Effective Texture Features for Segmented Mammogram Images Based on Multi-Region of Interest Segmentation Method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 87765
Effective Texture Features for Segmented Mammogram Images Based on Multi-Region of Interest Segmentation Method

Authors: Ramayanam Suresh, A. Nagaraja Rao, B. Eswara Reddy

Abstract:

Texture features of mammogram images are useful for finding masses or cancer cases in mammography, which have been used by radiologists. Textures are greatly succeeded for segmented images rather than normal images. It is necessary to perform segmentation for exclusive specification of cancer and non-cancer regions separately. Region of interest (ROI) is most commonly used technique for mammogram segmentation. Limitation of this method is that it is unable to explore segmentation for large collection of mammogram images. Therefore, this paper is proposed multi-ROI segmentation for addressing the above limitation. It supports greatly in finding the best texture features of mammogram images. Experimental study demonstrates the effectiveness of proposed work using benchmarked images.

Keywords: texture features, region of interest, multi-ROI segmentation, benchmarked images

Procedia PDF Downloads 313