HER-2 / neu (2+) expression these figures were: 45.3 (44.3%) and 45.1 (40.2%), and in group of patients with the level of HER-2 / neu (3+) expression - 41.2 (33.1%) and 34.3 (29.4%). The combination of ER negative (-), PgR (-), HER-2 / neu (-) they were 27.2 (25.4%) and 19.5 (15.3%), respectively. In patients with locally-advanced breast cancer the results of 3 and 5-year OS and RFS for ER (+) and PgR (+) were 76.3 (69.3%) and 62.2 (61.4%), for ER (-) and RP (-) 29.1 (23.7%) and 18.3 (12.6%), for ER (+) and PgR (-) 61.2 (47.2%) and 39.4 (25.6%), for ER (-) and PgR (+) 54.3 (43.1%) and 41.3 (18.3%), respectively. The level of HER-2 / neu expression also affected the survival results. Therefore, in HER-2/ neu negative patients the survival rate was 74.1 (67.6%) and 65.1 (57.3%), with the level of expression (2+) 20.4 (14.2%) and 8.6 (6.4%), with the level of expression (3+) 6.2 (3.1%) and 1.2 (1.5%), respectively. The combination for ER, PgR, HER-2 / neu negative was 22.1 (14.3%) and 8.4 (1.2%). Conclusion: Thus, the presence of steroid hormone receptors in breast tumor tissues at primary operable and locally- advanced process as the lack of HER-2/neu oncoprotein correlates with the highest rates of 3- and 5-year overall and relapse-free survival. The absence of steroid hormone receptors as well as of HER-2/neu overexpression in malignant breast tissues significantly degrades the 3- and 5-year overall and relapse-free survival. Tumors with ER, PgR and HER-2/neu negative have the most unfavorable prognostics.

Keywords: breast cancer, estrogen receptor, oncoprotein, progesterone receptor

Procedia PDF Downloads 188
4528 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images

Authors: Afaf Alharbi, Qianni Zhang

Abstract:

The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.

Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification

Procedia PDF Downloads 109
4527 The Identification of Combined Genomic Expressions as a Diagnostic Factor for Oral Squamous Cell Carcinoma

Authors: Ki-Yeo Kim

Abstract:

Trends in genetics are transforming in order to identify differential coexpressions of correlated gene expression rather than the significant individual gene. Moreover, it is known that a combined biomarker pattern improves the discrimination of a specific cancer. The identification of the combined biomarker is also necessary for the early detection of invasive oral squamous cell carcinoma (OSCC). To identify the combined biomarker that could improve the discrimination of OSCC, we explored an appropriate number of genes in a combined gene set in order to attain the highest level of accuracy. After detecting a significant gene set, including the pre-defined number of genes, a combined expression was identified using the weights of genes in a gene set. We used the Principal Component Analysis (PCA) for the weight calculation. In this process, we used three public microarray datasets. One dataset was used for identifying the combined biomarker, and the other two datasets were used for validation. The discrimination accuracy was measured by the out-of-bag (OOB) error. There was no relation between the significance and the discrimination accuracy in each individual gene. The identified gene set included both significant and insignificant genes. One of the most significant gene sets in the classification of normal and OSCC included MMP1, SOCS3 and ACOX1. Furthermore, in the case of oral dysplasia and OSCC discrimination, two combined biomarkers were identified. The combined genomic expression achieved better performance in the discrimination of different conditions than in a single significant gene. Therefore, it could be expected that accurate diagnosis for cancer could be possible with a combined biomarker.

Keywords: oral squamous cell carcinoma, combined biomarker, microarray dataset, correlated genes

Procedia PDF Downloads 423
4526 Diagnosis and Analysis of Automated Liver and Tumor Segmentation on CT

Authors: R. R. Ramsheeja, R. Sreeraj

Abstract:

For view the internal structures of the human body such as liver, brain, kidney etc have a wide range of different modalities for medical images are provided nowadays. Computer Tomography is one of the most significant medical image modalities. In this paper use CT liver images for study the use of automatic computer aided techniques to calculate the volume of the liver tumor. Segmentation method is used for the detection of tumor from the CT scan is proposed. Gaussian filter is used for denoising the liver image and Adaptive Thresholding algorithm is used for segmentation. Multiple Region Of Interest(ROI) based method that may help to characteristic the feature different. It provides a significant impact on classification performance. Due to the characteristic of liver tumor lesion, inherent difficulties appear selective. For a better performance, a novel proposed system is introduced. Multiple ROI based feature selection and classification are performed. In order to obtain of relevant features for Support Vector Machine(SVM) classifier is important for better generalization performance. The proposed system helps to improve the better classification performance, reason in which we can see a significant reduction of features is used. The diagnosis of liver cancer from the computer tomography images is very difficult in nature. Early detection of liver tumor is very helpful to save the human life.

Keywords: computed tomography (CT), multiple region of interest(ROI), feature values, segmentation, SVM classification

Procedia PDF Downloads 508
4525 Proposed Fault Detection Scheme on Low Voltage Distribution Feeders

Authors: Adewusi Adeoluwawale, Oronti Iyabosola Busola, Akinola Iretiayo, Komolafe Olusola Aderibigbe

Abstract:

The complex and radial structure of the low voltage distribution network (415V) makes it vulnerable to faults which are due to system and the environmental related factors. Besides these, the protective scheme employed on the low voltage network which is the fuse cannot be monitored remotely such that in the event of sustained fault, the utility will have to rely solely on the complaint brought by customers for loss of supply and this tends to increase the length of outages. A microcontroller based fault detection scheme is hereby developed to detect low voltage and high voltage fault conditions which are common faults on this network. Voltages below 198V and above 242V on the distribution feeders are classified and detected as low voltage and high voltages respectively. Results shows that the developed scheme produced a good response time in the detection of these faults.

Keywords: fault detection, low voltage distribution feeders, outage times, sustained faults

Procedia PDF Downloads 540
4524 Verifying the Performance of the Argon-41 Monitoring System from Fluorine-18 Production for Medical Applications

Authors: Nicole Virgili, Romolo Remetti

Abstract:

The aim of this work is to characterize, from radiation protection point of view, the emission into the environment of air contaminated by argon-41. In this research work, 41Ar is produced by a TR19PET cyclotron, operated at 19 MeV, installed at 'A. Gemelli' University Hospital, Rome, Italy, for fluorine-18 production. The production rate of 41Ar has been calculated on the basis of the scheduled operation cycles of the cyclotron and by utilising proper production algorithms. Then extensive Monte Carlo calculations, carried out by MCNP code, have allowed to determine the absolute detection efficiency to 41Ar gamma rays of a Geiger Muller detector placed in the terminal part of the chimney. Results showed unsatisfactory detection efficiency values and the need for integrating the detection system with more efficient detectors.

Keywords: Cyclotron, Geiger Muller detector, MCNPX, argon-41, emission of radioactive gas, detection efficiency determination

Procedia PDF Downloads 147
4523 Non-Melanoma Skin Cancer in Ha’il Region in the Kingdom of Saudi Arabia: A Clinicopathological Study

Authors: Laila Seada, Nouf Al Gharbi, Shaimaa Dawa

Abstract:

Although skin cancers are prevalent worldwide, it is uncommon in Ha’il region in the Kingdom of Saudi Arabia, mostly non-melanoma sub-type. During a 4-year period from 2014 to 2017, out of a total of 120 cases of skin lesions, 29 non-melanoma cancers were retrieved from histopathology files obtained from King Khalid Hospital. As part of the study, all cases of skin cancer diagnosed during 2014 -2017 have been revised and the clinicopathological data recorded. The results show that Basal cell carcinoma (BCC) was the most common neoplasm (36%), followed by cutaneous lymphomas (mostly mycosis fungoides 25%), squamous cell carcinoma (SCC) (21%) and dermatofibrosarcoma protuberans (DFSP) (11%). Only one case of metastatic carcinoma was recorded. BCC nodular type was the most prevalent, with a mean age 57.6 years and mean size 2.73 cm. SCC was mostly grade 2, with mean size 1.9 cm and an older mean age of 72.3 cm. Increased size of lesion positively correlated with older age (p = 0.001). Non-melanoma skin cancer in Ha’il region is not frequently encountered. BCC is the most frequent followed by cutaneous T-cell lymphomas and SCC. The findings in this study were in accordance with other parts of, but much lower than other parts of the world.

Keywords: non melanoma skin cancer, Hail Region, histopathology, BCC

Procedia PDF Downloads 157
4522 Deep Learning Based Road Crack Detection on an Embedded Platform

Authors: Nurhak Altın, Ayhan Kucukmanisa, Oguzhan Urhan

Abstract:

It is important that highways are in good condition for traffic safety. Road crashes (road cracks, erosion of lane markings, etc.) can cause accidents by affecting driving. Image processing based methods for detecting road cracks are available in the literature. In this paper, a deep learning based road crack detection approach is proposed. YOLO (You Look Only Once) is adopted as core component of the road crack detection approach presented. The YOLO network structure, which is developed for object detection, is trained with road crack images as a new class that is not previously used in YOLO. The performance of the proposed method is compared using different training methods: using randomly generated weights and training their own pre-trained weights (transfer learning). A similar training approach is applied to the simplified version of the YOLO network model (tiny yolo) and the results of the performance are examined. The developed system is able to process 8 fps on NVIDIA Jetson TX1 development kit.

Keywords: deep learning, embedded platform, real-time processing, road crack detection

Procedia PDF Downloads 337
4521 The Effectiveness of an Educational Program on Awareness of Cancer Signs, Symptoms, and Risk Factors among School Students in Oman

Authors: Khadija Al-Hosni, Moon Fai Chan, Mohammed Al-Azri

Abstract:

Background: Several studies suggest that most school-age adolescents are poorly informed on cancer warning signs and risk factors. Providing adolescents with sufficient knowledge would increase their awareness in adulthood and improve seeking behaviors later. Significant: The results will provide a clear vision in assisting key decision-makers in formulating policies on the students' awareness programs towards cancer. So, the likelihood of avoiding cancer in the future will be increased or even promote early diagnosis. Objectives: to evaluate the effectiveness of an education program designed to increase awareness of cancer signs and symptoms risk factors, improve the behavior of seeking help among school students in Oman, and address the barriers to obtaining medical help. Methods: A randomized controlled trial with two groups was conducted in Oman. A total of 1716 students (n=886/control, n= 830/education), aged 15-17 years, at 10th and 11th grade from 12 governmental schools 3 in governorates from 20-February-2022 to 12-May-2022. Basic demographic data were collected, and the Cancer Awareness Measure (CAM) was used as the primary outcome. Data were collected at baseline (T0) and 4 weeks after (T1). The intervention group received an education program about cancer's cause and its signs and symptoms. In contrast, the control group did not receive any education related to this issue during the study period. Non-parametric tests were used to compare the outcomes between groups. Results: At T0, the lamp was the most recognized cancer warning sign in control (55.0%) and intervention (55.2%) groups. However, there were no significant changes at T1 for all signs in the control group. In contrast, all sign outcomes were improved significantly (p<0.001) in the intervention group, the highest response was unexplained pain (93.3%). Smoking was the most recognized risk factor in both groups: (82.8% for control; 84.1% for intervention) at T0. However, there was no significant change in T1 for the control group, but there was for the intervention group (p<0.001), the highest identification was smoking cigarettes (96.5%). Too scared was the largest barrier to seeking medical help by students in the control group at T0 (63.0%) and T1 (62.8%). However, there were no significant changes in all barriers in this group. Otherwise, being too embarrassed (60.2%) was the largest barrier to seeking medical help for students in the intervention group at T0 and too scared (58.6%) at T1. Although there were reductions in all barriers, significant differences were found in six of ten only (p<0.001). Conclusion: The intervention was effective in improving students' awareness of cancer symptoms, warning signs (p<0.001), and risk factors (p<0.001 reduced the most addressed barriers to seeking medical help (p<0.001) in comparison to the control group. The Ministry of Education in Oman could integrate awareness of cancer within the curriculum, and more interventions are needed on the sociological part to overcome the barriers that interfere with seeking medical help.

Keywords: adolescents, awareness, cancer, education, intervention, student

Procedia PDF Downloads 85
4520 Nursing System Development in Patients Undergoing Operation in 3C Ward: Early Ambulation in Patients with Head and Neck Cancer

Authors: Artitaya Sabangbal, Darawan Augsornwan, Palakorn Surakunprapha, Lalida Petphai

Abstract:

Background: Srinagarind Hospital Ward 3C has about 180 cases of patients with head and neck cancer per year. Almost all of these patients suffer with pain, fatigue, low self image, swallowing problem and when the tumor is larger they will have breathing problem. Many of them have complication after operation such as pressure sore, pneumonia, deep vein thrombosis. Nursing activity is very important to prevent the complication especially promoting patients early ambulation. The objective of this study was to develop early ambulation protocol for patients with head and neck cancer undergoing operation. Method: this study is one part of nursing system development in patients undergoing operation in Ward 3C. It is a participation action research divided into 3 phases Phase 1 Situation review: In this phase we review the clinical outcomes, process of care, from document such as nurses note and interview nurses, patients and family about early ambulation. Phase 2 Searching nursing intervention about early ambulation from previous study then establish protocol . This phase we have picture package of early ambulation. Phase 3 implementation and evaluation. Result: Patients with head and neck cancer after operation can follow early ambulation protocol 100%, 85 % of patients can follow protocol within 2 days after operation and 100% can follow protocol within 3 days. No complications occur. Patients satisfaction in very good level is 58% and in good level is 42% Length of hospital stay is 6 days in patients with wide excision and 16 day in patients with flap coverage. Conclusion: The early ambulation protocol is appropriate for patients with head and neck cancer who undergo operation. This can restore physical health, reduce complication and increase patients satisfaction.

Keywords: nursing system, early ambulation, head and neck cancer, operation

Procedia PDF Downloads 227
4519 The Development of a Miniaturized Raman Instrument Optimized for the Detection of Biosignatures on Europa

Authors: Aria Vitkova, Hanna Sykulska-Lawrence

Abstract:

In recent years, Europa has been one of the major focus points in astrobiology due to its high potential of harbouring life in the vast ocean underneath its icy crust. However, the detection of life on Europa faces many challenges due to the harsh environmental conditions and mission constraints. Raman spectroscopy is a highly capable and versatile in-situ characterisation technique that does not require any sample preparation. It has only been used on Earth to date; however, recent advances in optical and laser technology have also allowed it to be considered for extraterrestrial exploration. So far, most efforts have been focused on the exploration of Mars, the most imminent planetary target. However, as an emerging technology with high miniaturization potential, Raman spectroscopy also represents a promising tool for the exploration of Europa. In this study, the capabilities of Raman technology in terms of life detection on Europa are explored and assessed. Spectra of biosignatures identified as high priority molecular targets for life detection on Europa were acquired at various excitation wavelengths and conditions analogous to Europa. The effects of extremely low temperatures and low concentrations in water ice were explored and evaluated in terms of the effectiveness of various configurations of Raman instruments. Based on the findings, a design of a miniaturized Raman instrument optimized for in-situ detection of life on Europa is proposed.

Keywords: astrobiology, biosignatures, Europa, life detection, Raman Spectroscopy

Procedia PDF Downloads 210
4518 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms

Authors: Mohammad Besharatloo

Abstract:

Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.

Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree

Procedia PDF Downloads 91
4517 Fast Accurate Detection of Frequency Jumps Using Kalman Filter with Non Linear Improvements

Authors: Mahmoud E. Mohamed, Ahmed F. Shalash, Hanan A. Kamal

Abstract:

In communication systems, frequency jump is a serious problem caused by the oscillators used. Kalman filters are used to detect that jump, Despite the tradeoff between the noise level and the speed of the detection. In this paper, An improvement is introduced in the Kalman filter, Through a nonlinear change in the bandwidth of the filter. Simulation results show a considerable improvement in the filter speed with a very low noise level. Additionally, The effect on the response to false alarms is also presented and false alarm rate show improvement.

Keywords: Kalman filter, innovation, false detection, improvement

Procedia PDF Downloads 600
4516 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm

Authors: Sukhleen Kaur

Abstract:

In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.

Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper

Procedia PDF Downloads 413
4515 Aza-Flavanones as Small Molecule Inhibitors of MicroRNA-10b in MDA-MB-231 Breast Cancer Cells

Authors: Debasmita Mukhopadhyay, Manika Pal Bhadra

Abstract:

MiRNAs contribute to oncogenesis either as tumor suppressors or oncogenes. Hence, discovery of miRNA-based therapeutics are imperative to ameliorate cancer. Modulation of miRNA maturation is accomplished via several therapeutic agents, including small molecules and oligonucleotides. Due to the attractive pharmacokinetic properties of small molecules over oligonucleotides, we set to identify small molecule inhibitors of a metastasis-inducing microRNA. Cytotoxicity profile of aza-flavanone C1 was analyzed in a panel of breast cancer cells employing the NCI-60 screen protocols. Flow cytometry, immunofluorescence and western blotting of apoptotic or EMT markers were performed to analyze the effect of C1. A dual luciferase assay unequivocally suggested that C1 repressed endogenous miR-10b in MDA-MB-231 cells. A derivative of aza-flavanone C1 is shown as a strong inhibitor miR-10b. Blockade of miR-10b by C1 resulted in decreased expression of miR-10b targets in an aggressive breast cancer cell line model, MDA-MB-231. Abrogation of TWIST1, an EMT-inducing transcription factor also contributed to C1 mediated apoptosis. Moreover C1 exhibited a specific and selective down-regulation of miR-10b and did not function as a general inhibitor of miRNA biogenesis or other oncomiRs of breast carcinoma. Aza-flavanone congener C1 functions as a potent inhibitor of the metastasis-inducing microRNA, miR-10b. Our present study provides evidence for targeting metastasis-inducing microRNA, miR-10b with a derivative of Aza-flavanone. Better pharmacokinetic properties of small molecules place them as attractive agents compared to nucleic acids based therapies to target miRNA. Further work, in generating analogues based on aza-flavanone moieties will significantly improve the affinity of the small molecules to bind miR-10b. Finally, it is imperative to develop small molecules as novel miRNA-therapeutics in the fight against cancer.

Keywords: breast cancer, microRNA, metastasis, EMT

Procedia PDF Downloads 563
4514 Evaluation of Systemic Immune-Inflammation Index in Obese Children

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

A growing list of cancers might be influenced by obesity. Obesity is associated with an increased risk for the occurrence and development of some cancers. Inflammation can lead to cancer. It is one of the characteristic features of cancer and plays a critical role in cancer development. C-reactive protein (CRP) is under evaluation related to the new and simple prognostic factors in patients with metastatic renal cell cancer. Obesity can predict and promote systemic inflammation in healthy adults. BMI is correlated with hs-CRP. In this study, SII index and CRP values were evaluated in children with normal BMI and those within the range of different obesity grades to detect the tendency towards cancer in pediatric obesity. A total of one hundred and ninety-four children; thirty-five children with normal BMI, twenty overweight (OW), forty-seven obese (OB) and ninety-two morbid obese (MO) participated in the study. Age- and sex-matched groups were constituted using BMI-for age percentiles. Informed consent was obtained. Ethical Committee approval was taken. Weight, height, waist circumference (C), hip C, head C and neck C of the children were measured. The complete blood count test was performed. C-reactive protein analysis was performed. Statistical analyses were performed using SPSS. The degree for statistical significance was p≤0.05. SII index values were progressively increasing starting from normal weight (NW) to MO children. There is a statistically significant difference between NW and OB as well as MO children. No significant difference was observed between NW and OW children, however, a correlation was observed between NW and OW children. MO constitutes the only group, which exhibited a statistically significant correlation between SII index and CRP. Obesity-related bladder, kidney, cervical, liver, colorectal, endometrial cancers are still being investigated. Obesity, characterized as a chronic low-grade inflammation, is a crucial risk factor for colon cancer. Elevated childhood BMI values may be indicative of processes leading to cancer, initiated early in life. Prevention of childhood adiposity may decrease the cancer incidence in adults. To authors’ best knowledge, this study is the first to introduce SII index values during obesity of varying degrees of severity. It is suggested that this index seems to affect all stages of obesity with an increasing tendency and may point out the concomitant status of obesity and cancer starting from very early periods of life.

Keywords: children, C-reactive protein, systemic immune-inflammation index, obesity

Procedia PDF Downloads 176
4513 Refined Edge Detection Network

Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni

Abstract:

Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.

Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone

Procedia PDF Downloads 102
4512 Copper Chelation by 3-(Bromoacetyl) Coumarin Derivative Induced Apoptosis in Cancer Cells: Influence of Copper Chelation Strategy in Cancer Treatment

Authors: Saman Khan, Imrana Naseem

Abstract:

Copper is an essential trace element required for pro-angiogenic co-factors including vascular endothelial growth factor (VEGF). Elevated levels of copper are found in various types of cancer including prostrate, colon, breast, lung and liver for angiogensis and metastasis. Therefore, targeting copper via copper-specific chelators in cancer cells can be developed as effective anticancer treatment strategy. In continuation of our pursuit to design and synthesize copper chelators, herein we opted for a reaction to incorporate di-(2-picolyl) amine in 3-(bromoacetyl) coumarin (parent backbone) for the synthesis of complex 1. We evaluated lipid peroxidation, protein carbonylation, ROS generation, DNA damage and consequent apoptosis by complex 1 in exogenously added Cu(II) in human peripheral lymphocytes (simulate malignancy condition). Results showed that Cu(II)-complex 1 interaction leads to cell proliferation inhibition, apoptosis, ROS generation and DNA damage in human lymphocytes, and these effects were abrogated by cuprous chelator neocuproine and ROS scavengers (thiourea, catalase, SOD). This indicates that complex 1 cytotoxicity is due to redox cycling of copper to generate ROS which leads to pro-oxidant cell death in cancer cells. To further confirm our hypothesis, using the rat model of diethylnitrosamine (DEN) induced hepatocellular carcinoma; we showed that complex 1 mediates DNA breakage and cell death in isolated carcinoma cells. Membrane permeant copper chelator, neocuproine, and ROS scavengers inhibited the complex 1-mediated cellular DNA degradation and apoptosis. In summary, complex 1 anticancer activity is due to its copper chelation capability. These results will provide copper chelation as an effective targeted cancer treatment strategy for selective cytotoxic action against malignant cells without affecting normal cells.

Keywords: cancer treatment, copper chelation, ROS generation, DNA damage, redox cycling, apoptosis

Procedia PDF Downloads 290
4511 Induction Machine Bearing Failure Detection Using Advanced Signal Processing Methods

Authors: Abdelghani Chahmi

Abstract:

This article examines the detection and localization of faults in electrical systems, particularly those using asynchronous machines. First, the process of failure will be characterized, relevant symptoms will be defined and based on those processes and symptoms, a model of those malfunctions will be obtained. Second, the development of the diagnosis of the machine will be shown. As studies of malfunctions in electrical systems could only rely on a small amount of experimental data, it has been essential to provide ourselves with simulation tools which allowed us to characterize the faulty behavior. Fault detection uses signal processing techniques in known operating phases.

Keywords: induction motor, modeling, bearing damage, airgap eccentricity, torque variation

Procedia PDF Downloads 138