Search results for: artificial immune system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19465

Search results for: artificial immune system

18685 Conformal Coating Technology Applicable to Cell Therapeutics Using Click-Reactive Biocompatible Polymers

Authors: Venkat Garigapati

Abstract:

Cell-based therapies are limited due to underlying host immune system activity. Microencapsulation of living cells to overcome this issue has some serious drawbacks, such as limitations of nutrient and oxygen diffusion, which pose a threat to the function and longevity of cells. The conformal coating could overcome the issues which are generally involved in traditional microencapsulation. Some of the theoretical advantages of conformal coating include superior nutrient and oxygen supply to cells, prolonged lifespan, improved drug-secreting cell functionality and an opportunity to load high cell doses in small volumes. Despite several advantages to the conformal coating, there are no suitable methods available to apply to living cells. The ultra-thin conformal coating was achieved utilizing click-reactive methacryloyloxyethyl phosphorylcholine (MPC) polymers, which are capable of specifically reacting one polymer to another at neutral pH in the aqueous isotonic system at the desired temperature suitable for living cells without the need of deleterious initiators. ARPE-19 (Adult Retinal Pigment Epithelial cell line-19) cell-spheroids and rat pancreatic islets were used in the formulation studies. The in vitro studies of coated ARPE-19 cell-spheroids and rat islets indicate that the coat was intact; cells were viable and functioning. The in vitro study results revealed that the conformal coating technology seems promising and in vivo studies are being planned.

Keywords: cells, hydrogel, conformal coating, microencapsulation, insulin

Procedia PDF Downloads 90
18684 Chloride Ion Channels Play a Role in Mediating Immune Response during Pseudomonas aeruginosa Infection

Authors: Hani M. Alothaid, Louise Robson, Richmond Muimo

Abstract:

Cystic fibrosis (CF) is a disease that affects respiratory function and in EU it affects about 1 in 2,500 live births with an average 40-year life expectancy. This disease caused by mutations within the gene encoding the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) chloride channel leading to dysregulation of epithelial fluid transport and chronic lung inflammation, suggesting functional alterations of immune cells. In airways, CFTR been found to form a functional complex with S100A10 and AnxA2 in a cAMP/PKA dependent manner. The multiprotein complex of AnxA2-S100A10 and CFTR is also regulated by calcineurin. The aim of this study was i) to investigate whether chloride ion (Cl−) channels are activated by Pseudomonas aeruginosa lipopolysaccharide (LPS from PA), ii) if this activation is regulated by cAMP/PKA/calcineurin pathway and iii) to investigate the role of LPS-activated Cl− channels in the release of pro-inflammatory cytokines by immune cells. Human peripheral blood monocytes were used in the study. Whole-cell patch records showed that LPS from PA can activate Cl− channels, including CFTR and outwardly-rectifying Cl− channel (ORCC). This activation appears to require an intact PKA/calcineurin signalling pathway. The Gout in the presence of LPS was significantly inhibited by diisothiocyanatostilbene-disulfonic acid (DIDS), an ORCC blocker (p<0.001). The Gout was further suppressed by CFTR(inh)-172, a specific inhibitor for CFTR channels (p<0.001). Monocytes pre-incubated with PKA inhibitor or calcineurin inhibitor before stimulated with LPS from PA that were resulted in DIDS and CFTR(inh)-172 insensitive currents. Activation of both ORCC and CFTR was however, observed in response to monocytes exposure to LPS. Additionally, ELISA showed that the CFTR and ORCC play a role in mediating the release of pro-inflammatory cytokines such as IL-1β upon exposure of monocytes to LPS. However, this secretion was significantly inhibited due to CFTR and ORCC inhibition. However, Cl− may play a role in IL-1β release independent of cAMP/PKA/calcineurin signalling due to the enhancement of IL-1β secretion even when cAMP/PKA/calcineurin pathway was inhibited. In conclusion, our data confirmed that LPS from PA activates Cl− channels in human peripheral blood monocytes. Our data also confirmed that Cl− channels were involved in IL-1β release in monocytes upon exposure to LPS. However, it has been found that PKA and calcineurin does not seem to influence the Cl− dependent cytokine release.

Keywords: cystic fibrosis, CFTR, Annexin A2, S100A10, PP2B, PKA, outwardly-rectifying Cl− channel, Pseudomonas aeruginosa

Procedia PDF Downloads 177
18683 Design and Fabrication of a Smart Quadruped Robot

Authors: Shivani Verma, Amit Agrawal, Pankaj Kumar Meena, Ashish B. Deoghare

Abstract:

Over the decade robotics has been a major area of interest among the researchers and scientists in reducing human efforts. The need for robots to replace human work in different dangerous fields such as underground mining, nuclear power station and war against terrorist attack has gained huge attention. Most of the robot design is based on human structure popularly known as humanoid robots. However, the problems encountered in humanoid robots includes low speed of movement, misbalancing in structure, poor load carrying capacity, etc. The simplification and adaptation of the fundamental design principles seen in animals have led to the creation of bio-inspired robots. But the major challenges observed in naturally inspired robot include complexity in structure, several degrees of freedom and energy storage problem. The present work focuses on design and fabrication of a bionic quadruped walking robot which is based on different joint of quadruped mammals like a dog, cheetah, etc. The design focuses on the structure of the robot body which consists of four legs having three degrees of freedom per leg and the electronics system involved in it. The robot is built using readily available plastics and metals. The proposed robot is simple in construction and is able to move through uneven terrain, detect and locate obstacles and take images while carrying additional loads which may include hardware and sensors. The robot will find possible application in the artificial intelligence sector.

Keywords: artificial intelligence, bionic, quadruped robot, degree of freedom

Procedia PDF Downloads 215
18682 Compact Optical Sensors for Harsh Environments

Authors: Branislav Timotijevic, Yves Petremand, Markus Luetzelschwab, Dara Bayat, Laurent Aebi

Abstract:

Optical miniaturized sensors with remote readout are required devices for the monitoring in harsh electromagnetic environments. As an example, in turbo and hydro generators, excessively high vibrations of the end-windings can lead to dramatic damages, imposing very high, additional service costs. A significant change of the generator temperature can also be an indicator of the system failure. Continuous monitoring of vibrations, temperature, humidity, and gases is therefore mandatory. The high electromagnetic fields in the generators impose the use of non-conductive devices in order to prevent electromagnetic interferences and to electrically isolate the sensing element to the electronic readout. Metal-free sensors are good candidates for such systems since they are immune to very strong electromagnetic fields and given the fact that they are non-conductive. We have realized miniature optical accelerometer and temperature sensors for a remote sensing of the harsh environments using the common, inexpensive silicon Micro Electro-Mechanical System (MEMS) platform. Both devices show highly linear response. The accelerometer has a deviation within 1% from the linear fit when tested in a range 0 – 40 g. The temperature sensor can provide the measurement accuracy better than 1 °C in a range 20 – 150 °C. The design of other type of sensors for the environments with high electromagnetic interferences has also been discussed.

Keywords: optical MEMS, temperature sensor, accelerometer, remote sensing, harsh environment

Procedia PDF Downloads 367
18681 Level of IGF-I and IGFBP-3 in Gingival Crevicular Fluid and Plasma in Patients with Aggressive Periodontitis

Authors: Youjeong Hwang

Abstract:

Purpose: Insulin-like growth factor-I (IGF-I) promotes B-cell development, immunoglobulin formation, and interleukin-6 (IL-6) production, then regulate the immune response and inflammation. As IGF-I and their receptor also exist in the periodontal tissue, they may affect the immune response caused by periodontal pathogens in aggressive periodontitis (AgP) patients. The function of IGF is regulated by IGF binding proteins (IGFBPs), and IGFBP-3 is known to most abundant in plasma. The aim of the present study was to assess the concentration of IGF-I and IGFBP-3 in plasma and gingival crevicular fluid (GCF) in AgP patients and to find out their association. Methods: Nine patients with AgP (test group) and nine healthy subjects (control group) were included in this study. None of the subjects had a history of systemic disease, smoking or steroids medication. GCF samples were collected by microcapillary pipettes and plasma samples were obtained by venipuncture. Probing pocket depth (PD), clinical attachment level (CAL) and bleeding on probing (BOP) were recorded. Samples were assayed for IGF-I and IGFBP-3 levels using ELISA. Results: Mean IGF-I level in GCF was higher in the test group than control. Mean IGF-I level in plasma and IGFBP-3 level in GCF and plasma in control group were higher than that of the test group. However, there was no statistical significance (p > 0.05). The mean level of IGF-I and IGFBP-3 in GCF was lower than those in plasma. Mean IGF-I level in plasma showed a negative correlation with PD and CAL (p < 0.05) in both groups. The levels of IGF-I and IGFBP-3 in GCF seemed to be negatively correlated with BOP in the test group (p < 0.05). Conclusions: The difference in the level of IGF-I and IGFBP-3 between AgP and healthy subjects was not significant. Further studies that explain the mechanism of the protective role of IGF-I with more samples are needed.

Keywords: aggressive periodontitis, pathogenesis, insulin-like growth factor, insulin-like growth factor binding protein

Procedia PDF Downloads 211
18680 A Cross-Cultural Approach for Communication with Biological and Non-Biological Intelligences

Authors: Thomas Schalow

Abstract:

This paper posits the need to take a cross-cultural approach to communication with non-human cultures and intelligences in order to meet the following three imminent contingencies: communicating with sentient biological intelligences, communicating with extraterrestrial intelligences, and communicating with artificial super-intelligences. The paper begins with a discussion of how intelligence emerges. It disputes some common assumptions we maintain about consciousness, intention, and language. The paper next explores cross-cultural communication among humans, including non-sapiens species. The next argument made is that we need to become much more serious about communicating with the non-human, intelligent life forms that already exist around us here on Earth. There is an urgent need to broaden our definition of communication and reach out to the other sentient life forms that inhabit our world. The paper next examines the science and philosophy behind CETI (communication with extraterrestrial intelligences) and how it has proven useful, even in the absence of contact with alien life. However, CETI’s assumptions and methodology need to be revised and based on the cross-cultural approach to communication proposed in this paper if we are truly serious about finding and communicating with life beyond Earth. The final theme explored in this paper is communication with non-biological super-intelligences using a cross-cultural communication approach. This will present a serious challenge for humanity, as we have never been truly compelled to converse with other species, and our failure to seriously consider such intercourse has left us largely unprepared to deal with communication in a future that will be mediated and controlled by computer algorithms. Fortunately, our experience dealing with other human cultures can provide us with a framework for this communication. The basic assumptions behind intercultural communication can be applied to the many types of communication envisioned in this paper if we are willing to recognize that we are in fact dealing with other cultures when we interact with other species, alien life, and artificial super-intelligence. The ideas considered in this paper will require a new mindset for humanity, but a new disposition will prepare us to face the challenges posed by a future dominated by artificial intelligence.

Keywords: artificial intelligence, CETI, communication, culture, language

Procedia PDF Downloads 358
18679 Implementation and Design of Fuzzy Controller for High Performance Dc-Dc Boost Converters

Authors: A. Mansouri, F. Krim

Abstract:

This paper discusses the implementation and design of both linear PI and fuzzy controllers for DC-DC boost converters. Design of PI controllers is based on temporal response of closed-loop converters, while fuzzy controllers design is based on heuristic knowledge of boost converters. Linear controller implementation is quite straightforward relying on mathematical models, while fuzzy controller implementation employs one or more artificial intelligences techniques. Comparison between these boost controllers is made in design aspect. Experimental results show that the proposed fuzzy controller system is robust against input voltage and load resistance changing and in respect of start-up transient. Results indicate that fuzzy controller can achieve best control performance concerning faster transient response, steady-state response good stability and accuracy under different operating conditions. Fuzzy controller is more suitable to control boost converters.

Keywords: boost DC-DC converter, fuzzy, PI controllers, power electronics and control system

Procedia PDF Downloads 475
18678 The Role of Artificial Intelligence in Patent Claim Interpretation: Legal Challenges and Opportunities

Authors: Mandeep Saini

Abstract:

The rapid advancement of Artificial Intelligence (AI) is transforming various fields, including intellectual property law. This paper explores the emerging role of AI in interpreting patent claims, a critical and highly specialized area within intellectual property rights. Patent claims define the scope of legal protection granted to an invention, and their precise interpretation is crucial in determining the boundaries of the patent holder's rights. Traditionally, this interpretation has relied heavily on the expertise of patent examiners, legal professionals, and judges. However, the increasing complexity of modern inventions, especially in fields like biotechnology, software, and electronics, poses significant challenges to human interpretation. Introducing AI into patent claim interpretation raises several legal and ethical concerns. This paper addresses critical issues such as the reliability of AI-driven interpretations, the potential for algorithmic bias, and the lack of transparency in AI decision-making processes. It considers the legal implications of relying on AI, particularly regarding accountability for errors and the potential challenges to AI interpretations in court. The paper includes a comparative study of AI-driven patent claim interpretations versus human interpretations across different jurisdictions to provide a comprehensive analysis. This comparison highlights the variations in legal standards and practices, offering insights into how AI could impact the harmonization of international patent laws. The paper proposes policy recommendations for the responsible use of AI in patent law. It suggests legal frameworks that ensure AI tools complement, rather than replace, human expertise in patent claim interpretation. These recommendations aim to balance the benefits of AI with the need for maintaining trust, transparency, and fairness in the legal process. By addressing these critical issues, this research contributes to the ongoing discourse on integrating AI into the legal field, specifically within intellectual property rights. It provides a forward-looking perspective on how AI could reshape patent law, offering both opportunities for innovation and challenges that must be carefully managed to protect the integrity of the legal system.

Keywords: artificial intelligence (ai), patent claim interpretation, intellectual property rights, algorithmic bias, natural language processing, patent law harmonization, legal ethics

Procedia PDF Downloads 21
18677 Comparative Study od Three Artificial Intelligence Techniques for Rain Domain in Precipitation Forecast

Authors: Nabilah Filzah Mohd Radzuan, Andi Putra, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Precipitation forecast is important to avoid natural disaster incident which can cause losses in the involved area. This paper reviews three techniques logistic regression, decision tree, and random forest which are used in making precipitation forecast. These combination techniques through the vector auto-regression (VAR) model help in finding the advantages and strengths of each technique in the forecast process. The data-set contains variables of the rain’s domain. Adaptation of artificial intelligence techniques involved in rain domain enables the forecast process to be easier and systematic for precipitation forecast.

Keywords: logistic regression, decisions tree, random forest, VAR model

Procedia PDF Downloads 446
18676 Impact of Natural and Artificial Disasters, Lackadaisical and Semantic Approach in Risk Management, and Mitigation Implication for Sustainable Goals in Nigeria, from 2009 to 2022

Authors: Wisdom Robert Duruji, Moses Kanayochukwu Ifoh, Efeoghene Edward Esiemunobo

Abstract:

This study examines the impact of natural and artificial disasters, lackadaisical and semantic approach in risk management, and mitigation implication for sustainable development goals in Nigeria, from 2009 to 2022. The study utilizes a range of research methods to achieve its objectives. These include literature review, website knowledge, Google search, news media information, academic journals, field-work and on-site observations. These diverse methods allow for a comprehensive analysis on the impact and the implications being study. The study finds that paradigm shift from remediating seismic, flooding, environmental pollution and degradation natural disasters by Nigeria Emergency Management Agency (NEMA), to political and charity organization; has plunged risk reduction strategies to embezzling opportunities. However, this lackadaisical and semantic approach in natural disaster mitigation, invariably replicates artificial disasters in Nigeria through: Boko Haram terrorist organization, Fulani herdsmen and farmers conflicts, political violence, kidnapping for ransom, ethnic conflicts, Religious dichotomy, insurgency, secession protagonists, unknown-gun-men, and banditry. This study also, finds that some Africans still engage in self-imposed slavery through human trafficking, by nefariously stow-away to Europe; through Libya, Sahara desert and Mediterranean sea; in search for job opportunities, due to ineptitude in governance by their leaders; a perilous journey that enhanced artificial disasters in Nigeria. That artificial disaster fatality in Nigeria increased from about 5,655 in 2009 to 114,318 in 2018; and to 157,643 in 2022. However, financial and material loss of about $9.29 billion was incurred in Nigeria due to natural disaster, while about $70.59 billion was accrued due to artificial disaster; from 2009 to 2018. Although disaster risk mitigation and politics can synergistically support sustainable development goals; however, they are different entities, and need for distinct separations in Nigeria, as in reality and perception. This study concluded that referendum should be conducted in Nigeria, to ascertain its current status as a nation. Therefore it is recommended that Nigerian governments should refine its naturally endowed crude oil locally; to end fuel subsidy scam, corruption and poverty in Nigeria!

Keywords: corruption, crude oil, environmental risk analysis, Nigeria, referendum, terrorism

Procedia PDF Downloads 43
18675 An Automated Optimal Robotic Assembly Sequence Planning Using Artificial Bee Colony Algorithm

Authors: Balamurali Gunji, B. B. V. L. Deepak, B. B. Biswal, Amrutha Rout, Golak Bihari Mohanta

Abstract:

Robots play an important role in the operations like pick and place, assembly, spot welding and much more in manufacturing industries. Out of those, assembly is a very important process in manufacturing, where 20% of manufacturing cost is wholly occupied by the assembly process. To do the assembly task effectively, Assembly Sequences Planning (ASP) is required. ASP is one of the multi-objective non-deterministic optimization problems, achieving the optimal assembly sequence involves huge search space and highly complex in nature. Many researchers have followed different algorithms to solve ASP problem, which they have several limitations like the local optimal solution, huge search space, and execution time is more, complexity in applying the algorithm, etc. By keeping the above limitations in mind, in this paper, a new automated optimal robotic assembly sequence planning using Artificial Bee Colony (ABC) Algorithm is proposed. In this algorithm, automatic extraction of assembly predicates is done using Computer Aided Design (CAD) interface instead of extracting the assembly predicates manually. Due to this, the time of extraction of assembly predicates to obtain the feasible assembly sequence is reduced. The fitness evaluation of the obtained feasible sequence is carried out using ABC algorithm to generate the optimal assembly sequence. The proposed methodology is applied to different industrial products and compared the results with past literature.

Keywords: assembly sequence planning, CAD, artificial Bee colony algorithm, assembly predicates

Procedia PDF Downloads 237
18674 Artificial Intelligence in Disease Diagnosis

Authors: Shalini Tripathi, Pardeep Kumar

Abstract:

The method of translating observed symptoms into disease names is known as disease diagnosis. The ability to solve clinical problems in a complex manner is critical to a doctor's effectiveness in providing health care. The accuracy of his or her expertise is crucial to the survival and well-being of his or her patients. Artificial Intelligence (AI) has a huge economic influence depending on how well it is applied. In the medical sector, human brain-simulated intellect can help not only with classification accuracy, but also with reducing diagnostic time, cost and pain associated with pathologies tests. In light of AI's present and prospective applications in the biomedical, we will identify them in the paper based on potential benefits and risks, social and ethical consequences and issues that might be contentious but have not been thoroughly discussed in publications and literature. Current apps, personal tracking tools, genetic tests and editing programmes, customizable models, web environments, virtual reality (VR) technologies and surgical robotics will all be investigated in this study. While AI holds a lot of potential in medical diagnostics, it is still a very new method, and many clinicians are uncertain about its reliability, specificity and how it can be integrated into clinical practice without jeopardising clinical expertise. To validate their effectiveness, more systemic refinement of these implementations, as well as training of physicians and healthcare facilities on how to effectively incorporate these strategies into clinical practice, will be needed.

Keywords: Artificial Intelligence, medical diagnosis, virtual reality, healthcare ethical implications 

Procedia PDF Downloads 132
18673 Roughness Discrimination Using Bioinspired Tactile Sensors

Authors: Zhengkun Yi

Abstract:

Surface texture discrimination using artificial tactile sensors has attracted increasing attentions in the past decade as it can endow technical and robot systems with a key missing ability. However, as a major component of texture, roughness has rarely been explored. This paper presents an approach for tactile surface roughness discrimination, which includes two parts: (1) design and fabrication of a bioinspired artificial fingertip, and (2) tactile signal processing for tactile surface roughness discrimination. The bioinspired fingertip is comprised of two polydimethylsiloxane (PDMS) layers, a polymethyl methacrylate (PMMA) bar, and two perpendicular polyvinylidene difluoride (PVDF) film sensors. This artificial fingertip mimics human fingertips in three aspects: (1) Elastic properties of epidermis and dermis in human skin are replicated by the two PDMS layers with different stiffness, (2) The PMMA bar serves the role analogous to that of a bone, and (3) PVDF film sensors emulate Meissner’s corpuscles in terms of both location and response to the vibratory stimuli. Various extracted features and classification algorithms including support vector machines (SVM) and k-nearest neighbors (kNN) are examined for tactile surface roughness discrimination. Eight standard rough surfaces with roughness values (Ra) of 50 μm, 25 μm, 12.5 μm, 6.3 μm 3.2 μm, 1.6 μm, 0.8 μm, and 0.4 μm are explored. The highest classification accuracy of (82.6 ± 10.8) % can be achieved using solely one PVDF film sensor with kNN (k = 9) classifier and the standard deviation feature.

Keywords: bioinspired fingertip, classifier, feature extraction, roughness discrimination

Procedia PDF Downloads 312
18672 ChatGPT as a “Foreign Language Teacher”: Attitudes of Tunisian English Language Learners

Authors: Leila Najeh Bel'Kiry

Abstract:

Artificial intelligence (AI) brought about many language robots, with ChatGPT being the most sophisticated thanks to its human-like linguistic capabilities. This aspect raises the idea of using ChatGPT in learning foreign languages. Starting from the premise that positions ChatGPT as a mediator between the language and the leaner, functioning as a “ghost teacher" offering a peaceful and secure learning space, this study aims to explore the attitudes of Tunisian students of English towards ChatGPT as a “Foreign Language Teacher” . Forty-five students, in their third year of fundamental English at Tunisian universities and high institutes, completed a Likert scale questionnaire consisting of thirty-two items and covering various aspects of language (phonology, morphology, syntax, semantics, and pragmatics). A scale ranging from 'Strongly Disagree,' 'Disagree,' 'Undecided,' 'Agree,' to 'Strongly Agree.' is used to assess the attitudes of the participants towards the integration of ChaGPTin learning a foreign language. Results indicate generally positive attitudes towards the reliance on ChatGPT in learning foreign languages, particularly some compounds of language like syntax, phonology, and morphology. However, learners show insecurity towards ChatGPT when it comes to pragmatics and semantics, where the artificial model may fail when dealing with deeper contextual and nuanced language levels.

Keywords: artificial language model, attitudes, foreign language learning, ChatGPT, linguistic capabilities, Tunisian English language learners

Procedia PDF Downloads 64
18671 Artificial Intelligence Based Method in Identifying Tumour Infiltrating Lymphocytes of Triple Negative Breast Cancer

Authors: Nurkhairul Bariyah Baharun, Afzan Adam, Reena Rahayu Md Zin

Abstract:

Tumor microenvironment (TME) in breast cancer is mainly composed of cancer cells, immune cells, and stromal cells. The interaction between cancer cells and their microenvironment plays an important role in tumor development, progression, and treatment response. The TME in breast cancer includes tumor-infiltrating lymphocytes (TILs) that are implicated in killing tumor cells. TILs can be found in tumor stroma (sTILs) and within the tumor (iTILs). TILs in triple negative breast cancer (TNBC) have been demonstrated to have prognostic and potentially predictive value. The international Immune-Oncology Biomarker Working Group (TIL-WG) had developed a guideline focus on the assessment of sTILs using hematoxylin and eosin (H&E)-stained slides. According to the guideline, the pathologists use “eye balling” method on the H&E stained- slide for sTILs assessment. This method has low precision, poor interobserver reproducibility, and is time-consuming for a comprehensive evaluation, besides only counted sTILs in their assessment. The TIL-WG has therefore recommended that any algorithm for computational assessment of TILs utilizing the guidelines provided to overcome the limitations of manual assessment, thus providing highly accurate and reliable TILs detection and classification for reproducible and quantitative measurement. This study is carried out to develop a TNBC digital whole slide image (WSI) dataset from H&E-stained slides and IHC (CD4+ and CD8+) stained slides. TNBC cases were retrieved from the database of the Department of Pathology, Hospital Canselor Tuanku Muhriz (HCTM). TNBC cases diagnosed between the year 2010 and 2021 with no history of other cancer and available block tissue were included in the study (n=58). Tissue blocks were sectioned approximately 4 µm for H&E and IHC stain. The H&E staining was performed according to a well-established protocol. Indirect IHC stain was also performed on the tissue sections using protocol from Diagnostic BioSystems PolyVue™ Plus Kit, USA. The slides were stained with rabbit monoclonal, CD8 antibody (SP16) and Rabbit monoclonal, CD4 antibody (EP204). The selected and quality-checked slides were then scanned using a high-resolution whole slide scanner (Pannoramic DESK II DW- slide scanner) to digitalize the tissue image with a pixel resolution of 20x magnification. A manual TILs (sTILs and iTILs) assessment was then carried out by the appointed pathologist (2 pathologists) for manual TILs scoring from the digital WSIs following the guideline developed by TIL-WG 2014, and the result displayed as the percentage of sTILs and iTILs per mm² stromal and tumour area on the tissue. Following this, we aimed to develop an automated digital image scoring framework that incorporates key elements of manual guidelines (including both sTILs and iTILs) using manually annotated data for robust and objective quantification of TILs in TNBC. From the study, we have developed a digital dataset of TNBC H&E and IHC (CD4+ and CD8+) stained slides. We hope that an automated based scoring method can provide quantitative and interpretable TILs scoring, which correlates with the manual pathologist-derived sTILs and iTILs scoring and thus has potential prognostic implications.

Keywords: automated quantification, digital pathology, triple negative breast cancer, tumour infiltrating lymphocytes

Procedia PDF Downloads 116
18670 Applying Sequential Pattern Mining to Generate Block for Scheduling Problems

Authors: Meng-Hui Chen, Chen-Yu Kao, Chia-Yu Hsu, Pei-Chann Chang

Abstract:

The main idea in this paper is using sequential pattern mining to find the information which is helpful for finding high performance solutions. By combining this information, it is defined as blocks. Using the blocks to generate artificial chromosomes (ACs) could improve the structure of solutions. Estimation of Distribution Algorithms (EDAs) is adapted to solve the combinatorial problems. Nevertheless many of these approaches are advantageous for this application, but only some of them are used to enhance the efficiency of application. Generating ACs uses patterns and EDAs could increase the diversity. According to the experimental result, the algorithm which we proposed has a better performance to solve the permutation flow-shop problems.

Keywords: combinatorial problems, sequential pattern mining, estimationof distribution algorithms, artificial chromosomes

Procedia PDF Downloads 611
18669 Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural

Authors: Mohammad Heidari

Abstract:

In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach.

Keywords: thick walled cylinder, residual stress, radial basis, artificial neural network

Procedia PDF Downloads 416
18668 Emerging Technology for Business Intelligence Applications

Authors: Hsien-Tsen Wang

Abstract:

Business Intelligence (BI) has long helped organizations make informed decisions based on data-driven insights and gain competitive advantages in the marketplace. In the past two decades, businesses witnessed not only the dramatically increasing volume and heterogeneity of business data but also the emergence of new technologies, such as Artificial Intelligence (AI), Semantic Web (SW), Cloud Computing, and Big Data. It is plausible that the convergence of these technologies would bring more value out of business data by establishing linked data frameworks and connecting in ways that enable advanced analytics and improved data utilization. In this paper, we first review and summarize current BI applications and methodology. Emerging technologies that can be integrated into BI applications are then discussed. Finally, we conclude with a proposed synergy framework that aims at achieving a more flexible, scalable, and intelligent BI solution.

Keywords: business intelligence, artificial intelligence, semantic web, big data, cloud computing

Procedia PDF Downloads 95
18667 Developing an AI-Driven Application for Real-Time Emotion Recognition from Human Vocal Patterns

Authors: Sayor Ajfar Aaron, Mushfiqur Rahman, Sajjat Hossain Abir, Ashif Newaz

Abstract:

This study delves into the development of an artificial intelligence application designed for real-time emotion recognition from human vocal patterns. Utilizing advanced machine learning algorithms, including deep learning and neural networks, the paper highlights both the technical challenges and potential opportunities in accurately interpreting emotional cues from speech. Key findings demonstrate the critical role of diverse training datasets and the impact of ambient noise on recognition accuracy, offering insights into future directions for improving robustness and applicability in real-world scenarios.

Keywords: artificial intelligence, convolutional neural network, emotion recognition, vocal patterns

Procedia PDF Downloads 53
18666 Synergizing Additive Manufacturing and Artificial Intelligence: Analyzing and Predicting the Mechanical Behavior of 3D-Printed CF-PETG Composites

Authors: Sirine Sayed, Mostapha Tarfaoui, Abdelmalek Toumi, Youssef Qarssis, Mohamed Daly, Chokri Bouraoui

Abstract:

This paper delves into the combination of additive manufacturing (AM) and artificial intelligence (AI) to solve challenges related to the mechanical behavior of AM-produced parts. The article highlights the fundamentals and benefits of additive manufacturing, including creating complex geometries, optimizing material use, and streamlining manufacturing processes. The paper also addresses the challenges associated with additive manufacturing, such as ensuring stable mechanical performance and material properties. The role of AI in improving the static behavior of AM-produced parts, including machine learning, especially the neural network, is to make regression models to analyze the large amounts of data generated during experimental tests. It investigates the potential synergies between AM and AI to achieve enhanced functions and personalized mechanical properties. The mechanical behavior of parts produced using additive manufacturing methods can be further improved using design optimization, structural analysis, and AI-based adaptive manufacturing. The article concludes by emphasizing the importance of integrating AM and AI to enhance mechanical operations, increase reliability, and perform advanced functions, paving the way for innovative applications in different fields.

Keywords: additive manufacturing, mechanical behavior, artificial intelligence, machine learning, neural networks, reliability, advanced functionalities

Procedia PDF Downloads 11
18665 Synthesizing an Artificial Loess for Geotechnical Investigations of Collapsible Soil Behavior

Authors: Hamed Sadeghi, Pouya A. Panahi, Hamed Nasiri, Mohammad Sadeghi

Abstract:

Collapsible soils like loess comprise an important category of problematic soils for construction purposes and sustainable development. As a result, research on both geological and geotechnical aspects of this type of soil have been in progress for decades. However, considerable natural variability in physical properties of in-situ loess strata even in a single block sample challenges the fundamental laboratory investigations. The reason behind this is that it is somehow impossible to remove the effect of a specific factor like void ratio from fair comparisons to come with a reliable conclusion. In order to cope with this limitation, two types of artificially made dispersive and calcareous loess are introduced which can be easily reproduced in any soil mechanics laboratory provided that all its compositions are known and controlled. The collapse potential is explored for a variety of soil water salinity and lime content and comparisons are made against the natural soil behavior. Trends are reported for the influence of pore water salinity on collapse potential under different osmotic flow conditions. The most important advantage of artificial loess is the ease of controlling cementing agent content like calcite or dispersive potential for studying their influence on mechanical soil behavior.

Keywords: artificial loess, unsaturated soils, collapse potential, dispersive clays, laboratory tests

Procedia PDF Downloads 196
18664 Estimating Anthropometric Dimensions for Saudi Males Using Artificial Neural Networks

Authors: Waleed Basuliman

Abstract:

Anthropometric dimensions are considered one of the important factors when designing human-machine systems. In this study, the estimation of anthropometric dimensions has been improved by using Artificial Neural Network (ANN) model that is able to predict the anthropometric measurements of Saudi males in Riyadh City. A total of 1427 Saudi males aged 6 to 60 years participated in measuring 20 anthropometric dimensions. These anthropometric measurements are considered important for designing the work and life applications in Saudi Arabia. The data were collected during eight months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining 15 dimensions were set to be the measured variables (Model’s outcomes). The hidden layers varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was able to estimate the body dimensions of Saudi male population in Riyadh City. The network's mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found to be 0.0348 and 3.225, respectively. These results were found less, and then better, than the errors found in the literature. Finally, the accuracy of the developed neural network was evaluated by comparing the predicted outcomes with regression model. The ANN model showed higher coefficient of determination (R2) between the predicted and actual dimensions than the regression model.

Keywords: artificial neural network, anthropometric measurements, back-propagation

Procedia PDF Downloads 487
18663 Effect of Metarhizium robertsii in Rhipicephalus microplus hemocytes

Authors: Jessica P. Fiorotti, Maria C. Freitas, Caio J. B. Coutinho-Rodrigues, Mariana G. Camargo, Emily S. Mesquita, Amanda R. C. Corval, Ricardo O. B. Bitencourt, Allan F. Marciano, Diva D. Spadacci-Morena, Patricia S. Golo, Isabele C. Angelo, Vania R. E. P. Bittencourt

Abstract:

The bovine tick, Rhipicephalus microplus, is an arthropod of great importance in veterinary medicine leading to anemia, weight loss, animals' leather depreciation and also acting as a vector of many pathogens. In this way, the parasitism causes a loss of 3.24 billion dollars per year in Brazil. Knowingly, entomopathogenic fungi act as natural controller of some arthropods, acting mainly by active penetration through the cuticle. However, it can also act on the hemolymph and through the production of mycotoxins. Hemocytes are responsible for the cellular immune response and participate in the processes of phagocytosis, nodulation and encapsulation and may undergo changes when challenged by pathogens. The aim of the present study was to evaluate changes in R. microplus hemocytes after inoculation of Metarhizium robertsii using transmission electron microscopy. The isolate ARSEF 2575 and 200 engorged R. microplus females were used. The groups were divided into control, in which the females were inoculated with 5 μL of sterile distilled water solution and 0.1% Tween 80, and a group inoculated with 5 μL of fungal suspension at the concentration of 10⁷ conidia mL⁻¹. The experiment was performed in duplicate and each group contained 50 females. Twenty-four hours after fungal inoculation, hemolymph was collected through the cuticle dorsal surface perforation of the tick females. After collection, the hemolymph samples were centrifuged at 500 x g for 3 minutes at 4 °C, the plasma was discarded and the hemocyte pellet was resuspended in 50 μl PBS. The suspension material was fixed in 2% glutaraldehyde in Millonig buffer for three hours. After fixation, the material was centrifuged at 500 x g for 3 minutes, the supernatant was discarded and the cells were resuspended in a wash solution. Subsequently, the cells were post-fixed with 1% osmium tetroxide in phosphate buffer for one hour at room temperature and dehydrated in increasing concentrations of ethanol, and then embedded in Epon resin. The ultrathin sections were examined under the LEO EM 906E transmission electron microscopy at 80kV. The ultrastructural results revealed that.in control group, the cells were considered intact, in which the granulocytes were observed with granules of different electrodensities, intact mitochondria and cytoplasm without vacuolization. In addition, granulocytes showed plasma membrane projections similar to pseudopodia. Plasmatocytes presented as irregularly shaped cells, with the eccentric nucleus, agranular cytoplasm and some cells presented pseudopodia. Nevertheless, in the group exposed to the fungus, most of the cells presented in degeneration. The granulocytes found had fewer granules in the cytoplasm and more vacuoles. Plasmatocytes, after treatment, presented many vacuoles also in the cytoplasm and the lysosomes presented great amount of electrodense material in their interior. Thus, the results suggest that the fungus has a depressant action in the immune system of the tick, not only by the cell degranulation, but also suggesting that this leads to morphological changes in the hemocytes and may even trigger processes such as phagocytosis.

Keywords: bovine tick, cellular defense, entomopathogenic fungi, immune response

Procedia PDF Downloads 189
18662 A Green Optically Active Hydrogen and Oxygen Generation System Employing Terrestrial and Extra-Terrestrial Ultraviolet Solar Irradiance

Authors: H. Shahid

Abstract:

Due to Ozone layer depletion on earth, the incoming ultraviolet (UV) radiation is recorded at its high index levels such as 25 in South Peru (13.5° S, 3360 m a.s.l.) Also, the planning of human inhabitation on Mars is under discussion where UV radiations are quite high. The exposure to UV is health hazardous and is avoided by UV filters. On the other hand, artificial UV sources are in use for water thermolysis to generate Hydrogen and Oxygen, which are later used as fuels. This paper presents the utility of employing UVA (315-400nm) and UVB (280-315nm) electromagnetic radiation from the solar spectrum to design and implement an optically active, Hydrogen and Oxygen generation system via thermolysis of desalinated seawater. The proposed system finds its utility on earth and can be deployed in the future on Mars (UVB). In this system, by using Fresnel lens arrays as an optical filter and via active tracking, the ultraviolet light from the sun is concentrated and then allowed to fall on two sub-systems of the proposed system. The first sub-system generates electrical energy by using UV based tandem photovoltaic cells such as GaAs/GaInP/GaInAs/GaInAsP and the second elevates temperature of water to lower the electric potential required to electrolyze the water. An empirical analysis is performed at 30 atm and an electrical potential is observed to be the main controlling factor for the rate of production of Hydrogen and Oxygen and hence the operating point (Q-Point) of the proposed system. The hydrogen production rate in the case of the commercial system in static mode (650ᵒC, 0.6V) is taken as a reference. The silicon oxide electrolyzer cell (SOEC) is used in the proposed (UV) system for the Hydrogen and Oxygen production. To achieve the same amount of Hydrogen as in the case of the reference system, with minimum chamber operating temperature of 850ᵒC in static mode, the corresponding required electrical potential is calculated as 0.3V. However, practically, the Hydrogen production rate is observed to be low in comparison to the reference system at 850ᵒC at 0.3V. However, it has been shown empirically that the Hydrogen production can be enhanced and by raising the electrical potential to 0.45V. It increases the production rate to the same level as is of the reference system. Therefore, 850ᵒC and 0.45V are assigned as the Q-point of the proposed system which is actively stabilized via proportional integral derivative controllers which adjust the axial position of the lens arrays for both subsystems. The functionality of the controllers is based on maintaining the chamber fixed at 850ᵒC (minimum operating temperature) and 0.45V; Q-Point to realize the same Hydrogen production rate as-is for the reference system.

Keywords: hydrogen, oxygen, thermolysis, ultraviolet

Procedia PDF Downloads 133
18661 Experimental Assessment of Artificial Flavors Production

Authors: M. Unis, S. Turky, A. Elalem, A. Meshrghi

Abstract:

The Esterification kinetics of acetic acid with isopropnol in the presence of sulfuric acid as a homogenous catalyst was studied with isothermal batch experiments at 60,70 and 80°C and at a different molar ratio of isopropnol to acetic acid. Investigation of kinetics of the reaction indicated that the low of molar ratio is favored for esterification reaction, this is due to the reaction is catalyzed by acid. The maximum conversion, approximately 60.6% was obtained at 80°C for molar ratio of 1:3 acid : alcohol. It was found that increasing temperature of the reaction, increases the rate constant and conversion at a certain mole ratio, that is due to the esterification is exothermic. The homogenous reaction has been described with simple power-law model. The chemical equilibrium combustion calculated from the kinetic model in agreement with the measured chemical equilibrium.

Keywords: artificial flavors, esterification, chemical equilibria, isothermal

Procedia PDF Downloads 335
18660 Adhering to the Traditional Standard of Originality in the Era of Artificial Intelligence Copyright Protection

Authors: Xiaochen Mu

Abstract:

Whether in common law countries that adhere to the "commercial copyright theory" or in civil law countries that center around "author's rights," the standards for judging originality have undergone continuous adjustments in response to the development of information technology. The adherence to originality standards does not arbitrarily dictate that all types of works be judged according to a single standard of originality, nor does it rigidly ignore the changes in creative methods and dissemination models brought about by technology. Adjustments and interpretations should be allowed based on the different forms of expression of works. Appropriate adjustments and interpretations are our response to technological advancements. However, what should be upheld are the principles and bottom lines of these adjustments and interpretations, namely the legislative intent and purpose of copyright law, which are to encourage the creation and dissemination of outstanding cultural works and to promote the flourishing of culture.

Keywords: generative artificial intelligence, originality, works, copyright

Procedia PDF Downloads 42
18659 Control of a Quadcopter Using Genetic Algorithm Methods

Authors: Mostafa Mjahed

Abstract:

This paper concerns the control of a nonlinear system using two different methods, reference model and genetic algorithm. The quadcopter is a nonlinear unstable system, which is a part of aerial robots. It is constituted by four rotors placed at the end of a cross. The center of this cross is occupied by the control circuit. Its motions are governed by six degrees of freedom: three rotations around 3 axes (roll, pitch and yaw) and the three spatial translations. The control of such system is complex, because of nonlinearity of its dynamic representation and the number of parameters, which it involves. Numerous studies have been developed to model and stabilize such systems. The classical PID and LQ correction methods are widely used. If the latter represent the advantage to be simple because they are linear, they reveal the drawback to require the presence of a linear model to synthesize. It also implies the complexity of the established laws of command because the latter must be widened on all the domain of flight of these quadcopter. Note that, if the classical design methods are widely used to control aeronautical systems, the Artificial Intelligence methods as genetic algorithms technique receives little attention. In this paper, we suggest comparing two PID design methods. Firstly, the parameters of the PID are calculated according to the reference model. In a second phase, these parameters are established using genetic algorithms. By reference model, we mean that the corrected system behaves according to a reference system, imposed by some specifications: settling time, zero overshoot etc. Inspired from the natural evolution of Darwin's theory advocating the survival of the best, John Holland developed this evolutionary algorithm. Genetic algorithm (GA) possesses three basic operators: selection, crossover and mutation. We start iterations with an initial population. Each member of this population is evaluated through a fitness function. Our purpose is to correct the behavior of the quadcopter around three axes (roll, pitch and yaw) with 3 PD controllers. For the altitude, we adopt a PID controller.

Keywords: quadcopter, genetic algorithm, PID, fitness, model, control, nonlinear system

Procedia PDF Downloads 431
18658 Humoral and Cytokine Responses to Major Human Cytomegalovirus Antigens in Mouse Model

Authors: Sahar Essa, Hussain A. Safar, Raj Raghupathy

Abstract:

Human cytomegalovirus (CMV) continues to be a source of severe complications in immunologically immature and immunocompromised hosts. Effective CMV vaccines that help diminish CMV disease in transplant patients and avoid congenital infection are of great importance. Though the exact roles of defense mechanisms are unidentified, viral-specific antibodies and cytokine responses are known to be involved in controlling CMV infections. CMV envelope glycoprotein B (UL55/gB), matrix proteins (UL83/pp65, UL99/pp28, UL32/pp150), and assembly protein UL80a/pp38 are known to be targets of antiviral immune responses. We immunized mice intraperitoneally with these five CMV-related proteins (commercial) for their ability to induce specific antibody responses (in-house immunoassay) and cytokine production (commercial assay) in a mouse model. We observed a significant CMV-antigen-specific antibody response to pp38 and pp65 (E/C ˃2.0, p˂0.001). Mice immunized with pp38 had significantly higher concentrations of GM-CSF, IFN-α, IL-2 IL-4, IL-5, and IL-17A (p˂0.05). Mice immunized with pp65 showed significantly higher concentrations of GM-CSF, IFN-γ, IL-2 IL-4, IL-10, IL-12, IL-17A, and TNF-α. Th1 to Th2 cytokines ratios revealed a Th1 cytokine bias in mice immunized with pp38, pp65, pp150, and gB. We suggest that stimulation with multiple CMV-related proteins, which include pp38, pp65, and gB antigens, will allow both humoral and cellular immune responses to be efficiently activated, thus serving as appropriate CMV antigens for future vaccines.

Keywords: cytomegalovirus, UL99/pp28, UL80a/pp38, UL83/pp65, UL32/pp150, UL55/gB, CMV-antigen-specific antibody, CMV antigen-specific cytokine responses

Procedia PDF Downloads 83
18657 Exploring Public Opinions Toward the Use of Generative Artificial Intelligence Chatbot in Higher Education: An Insight from Topic Modelling and Sentiment Analysis

Authors: Samer Muthana Sarsam, Abdul Samad Shibghatullah, Chit Su Mon, Abd Aziz Alias, Hosam Al-Samarraie

Abstract:

Generative Artificial Intelligence chatbots (GAI chatbots) have emerged as promising tools in various domains, including higher education. However, their specific role within the educational context and the level of legal support for their implementation remain unclear. Therefore, this study aims to investigate the role of Bard, a newly developed GAI chatbot, in higher education. To achieve this objective, English tweets were collected from Twitter's free streaming Application Programming Interface (API). The Latent Dirichlet Allocation (LDA) algorithm was applied to extract latent topics from the collected tweets. User sentiments, including disgust, surprise, sadness, anger, fear, joy, anticipation, and trust, as well as positive and negative sentiments, were extracted using the NRC Affect Intensity Lexicon and SentiStrength tools. This study explored the benefits, challenges, and future implications of integrating GAI chatbots in higher education. The findings shed light on the potential power of such tools, exemplified by Bard, in enhancing the learning process and providing support to students throughout their educational journey.

Keywords: generative artificial intelligence chatbots, bard, higher education, topic modelling, sentiment analysis

Procedia PDF Downloads 83
18656 Employing Bayesian Artificial Neural Network for Evaluation of Cold Rolling Force

Authors: P. Kooche Baghy, S. Eskandari, E.javanmard

Abstract:

Neural network has been used as a predictive means of cold rolling force in this dissertation. Thus, imposed average force on rollers as a mere input and five pertaining parameters to its as a outputs are regarded. According to our study, feed-forward multilayer perceptron network has been selected. Besides, Bayesian algorithm based on the feed-forward back propagation method has been selected due to noisy data. Further, 470 out of 585 all tests were used for network learning and others (115 tests) were considered as assessment criteria. Eventually, by 30 times running the MATLAB software, mean error was obtained 3.84 percent as a criteria of network learning. As a consequence, this the mentioned error on par with other approaches such as numerical and empirical methods is acceptable admittedly.

Keywords: artificial neural network, Bayesian, cold rolling, force evaluation

Procedia PDF Downloads 443