Search results for: automatic emergency braking system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18763

Search results for: automatic emergency braking system

17983 Risk Factors Associated with Increased Emergency Department Visits and Hospital Admissions Among Child and Adolescent Patients

Authors: Lalanthica Yogendran, Manassa Hany, Saira Pasha, Benjamin Chaucer, Simarpreet Kaur, Christopher Janusz

Abstract:

Children and adolescent patients visit the Psychiatric Emergency Department (ED) for multiple reasons. Visiting the Psychiatric ED itself can be a traumatic experience that can affect an adolescents mental well-being, regardless of a history of mental illness. Despite this, limited research exists in this domain. Prospective studies have correlated adverse psychosocial determinants among adolescents to risk factors for poor well-being and unfavorable behavior outcomes. Studies have also shown that physiological stress is a contributor in the development of health problems and an increase in substance abuse in adolescents. This study aimed to retrospectively determine which psychosocial factors are associated with an increase in psychiatric ED visits. 600 charts of patients who had a psychiatric ED and inpatient admission visit from January 2014 through December 2014 were reviewed. Sociodemographics, diagnoses, ED visits and inpatient admissions were collected. Descriptive statistics, chi-square tests and independent t-test analyses were utilized to examine differences in the sample to determine which factors affected ED visits and admissions. The sample was 50% female, 35.2% self-identified black, and had a mean age of 13 years. The majority, 85%, went to public school and 17% were in special education. Attention Deficit Hyperactivity Disorder was the most common admitting diagnosis, found in 132(23%) responders. Most patients came from single parent household 305 (53%). The mean ages of patients that were sexually active, with legal issues, and reporting marijuana substance abuse were 15, 14.35, and 15 years respectively. Patients from two biological parent households had significantly fewer ED visits (1.2 vs. 1.7, p < 0.01) and admissions (0.09 vs. 0.26, p < 0.01). Among social factors, those who reported sexual, physical or emotional abuse had a significantly greater number of ED visits (2.1 vs. 1.5, p < 0.01) and admissions (0.61 vs. 0.14, p < 0.01) than those who did not. Patients that were sexually active or had legal issues or substance abuse with marijuana had a significantly greater number of admissions (0.43 vs. 0.17, p < 0.01), (0.54 vs. .18, p < 0.01) and (0.46 vs. 0.18, p < 0.01) respectively. This data supports the theory of the stability of a two parent home. Dual parenting plays a role in creating a safe space where a child can develop; this is shown by subsequent decreases in psychiatric ED visits and admissions. This may highlight the psychological protective role of a two parent household. Abuse can exacerbate existing psychiatric illness or initiate the onset of new disease. Substance abuse and legal issues result in early induction to the criminal system. Results show that this causes an increase in frequency of visits and severity of symptoms. Only marijuana, but not other illicit substances, correlated with higher incidence of psychiatric ED visits. This may speak to the psychotropic nature of tetrahydrocannabinols and their role in mental illness. This study demonstrates the array of psychosocial factors that lead to increased ED visits and admissions in children and adolescents.

Keywords: adolescent, child psychiatry, emergency department, substance abuse

Procedia PDF Downloads 332
17982 Automatic Fluid-Structure Interaction Modeling and Analysis of Butterfly Valve Using Python Script

Authors: N. Guru Prasath, Sangjin Ma, Chang-Wan Kim

Abstract:

A butterfly valve is a quarter turn valve which is used to control the flow of a fluid through a section of pipe. Generally, butterfly valve is used in wide range of applications such as water distribution, sewage, oil and gas plants. In particular, butterfly valve with larger diameter finds its immense applications in hydro power plants to control the fluid flow. In-lieu with the constraints in cost and size to run laboratory setup, analysis of large diameter values will be mostly studied by computational method which is the best and inexpensive solution. For fluid and structural analysis, CFD and FEM software is used to perform large scale valve analyses, respectively. In order to perform above analysis in butterfly valve, the CAD model has to recreate and perform mesh in conventional software’s for various dimensions of valve. Therefore, its limitation is time consuming process. In-order to overcome that issue, python code was created to outcome complete pre-processing setup automatically in Salome software. Applying dimensions of the model clearly in the python code makes the running time comparatively lower and easier way to perform analysis of the valve. Hence, in this paper, an attempt was made to study the fluid-structure interaction (FSI) of butterfly valves by varying the valve angles and dimensions using python code in pre-processing software, and results are produced.

Keywords: butterfly valve, flow coefficient, automatic CFD analysis, FSI analysis

Procedia PDF Downloads 239
17981 Design of a Small Mobile PV Driven RO Water Desalination Plant to be Deployed at the North West Coast of Egypt

Authors: Hosam A. Shawky, Amr A. Abdel Fatah, Moustafa M. S. Abo ElFad, Abdel Hameed M. El-Aassar

Abstract:

Water desalination projects based on reverse osmosis technology are being introduced in Egypt to combat drinking water shortage in remote areas. Reverse osmosis (RO) desalination is a pressure driven process. This paper focuses on the design of an integrated brackish water and seawater RO desalination and solar Photovoltaic (PV) technology. A small Mobile PV driven RO desalination plant prototype without batteries is designed and tested. Solar-driven reverse osmosis desalination can potentially break the dependence of conventional desalination on fossil fuels, reduce operational costs, and improve environmental sustainability. Moreover, the innovative features incorporated in the newly designed PV-RO plant prototype are focusing on improving the cost effectiveness of producing drinkable water in remote areas. This is achieved by maximizing energy yield through an integrated automatic single axis PV tracking system with programmed tilting angle adjustment. An autonomous cleaning system for PV modules is adopted for maximizing energy generation efficiency. RO plant components are selected so as to produce 4-5 m3/day of potable water. A basic criterion in the design of this PV-RO prototype is to produce a minimum amount of fresh water by running the plant during peak sun hours. Mobility of the system will provide potable water to isolated villages and population as well as ability to provide good drinking water to different number of people from any source that is not drinkable.

Keywords: design, reverse osmosis, photovoltaic, energy, desalination, Egypt

Procedia PDF Downloads 570
17980 A System Functions Set-Up through Near Field Communication of a Smartphone

Authors: Jaemyoung Lee

Abstract:

We present a method to set up system functions through a near filed communication (NFC) of a smartphone. The short communication distance of the NFC which is usually less than 4 cm could prevent any interferences from other devices and establish a secure communication channel between a system and the smartphone. The proposed set-up method for system function values is demonstrated for a blacbox system in a car. In demonstration, system functions of a blackbox which is manipulated through NFC of a smartphone are controls of image quality, sound level, shock sensing level to store images, etc. The proposed set-up method for system function values can be used for any devices with NFC.

Keywords: system set-up, near field communication, smartphone, android

Procedia PDF Downloads 335
17979 The Effect of Disseminating Basic Knowledge on Radiation in Emergency Distance Learning of COVID-19

Authors: Satoko Yamasaki, Hiromi Kawasaki, Kotomi Yamashita, Susumu Fukita, Kei Sounai

Abstract:

People are susceptible to rumors when the cause of their health problems is unknown or invisible. In order for individuals to be unaffected by rumors, they need basic knowledge and correct information. Community health nursing classes use cases where basic knowledge of radiation can be utilized on a regular basis, thereby teaching that basic knowledge is important in preventing anxiety caused by rumors. Nursing students need to learn that preventive activities are essential for public health nursing care. This is the same methodology used to reduce COVID-19 anxiety among individuals. This study verifies the learning effect concerning the basic knowledge of radiation necessary for case consultation by emergency distance learning. Sixty third-year nursing college students agreed to participate in this research. The knowledge tests conducted before and after classes were compared, with the chi-square test used for testing. There were five knowledge questions regarding distance lessons. This was considered to be 5% significant. The students’ reports which describe the results of responding to health consultations, were analyzed qualitatively and descriptively. In this case study, a person living in an area not affected by radiation was anxious about drinking water and, thus, consulted with a student. The contents of the lecture were selected the minimum amount of knowledge used for the answers of the consultant; specifically hot spots, internal exposure risk, food safety, characteristics of cesium-137, and precautions for counselors. Before taking the class, the most correctly answered question by students concerned daily behavior at risk of internal exposure (52.2%). The question with the fewest correct answers was the selection of places that are likely to be hot spots (3.4%). All responses increased significantly after taking the class (p < 0.001). The answers to the counselors, as written by the students, were 'Cesium is strongly bound to the soil, so it is difficult to transfer to water' and 'Water quality test results of tap water are posted on the city's website.' These were concrete answers obtained by using specialized knowledge. Even in emergency distance learning, the students gained basic knowledge regarding radiation and created a document to utilize said knowledge while assuming the situation concretely. It was thought that the flipped classroom method, even if conducted remotely, could maintain students' learning. It was thought that setting specific knowledge and scenes to be used would enhance the learning effect. By changing the case to concern that of the anxiety caused by infectious diseases, students may be able to effectively gain the basic knowledge to decrease the anxiety of residents due to infectious diseases.

Keywords: effect of class, emergency distance learning, nursing student, radiation

Procedia PDF Downloads 113
17978 Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method

Authors: Shiyin He, Zheng Huang

Abstract:

In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable.

Keywords: cell detection, cell recognition, deep learning, Mask-RCNN, ResNet

Procedia PDF Downloads 186
17977 Enhance Engineering Learning Using Cognitive Simulator

Authors: Lior Davidovitch

Abstract:

Traditional training based on static models and case studies is the backbone of most teaching and training programs of engineering education. However, project management learning is characterized by dynamics models that requires new and enhanced learning method. The results of empirical experiments evaluating the effectiveness and efficiency of using cognitive simulator as a new training technique are reported. The empirical findings are focused on the impact of keeping and reviewing learning history in a dynamic and interactive simulation environment of engineering education. The cognitive simulator for engineering project management learning had two learning history keeping modes: manual (student-controlled), automatic (simulator-controlled) and a version with no history keeping. A group of industrial engineering students performed four simulation-runs divided into three identical simple scenarios and one complicated scenario. The performances of participants running the simulation with the manual history mode were significantly better than users running the simulation with the automatic history mode. Moreover, the effects of using the undo enhanced further the learning process. The findings indicate an enhancement of engineering students’ learning and decision making when they use the record functionality of the history during their engineering training process. Furthermore, the cognitive simulator as educational innovation improves students learning and training. The practical implications of using simulators in the field of engineering education are discussed.

Keywords: cognitive simulator, decision making, engineering learning, project management

Procedia PDF Downloads 247
17976 Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain

Authors: Suhadiyana Hanapi, Alhassan Salami Tijani, W. A. N Wan Mohamed

Abstract:

In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.

Keywords: prototype fuel cell electric vehicles, energy efficient, control/driving technique, fuel economy

Procedia PDF Downloads 439
17975 Analyzing Safety Incidents using the Fatigue Risk Index Calculator as an Indicator of Fatigue within a UK Rail Franchise

Authors: Michael Scott Evans, Andrew Smith

Abstract:

The feeling of fatigue at work could potentially have devastating consequences. The aim of this study was to investigate whether the well-established objective indicator of fatigue – the Fatigue Risk Index (FRI) calculator used by the rail industry is an effective indicator to the number of safety incidents, in which fatigue could have been a contributing factor. The study received ethics approval from Cardiff University’s Ethics Committee (EC.16.06.14.4547). A total of 901 safety incidents were recorded from a single British rail franchise between 1st June 2010 – 31st December 2016, into the Safety Management Information System (SMIS). The safety incident types identified that fatigue could have been a contributing factor were: Signal Passed at Danger (SPAD), Train Protection & Warning System (TPWS) activation, Automatic Warning System (AWS) slow to cancel, failed to call, and station overrun. From the 901 recorded safety incidents, the scheduling system CrewPlan was used to extract the Fatigue Index (FI) score and Risk Index (RI) score of all train drivers on the day of the safety incident. Only the working rosters of 64.2% (N = 578) (550 men and 28 female) ranging in age from 24 – 65 years old (M = 47.13, SD = 7.30) were accessible for analyses. Analysis from all 578 train drivers who were involved in safety incidents revealed that 99.8% (N = 577) of Fatigue Index (FI) scores fell within or below the identified guideline threshold of 45 as well as 97.9% (N = 566) of Risk Index (RI) scores falling below the 1.6 threshold range. Their scores represent good practice within the rail industry. These findings seem to indicate that the current objective indicator, i.e. the FRI calculator used in this study by the British rail franchise was not an effective predictor of train driver’s FI scores and RI scores, as safety incidents in which fatigue could have been a contributing factor represented only 0.2% of FI scores and 2.1% of RI scores. Further research is needed to determine whether there are other contributing factors that could provide a better indication as to why there is such a significantly large proportion of train drivers who are involved in safety incidents, in which fatigue could have been a contributing factor have such low FI and RI scores.

Keywords: fatigue risk index calculator, objective indicator of fatigue, rail industry, safety incident

Procedia PDF Downloads 180
17974 QSAR Modeling of Germination Activity of a Series of 5-(4-Substituent-Phenoxy)-3-Methylfuran-2(5H)-One Derivatives with Potential of Strigolactone Mimics toward Striga hermonthica

Authors: Strahinja Kovačević, Sanja Podunavac-Kuzmanović, Lidija Jevrić, Cristina Prandi, Piermichele Kobauri

Abstract:

The present study is based on molecular modeling of a series of twelve 5-(4-substituent-phenoxy)-3-methylfuran-2(5H)-one derivatives which have potential of strigolactones mimics toward Striga hermonthica. The first step of the analysis included the calculation of molecular descriptors which numerically describe the structures of the analyzed compounds. The descriptors ALOGP (lipophilicity), AClogS (water solubility) and BBB (blood-brain barrier penetration), served as the input variables in multiple linear regression (MLR) modeling of germination activity toward S. hermonthica. Two MLR models were obtained. The first MLR model contains ALOGP and AClogS descriptors, while the second one is based on these two descriptors plus BBB descriptor. Despite the braking Topliss-Costello rule in the second MLR model, it has much better statistical and cross-validation characteristics than the first one. The ALOGP and AClogS descriptors are often very suitable predictors of the biological activity of many compounds. They are very important descriptors of the biological behavior and availability of a compound in any biological system (i.e. the ability to pass through the cell membranes). BBB descriptor defines the ability of a molecule to pass through the blood-brain barrier. Besides the lipophilicity of a compound, this descriptor carries the information of the molecular bulkiness (its value strongly depends on molecular bulkiness). According to the obtained results of MLR modeling, these three descriptors are considered as very good predictors of germination activity of the analyzed compounds toward S. hermonthica seeds. This article is based upon work from COST Action (FA1206), supported by COST (European Cooperation in Science and Technology).

Keywords: chemometrics, germination activity, molecular modeling, QSAR analysis, strigolactones

Procedia PDF Downloads 284
17973 Video Object Segmentation for Automatic Image Annotation of Ethernet Connectors with Environment Mapping and 3D Projection

Authors: Marrone Silverio Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner, Djamel Fawzi Hadj Sadok

Abstract:

The creation of a dataset is time-consuming and often discourages researchers from pursuing their goals. To overcome this problem, we present and discuss two solutions adopted for the automation of this process. Both optimize valuable user time and resources and support video object segmentation with object tracking and 3D projection. In our scenario, we acquire images from a moving robotic arm and, for each approach, generate distinct annotated datasets. We evaluated the precision of the annotations by comparing these with a manually annotated dataset, as well as the efficiency in the context of detection and classification problems. For detection support, we used YOLO and obtained for the projection dataset an F1-Score, accuracy, and mAP values of 0.846, 0.924, and 0.875, respectively. Concerning the tracking dataset, we achieved an F1-Score of 0.861, an accuracy of 0.932, whereas mAP reached 0.894. In order to evaluate the quality of the annotated images used for classification problems, we employed deep learning architectures. We adopted metrics accuracy and F1-Score, for VGG, DenseNet, MobileNet, Inception, and ResNet. The VGG architecture outperformed the others for both projection and tracking datasets. It reached an accuracy and F1-score of 0.997 and 0.993, respectively. Similarly, for the tracking dataset, it achieved an accuracy of 0.991 and an F1-Score of 0.981.

Keywords: RJ45, automatic annotation, object tracking, 3D projection

Procedia PDF Downloads 166
17972 Seashore Debris Detection System Using Deep Learning and Histogram of Gradients-Extractor Based Instance Segmentation Model

Authors: Anshika Kankane, Dongshik Kang

Abstract:

Marine debris has a significant influence on coastal environments, damaging biodiversity, and causing loss and damage to marine and ocean sector. A functional cost-effective and automatic approach has been used to look up at this problem. Computer vision combined with a deep learning-based model is being proposed to identify and categorize marine debris of seven kinds on different beach locations of Japan. This research compares state-of-the-art deep learning models with a suggested model architecture that is utilized as a feature extractor for debris categorization. The model is being proposed to detect seven categories of litter using a manually constructed debris dataset, with the help of Mask R-CNN for instance segmentation and a shape matching network called HOGShape, which can then be cleaned on time by clean-up organizations using warning notifications of the system. The manually constructed dataset for this system is created by annotating the images taken by fixed KaKaXi camera using CVAT annotation tool with seven kinds of category labels. A pre-trained HOG feature extractor on LIBSVM is being used along with multiple templates matching on HOG maps of images and HOG maps of templates to improve the predicted masked images obtained via Mask R-CNN training. This system intends to timely alert the cleanup organizations with the warning notifications using live recorded beach debris data. The suggested network results in the improvement of misclassified debris masks of debris objects with different illuminations, shapes, viewpoints and litter with occlusions which have vague visibility.

Keywords: computer vision, debris, deep learning, fixed live camera images, histogram of gradients feature extractor, instance segmentation, manually annotated dataset, multiple template matching

Procedia PDF Downloads 104
17971 Segmentation of Korean Words on Korean Road Signs

Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon

Abstract:

This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.

Keywords: segmentation, road signs, characters, classification

Procedia PDF Downloads 442
17970 Automatic Seizure Detection Using Weighted Permutation Entropy and Support Vector Machine

Authors: Noha Seddik, Sherine Youssef, Mohamed Kholeif

Abstract:

The automated epileptic seizure detection research field has emerged in the recent years; this involves analyzing the Electroencephalogram (EEG) signals instead of the traditional visual inspection performed by expert neurologists. In this study, a Support Vector Machine (SVM) that uses Weighted Permutation Entropy (WPE) as the input feature is proposed for classifying normal and seizure EEG records. WPE is a modified statistical parameter of the permutation entropy (PE) that measures the complexity and irregularity of a time series. It incorporates both the mapped ordinal pattern of the time series and the information contained in the amplitude of its sample points. The proposed system utilizes the fact that entropy based measures for the EEG segments during epileptic seizure are lower than in normal EEG.

Keywords: electroencephalogram (EEG), epileptic seizure detection, weighted permutation entropy (WPE), support vector machine (SVM)

Procedia PDF Downloads 366
17969 Functional Specifications of Diesel Electric Locomotives

Authors: Rohan Sarker, Cory Smith

Abstract:

ROMIC Group UK is a leading provider of diesel electric locomotives, specializing in innovative and efficient solutions for rail transportation. With a strong focus on sustainability and performance, ROMIC's diesel electric locomotives are engineered to reduce fuel consumption while maximizing operational efficiency. The company's locomotives incorporate advanced technologies such as regenerative braking systems and precision control software, which enhance fuel economy and minimize environmental impact. ROMIC's extensive experience in the rail sector enables it to deliver reliable and powerful locomotives that meet the demands of both freight and passenger services. These locomotives are designed for heavy-duty applications, offering superior traction and load-carrying capacity across various terrains. The company's commitment to cutting-edge engineering and customer satisfaction ensures that its locomotives are a trusted choice for rail operators looking for high performance and low operational costs. ROMIC Group UK continues to drive innovation in the rail industry with its sustainable locomotive solutions.

Keywords: diesel, electric, engines, locomotives

Procedia PDF Downloads 16
17968 Steady State Analysis of Distribution System with Wind Generation Uncertainity

Authors: Zakir Husain, Neem Sagar, Neeraj Gupta

Abstract:

Due to the increased penetration of renewable energy resources in the distribution system, the system is no longer passive in nature. In this paper, a steady state analysis of the distribution system has been done with the inclusion of wind generation. The modeling of wind turbine generator system and wind generator has been made to obtain the average active and the reactive power injection into the system. The study has been conducted on a IEEE-33 bus system with two wind generators. The present research work is useful not only to utilities but also to customers.

Keywords: distributed generation, distribution network, radial network, wind turbine generating system

Procedia PDF Downloads 403
17967 Association of Post-Traumatic Stress Disorder with Work Performance amongst Emergency Medical Service Personnel, Karachi, Pakistan

Authors: Salima Kerai, Muhammad Islam, Uzma Khan, Nargis Asad, Junaid Razzak, Omrana Pasha

Abstract:

Background: Pre-hospital care providers are exposed to various kinds of stressors. Their daily exposure to diverse critical and traumatic incidents can lead to stress reactions like Post-Traumatic Stress Disorder (PTSD). Consequences of PTSD in terms of work loss can be catastrophic because of its compound effect on families, which affect them economically, socially and emotionally. Therefore, it is critical to assess the association between PTSD and Work performance in Emergency Medical Service (EMS) if exist any. Methods: This prospective observational study was carried out at AMAN EMS in Karachi, Pakistan. EMS personnel were screened for potential PTSD using impact of event scale-revised (IES-R). Work performance was assessed on basis of five variables; number of late arrivals to work, number of days absent, number of days sick, adherence to protocol and patient satisfaction survey over the period of 3 months. In order to model outcomes like number of late arrivals to work, days absent and days late; negative binomial regression was used whereas logistic regression was applied for adherence to protocol and linear for patient satisfaction scores. Results: Out of 536 EMS personnel, 525 were found to be eligible, of them 518 consented. However data on 507 were included because 7 left the job during study period. The mean score of PTSD was found to be 24.0 ± 12.2. However, weak and insignificant association was found between PTSD and work performance measures: number of late arrivals (RRadj 0.99; 95% CI 0.98-1.00), days absent (RRadj 0.98; 95% CI 0.96-0.99), days sick (Rradj 0.99; 95% CI 0.98 to 1.00), adherence to protocol (ORadj 1.01: 95% CI 0.99 to 1.04) and patient satisfaction (0.001% score; 95% CI -0.03% to 0.03%). Conclusion: No association was found between PTSD and Work performance in the selected EMS population in Karachi Pakistan. Further studies are needed to explore the phenomenon of resiliency in these populations. Moreover, qualitative work is required to explore perceptions and feelings like willingness to go to work, readiness to carry out job responsibilities.

Keywords: trauma, emergency medical service, stress, pakistan

Procedia PDF Downloads 334
17966 Vehicular Speed Detection Camera System Using Video Stream

Authors: C. A. Anser Pasha

Abstract:

In this paper, a new Vehicular Speed Detection Camera System that is applicable as an alternative to traditional radars with the same accuracy or even better is presented. The real-time measurement and analysis of various traffic parameters such as speed and number of vehicles are increasingly required in traffic control and management. Image processing techniques are now considered as an attractive and flexible method for automatic analysis and data collections in traffic engineering. Various algorithms based on image processing techniques have been applied to detect multiple vehicles and track them. The SDCS processes can be divided into three successive phases; the first phase is Objects detection phase, which uses a hybrid algorithm based on combining an adaptive background subtraction technique with a three-frame differencing algorithm which ratifies the major drawback of using only adaptive background subtraction. The second phase is Objects tracking, which consists of three successive operations - object segmentation, object labeling, and object center extraction. Objects tracking operation takes into consideration the different possible scenarios of the moving object like simple tracking, the object has left the scene, the object has entered the scene, object crossed by another object, and object leaves and another one enters the scene. The third phase is speed calculation phase, which is calculated from the number of frames consumed by the object to pass by the scene.

Keywords: radar, image processing, detection, tracking, segmentation

Procedia PDF Downloads 466
17965 Use of a Relief Mobile Unit in the Humanitarian Cause

Authors: Stephani Ferreira da Silva Manso, Regina M. M. Dias Chiquetano

Abstract:

This article aims to present a research on one of the main aspects of response in humanitarian causes: agility of operations. Brazil is among the 10 countries with the highest number of people affected by disasters.The main types of disasters in Brazil include floods and mass movements. Focusing on a nongovernmental organization that began in the conflicts of First and Second World Wars, arriving in Brazil in 1984. In 2017, the organization has activated their emergency response mobile unit to reach families following flooding that affected around 9,000 people. In partnership with Truckvan, the mobile unit, has 45 m² of floor space and is divided into three compartments each designed to meet the main needs of the population: the first will be used to prepare hot meals, the second to washing and drying of clothes, and the third for the accomplishment of psychological support. This option will be available for situations where there are more than one thousand victims who are sheltered, even temporarily, and demand immediate care, which will be identified through the National Emergency Plan. In this way, the actions that were already done as donation of blankets, clothes, hygiene kits, among others, will be enhanced. Studies show that one of the biggest difficulties in responding to the disaster is in the first few hours after the disaster. This study aimed to show the organization's innovative results and to propose improvement actions in transportation focused on humanitarian aid as the concepts developed in the manufacture and adaptation of the mobile unit to the rescue environment. Thus, the principles of this humanitarian aid bus are very effective.

Keywords: disasters, humanitarian cause, relief, unit mobile

Procedia PDF Downloads 189
17964 Smart Alert System for Dangerous Bend

Authors: Sathapath Kilaso

Abstract:

Thailand has a large range of geographic diversity. Thailand can be divided into 5 regions which are North Region, East Region, West Region, South Region and North-East Region which each region has a different geographic and climate. Especially in North Region, the geographic is mountain and intermontane plateau which will be a reason that the roads in the North Region have a lot of bends. So the driver in the North Region road will have to have a very high skill of driving. If the accident is occurred, the emergency rescue will have a hard time to reach the accident area and rescue the victim of the accident as the long distance and steep road. This article will apply the concept of the wireless sensor network with the micro-controller to alert the driver when the driver reaches the very dangerous bend.

Keywords: wireless sensor network, motion sensor, smart alert, dangerous bend

Procedia PDF Downloads 274
17963 In-Context Meta Learning for Automatic Designing Pretext Tasks for Self-Supervised Image Analysis

Authors: Toktam Khatibi

Abstract:

Self-supervised learning (SSL) includes machine learning models that are trained on one aspect and/or one part of the input to learn other aspects and/or part of it. SSL models are divided into two different categories, including pre-text task-based models and contrastive learning ones. Pre-text tasks are some auxiliary tasks learning pseudo-labels, and the trained models are further fine-tuned for downstream tasks. However, one important disadvantage of SSL using pre-text task solving is defining an appropriate pre-text task for each image dataset with a variety of image modalities. Therefore, it is required to design an appropriate pretext task automatically for each dataset and each downstream task. To the best of our knowledge, the automatic designing of pretext tasks for image analysis has not been considered yet. In this paper, we present a framework based on In-context learning that describes each task based on its input and output data using a pre-trained image transformer. Our proposed method combines the input image and its learned description for optimizing the pre-text task design and its hyper-parameters using Meta-learning models. The representations learned from the pre-text tasks are fine-tuned for solving the downstream tasks. We demonstrate that our proposed framework outperforms the compared ones on unseen tasks and image modalities in addition to its superior performance for previously known tasks and datasets.

Keywords: in-context learning (ICL), meta learning, self-supervised learning (SSL), vision-language domain, transformers

Procedia PDF Downloads 78
17962 Tool for Maxillary Sinus Quantification in Computed Tomography Exams

Authors: Guilherme Giacomini, Ana Luiza Menegatti Pavan, Allan Felipe Fattori Alves, Marcela de Oliveira, Fernando Antonio Bacchim Neto, José Ricardo de Arruda Miranda, Seizo Yamashita, Diana Rodrigues de Pina

Abstract:

The maxillary sinus (MS), part of the paranasal sinus complex, is one of the most enigmatic structures in modern humans. The literature has suggested that MSs function as olfaction accessories, to heat or humidify inspired air, for thermoregulation, to impart resonance to the voice and others. Thus, the real function of the MS is still uncertain. Furthermore, the MS anatomy is complex and varies from person to person. Many diseases may affect the development process of sinuses. The incidence of rhinosinusitis and other pathoses in the MS is comparatively high, so, volume analysis has clinical value. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure, which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust, and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression, and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to quantify MS volume proved to be robust, fast, and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to automatically quantify MS volume proved to be robust, fast and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases.

Keywords: maxillary sinus, support vector machine, region growing, volume quantification

Procedia PDF Downloads 503
17961 Policy Views of Sustainable Integrated Solution for Increased Synergy between Light Railways and Electrical Distribution Network

Authors: Mansoureh Zangiabadi, Shamil Velji, Rajendra Kelkar, Neal Wade, Volker Pickert

Abstract:

The EU has set itself a long-term goal of reducing greenhouse gas emissions by 80-95% of the 1990 levels by 2050 as set in the Energy Roadmap 2050. This paper reports on the European Union H2020 funded E-Lobster project which demonstrates tools and technologies, software and hardware in integrating the grid distribution, and the railway power systems with power electronics technologies (Smart Soft Open Point - sSOP) and local energy storage. In this context this paper describes the existing policies and regulatory frameworks of the energy market at European level with a special focus then at National level, on the countries where the members of the consortium are located, and where the demonstration activities will be implemented. By taking into account the disciplinary approach of E-Lobster, the main policy areas investigated includes electricity, energy market, energy efficiency, transport and smart cities. Energy storage will play a key role in enabling the EU to develop a low-carbon electricity system. In recent years, Energy Storage System (ESSs) are gaining importance due to emerging applications, especially electrification of the transportation sector and grid integration of volatile renewables. The need for storage systems led to ESS technologies performance improvements and significant price decline. This allows for opening a new market where ESSs can be a reliable and economical solution. One such emerging market for ESS is R+G management which will be investigated and demonstrated within E-Lobster project. The surplus of energy in one type of power system (e.g., due to metro braking) might be directly transferred to the other power system (or vice versa). However, it would usually happen at unfavourable instances when the recipient does not need additional power. Thus, the role of ESS is to enhance advantages coming from interconnection of the railway power systems and distribution grids by offering additional energy buffer. Consequently, the surplus/deficit of energy in, e.g. railway power systems, is not to be immediately transferred to/from the distribution grid but it could be stored and used when it is really needed. This will assure better energy management exchange between the railway power systems and distribution grids and lead to more efficient loss reduction. In this framework, to identify the existing policies and regulatory frameworks is crucial for the project activities and for the future development of business models for the E-Lobster solutions. The projections carried out by the European Commission, the Member States and stakeholders and their analysis indicated some trends, challenges, opportunities and structural changes needed to design the policy measures to provide the appropriate framework for investors. This study will be used as reference for the discussion in the envisaged workshops with stakeholders (DSOs and Transport Managers) in the E-Lobster project.

Keywords: light railway, electrical distribution network, Electrical Energy Storage, policy

Procedia PDF Downloads 134
17960 Way to Successful Enterprise Resource Planning System Implementation in Developing Countries: Case of Public Sector Unit

Authors: Suraj Kumar Mukti

Abstract:

Enterprise Resource Planning (ERP) system is a management tool to integrate all departments in an organization. It integrates business processes, manages resources efficiently and provides an appropriate decision support system to management. ERP system implementation is a typical and time taking process as well as money consuming process. Articles related to key success factors of ERP system implementation are available in the literature, but rare authors have focused on roadmap of successful ERP system implementation. Postponement is better if the organization is not ready to implement ERP system in better way; hence checking of organization’s preparation to adopt new system is an important prerequisite to ensure the success of ERP system implementation in an organization. Then comes what will be called as success of ERP system implementation. Benefits achieved by ERP system may be categorized into two categories; viz. tangible and intangible benefits. This research article presents a roadmap to ensure the success of ERP system implementation and benefits achieved through the new system as in success indicator. A case study is presented to evaluate the success and benefit achieved through the new system. The article gives a comprehensive approach to academicians and a roadmap to the organizations seeking to implement the ERP system.

Keywords: ERP system, decision support system, tangible, intangible

Procedia PDF Downloads 331
17959 Structural Analysis of Hydro-Turbine Spiral Casing and Stay Ring Using Ansys

Authors: Surjit Angra, Pooja Rani, Vinod Kumar

Abstract:

In hydro power plant spiral casing and Stay ring is meant to guide the water flow to guide vane and runner. Spiral casing and Stay ring is subjected to static i.e. pressure load as well as fluctuating load acting on the structure due to water hammer effect in water conductor system. Finite element method has been used to calculate stresses on spiral casing and stay ring. These calculations were done for the maximum possible loading under operating condition "LC1 Quick Shut Down”. The design load is reached for the spiral casing and stay ring during the emergency closure of the guide apparatus "LC1 Quick Shut Down”. During this operation the forces from the head cover to the stay ring also reach their maximum.

Keywords: hydro-turbine, spiral casing, stay ring, structural analysis

Procedia PDF Downloads 514
17958 Detection of Powdery Mildew Disease in Strawberry Using Image Texture and Supervised Classifiers

Authors: Sultan Mahmud, Qamar Zaman, Travis Esau, Young Chang

Abstract:

Strawberry powdery mildew (PM) is a serious disease that has a significant impact on strawberry production. Field scouting is still a major way to find PM disease, which is not only labor intensive but also almost impossible to monitor disease severity. To reduce the loss caused by PM disease and achieve faster automatic detection of the disease, this paper proposes an approach for detection of the disease, based on image texture and classified with support vector machines (SVMs) and k-nearest neighbors (kNNs). The methodology of the proposed study is based on image processing which is composed of five main steps including image acquisition, pre-processing, segmentation, features extraction and classification. Two strawberry fields were used in this study. Images of healthy leaves and leaves infected with PM (Sphaerotheca macularis) disease under artificial cloud lighting condition. Colour thresholding was utilized to segment all images before textural analysis. Colour co-occurrence matrix (CCM) was introduced for extraction of textural features. Forty textural features, related to a physiological parameter of leaves were extracted from CCM of National television system committee (NTSC) luminance, hue, saturation and intensity (HSI) images. The normalized feature data were utilized for training and validation, respectively, using developed classifiers. The classifiers have experimented with internal, external and cross-validations. The best classifier was selected based on their performance and accuracy. Experimental results suggested that SVMs classifier showed 98.33%, 85.33%, 87.33%, 93.33% and 95.0% of accuracy on internal, external-I, external-II, 4-fold cross and 5-fold cross-validation, respectively. Whereas, kNNs results represented 90.0%, 72.00%, 74.66%, 89.33% and 90.3% of classification accuracy, respectively. The outcome of this study demonstrated that SVMs classified PM disease with a highest overall accuracy of 91.86% and 1.1211 seconds of processing time. Therefore, overall results concluded that the proposed study can significantly support an accurate and automatic identification and recognition of strawberry PM disease with SVMs classifier.

Keywords: powdery mildew, image processing, textural analysis, color co-occurrence matrix, support vector machines, k-nearest neighbors

Procedia PDF Downloads 120
17957 Lateral Control of Electric Vehicle Based on Fuzzy Logic Control

Authors: Hartani Kada, Merah Abdelkader

Abstract:

Aiming at the high nonlinearities and unmatched uncertainties of the intelligent electric vehicles’ dynamic system, this paper presents a lateral motion control algorithm for intelligent electric vehicles with four in-wheel motors. A fuzzy logic procedure is presented and formulated to realize lateral control in lane change. The vehicle dynamics model and a desired target tracking model were established in this paper. A fuzzy logic controller was designed for integrated active front steering (AFS) and direct yaw moment control (DYC) in order to improve vehicle handling performance and stability, and a fuzzy controller for the automatic steering problem. The simulation results demonstrate the strong robustness and excellent tracking performance of the control algorithm that is proposed.

Keywords: fuzzy logic, lateral control, AFS, DYC, electric car technology, longitudinal control, lateral motion

Procedia PDF Downloads 609
17956 Development of an Autonomous Automated Guided Vehicle with Robot Manipulator under Robot Operation System Architecture

Authors: Jinsiang Shaw, Sheng-Xiang Xu

Abstract:

This paper presents the development of an autonomous automated guided vehicle (AGV) with a robot arm attached on top of it within the framework of robot operation system (ROS). ROS can provide libraries and tools, including hardware abstraction, device drivers, libraries, visualizers, message-passing, package management, etc. For this reason, this AGV can provide automatic navigation and parts transportation and pick-and-place task using robot arm for typical industrial production line use. More specifically, this AGV will be controlled by an on-board host computer running ROS software. Command signals for vehicle and robot arm control and measurement signals from various sensors are transferred to respective microcontrollers. Users can operate the AGV remotely through the TCP / IP protocol and perform SLAM (Simultaneous Localization and Mapping). An RGBD camera and LIDAR sensors are installed on the AGV, using these data to perceive the environment. For SLAM, Gmapping is used to construct the environment map by Rao-Blackwellized particle filter; and AMCL method (Adaptive Monte Carlo localization) is employed for mobile robot localization. In addition, current AGV position and orientation can be visualized by ROS toolkit. As for robot navigation and obstacle avoidance, A* for global path planning and dynamic window approach for local planning are implemented. The developed ROS AGV with a robot arm on it has been experimented in the university factory. A 2-D and 3-D map of the factory were successfully constructed by the SLAM method. Base on this map, robot navigation through the factory with and without dynamic obstacles are shown to perform well. Finally, pick-and-place of parts using robot arm and ensuing delivery in the factory by the mobile robot are also accomplished.

Keywords: automated guided vehicle, navigation, robot operation system, Simultaneous Localization and Mapping

Procedia PDF Downloads 147
17955 Construction of a Dynamic Migration Model of Extracellular Fluid in Brain for Future Integrated Control of Brain State

Authors: Tomohiko Utsuki, Kyoka Sato

Abstract:

In emergency medicine, it is recognized that brain resuscitation is very important for the reduction of mortality rate and neurological sequelae. Especially, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) are most required for stabilizing brain’s physiological state in the treatment for such as brain injury, stroke, and encephalopathy. However, the manual control of BT, ICP, and CBF frequently requires the decision and operation of medical staff, relevant to medication and the setting of therapeutic apparatus. Thus, the integration and the automation of the control of those is very effective for not only improving therapeutic effect but also reducing staff burden and medical cost. For realizing such integration and automation, a mathematical model of brain physiological state is necessary as the controlled object in simulations, because the performance test of a prototype of the control system using patients is not ethically allowed. A model of cerebral blood circulation has already been constructed, which is the most basic part of brain physiological state. Also, a migration model of extracellular fluid in brain has been constructed, however the condition that the total volume of intracranial cavity is almost changeless due to the hardness of cranial bone has not been considered in that model. Therefore, in this research, the dynamic migration model of extracellular fluid in brain was constructed on the consideration of the changelessness of intracranial cavity’s total volume. This model is connectable to the cerebral blood circulation model. The constructed model consists of fourteen compartments, twelve of which corresponds to perfused area of bilateral anterior, middle and posterior cerebral arteries, the others corresponds to cerebral ventricles and subarachnoid space. This model enable to calculate the migration of tissue fluid from capillaries to gray matter and white matter, the flow of tissue fluid between compartments, the production and absorption of cerebrospinal fluid at choroid plexus and arachnoid granulation, and the production of metabolic water. Further, the volume, the colloid concentration, and the tissue pressure of/in each compartment are also calculable by solving 40-dimensional non-linear simultaneous differential equations. In this research, the obtained model was analyzed for its validation under the four condition of a normal adult, an adult with higher cerebral capillary pressure, an adult with lower cerebral capillary pressure, and an adult with lower colloid concentration in cerebral capillary. In the result, calculated fluid flow, tissue volume, colloid concentration, and tissue pressure were all converged to suitable value for the set condition within 60 minutes at a maximum. Also, because these results were not conflict with prior knowledge, it is certain that the model can enough represent physiological state of brain under such limited conditions at least. One of next challenges is to integrate this model and the already constructed cerebral blood circulation model. This modification enable to simulate CBF and ICP more precisely due to calculating the effect of blood pressure change to extracellular fluid migration and that of ICP change to CBF.

Keywords: dynamic model, cerebral extracellular migration, brain resuscitation, automatic control

Procedia PDF Downloads 155
17954 Algorithm Development of Individual Lumped Parameter Modelling for Blood Circulatory System: An Optimization Study

Authors: Bao Li, Aike Qiao, Gaoyang Li, Youjun Liu

Abstract:

Background: Lumped parameter model (LPM) is a common numerical model for hemodynamic calculation. LPM uses circuit elements to simulate the human blood circulatory system. Physiological indicators and characteristics can be acquired through the model. However, due to the different physiological indicators of each individual, parameters in LPM should be personalized in order for convincing calculated results, which can reflect the individual physiological information. This study aimed to develop an automatic and effective optimization method to personalize the parameters in LPM of the blood circulatory system, which is of great significance to the numerical simulation of individual hemodynamics. Methods: A closed-loop LPM of the human blood circulatory system that is applicable for most persons were established based on the anatomical structures and physiological parameters. The patient-specific physiological data of 5 volunteers were non-invasively collected as personalized objectives of individual LPM. In this study, the blood pressure and flow rate of heart, brain, and limbs were the main concerns. The collected systolic blood pressure, diastolic blood pressure, cardiac output, and heart rate were set as objective data, and the waveforms of carotid artery flow and ankle pressure were set as objective waveforms. Aiming at the collected data and waveforms, sensitivity analysis of each parameter in LPM was conducted to determine the sensitive parameters that have an obvious influence on the objectives. Simulated annealing was adopted to iteratively optimize the sensitive parameters, and the objective function during optimization was the root mean square error between the collected waveforms and data and simulated waveforms and data. Each parameter in LPM was optimized 500 times. Results: In this study, the sensitive parameters in LPM were optimized according to the collected data of 5 individuals. Results show a slight error between collected and simulated data. The average relative root mean square error of all optimization objectives of 5 samples were 2.21%, 3.59%, 4.75%, 4.24%, and 3.56%, respectively. Conclusions: Slight error demonstrated good effects of optimization. The individual modeling algorithm developed in this study can effectively achieve the individualization of LPM for the blood circulatory system. LPM with individual parameters can output the individual physiological indicators after optimization, which are applicable for the numerical simulation of patient-specific hemodynamics.

Keywords: blood circulatory system, individual physiological indicators, lumped parameter model, optimization algorithm

Procedia PDF Downloads 135