Search results for: Lateral bearing capacity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5417

Search results for: Lateral bearing capacity

4637 Structural Behaviour of Small-Scale Fibre-Filled Steel Tubular Planar Frames

Authors: Sadaf Karkoodi, Hassan Karampour

Abstract:

There is a growing interest in the construction industry towards hybrid systems. The hybrid systems use construction materials such as timber, steel, and concrete smartly, can be prefabricated, and are cost-effective and sustainable solutions to an industry targeting reduced carbon footprint. Moreover, in case of periodical shortage in timber resources, reusable and waste wood such as fibres can be used in the hybrid modules, which facilitates the circular economy. In this research, a hybrid frame is proposed and experimentally validated by introducing dried wood fibre products inside cold-formed steel square hollow sections without using any adhesives. As such, fibre-filled steel tubular (FFST) columns, beams, and 2D frames are manufactured and tested. The results show that the FFST columns have stiffness and strength 44% and 55% higher than cold-formed steel columns, respectively. The bearing strength of the FFST beams shows an increase of 39.5% compared to steel only. The flexural stiffness and strength of the FFST beams are 8.5% and 28% higher than the bare steel beams, respectively. The FFST frame depicted an 18.4% higher ultimate load capacity than the steel-only frame under a mid-point concentrated load. Moreover, the FFST beam-to-column bolted connection showed high ductile performance. The initial results and the proposed simple manufacturing process suggest that the proposed FFST concept can be upscaled and used in real structures.

Keywords: wood fibre, reusing wood, fibre-filled steel, hybrid construction

Procedia PDF Downloads 79
4636 Cognitive Relaying in Interference Limited Spectrum Sharing Environment: Outage Probability and Outage Capacity

Authors: Md Fazlul Kader, Soo Young Shin

Abstract:

In this paper, we consider a cognitive relay network (CRN) in which the primary receiver (PR) is protected by peak transmit power $\bar{P}_{ST}$ and/or peak interference power Q constraints. In addition, the interference effect from the primary transmitter (PT) is considered to show its impact on the performance of the CRN. We investigate the outage probability (OP) and outage capacity (OC) of the CRN by deriving closed-form expressions over Rayleigh fading channel. Results show that both the OP and OC improve by increasing the cooperative relay nodes as well as when the PT is far away from the SR.

Keywords: cognitive relay, outage, interference limited, decode-and-forward (DF)

Procedia PDF Downloads 512
4635 Modelling Conceptual Quantities Using Support Vector Machines

Authors: Ka C. Lam, Oluwafunmibi S. Idowu

Abstract:

Uncertainty in cost is a major factor affecting performance of construction projects. To our knowledge, several conceptual cost models have been developed with varying degrees of accuracy. Incorporating conceptual quantities into conceptual cost models could improve the accuracy of early predesign cost estimates. Hence, the development of quantity models for estimating conceptual quantities of framed reinforced concrete structures using supervised machine learning is the aim of the current research. Using measured quantities of structural elements and design variables such as live loads and soil bearing pressures, response and predictor variables were defined and used for constructing conceptual quantities models. Twenty-four models were developed for comparison using a combination of non-parametric support vector regression, linear regression, and bootstrap resampling techniques. R programming language was used for data analysis and model implementation. Gross soil bearing pressure and gross floor loading were discovered to have a major influence on the quantities of concrete and reinforcement used for foundations. Building footprint and gross floor loading had a similar influence on beams and slabs. Future research could explore the modelling of other conceptual quantities for walls, finishes, and services using machine learning techniques. Estimation of conceptual quantities would assist construction planners in early resource planning and enable detailed performance evaluation of early cost predictions.

Keywords: bootstrapping, conceptual quantities, modelling, reinforced concrete, support vector regression

Procedia PDF Downloads 205
4634 Shear Behavior of Steel-Fiber-Reinforced Precast/Prestressed Concrete Hollow Core Slabs

Authors: Thi Nguyet Hang Nguyen, Kang Hai Tan

Abstract:

Precast/prestressed concrete hollow core (PCHC) slabs, especially ones with depth more than 300 mm, are susceptible to web-shear failure. The reasons lie on the fact that the production process of PCHC slabs, i.e., the extrusion method (the most common method to cast PCHC slabs nowadays), does not allow them to contain any shear reinforcement. Moreover, due to the presence of the longitudinal voids, cross sections of PCHC slabs are reduced. Therefore, the shear capacity of the slabs depends solely on the tensile strength of concrete which is relatively low. Given that shear is a major concern in using hollow-core slabs, this paper investigates the possibility of adopting steel fibers in PCHC slabs produced by the extrusion method to enhance the shear capacity of the slabs. Three full-scale PCHC slabs with and without hooked-steel fibers were cast and tested until failure. Three different volumetric fiber contents of 0, 0.51 and 0.89% were investigated. The test results showed that there were substantial increases in shear capacity and ductility with the use of hooked-steel fibers. Ultimate shear strength increased with fiber content. In addition, while the specimen without steel fibers and the one with the steel-fiber volume fraction of 0.51% failed in web-shear mode, the specimen with the higher fiber content (0.89%) collapsed in flexural-shear mode. However, as the hooked-steel fibers with the fiber content of 0.89% were used, difficulties in concrete consolidation were observed while concrete was being cast. This could lead to a lower ultimate shear capacity due to a poorer bond between the concrete and the steel fibers.

Keywords: hollow-core slabs, shear strength, steel fibers, web-shear failure

Procedia PDF Downloads 172
4633 Development of a System for Measuring the Three-axis Pedal Force in Cycling and Its Applications

Authors: Joo-Hack Lee, Jin-Seung Choi, Dong-Won Kang, Jeong-Woo Seo, Ju-Young Kim, Dae-Hyeok Kim, Seung-Tae Yang, Gye-Rae Tack

Abstract:

For cycling, the analysis of the pedal force is one of the important factors in the study of exercise ability assessment and overuse injuries. In past studies, a two-axis measurement sensor was used at the sagittal plane to measure the force only in the anterior, posterior, and vertical directions and to analyze the loss of force and the injury on the frontal plane due to the forces in the right and left directions. In this study, which is a basic study on diverse analyses of the pedal force that consider the forces on the sagittal plane and the frontal plane, a three-axis pedal force measurement sensor was developed to measure the anterior-posterior (Fx), medio-lateral (Fz), and vertical (Fy) forces. The sensor was fabricated with a size and shape similar to those of the general flat pedal, and had a 550g weight that allowed smooth pedaling. Its measurement range was ±1000 N for Fx and Fz and ±2000 N for Fy, and its non-linearity, hysteresis, and repeatability were approximately 0.5%. The data were sampled at 1000 Hz using a signal collector. To use the developed sensor, the pedaling efficiency (index of efficiency, IE) and the range of left and right (medio-lateral, ML) forces were measured with two seat heights (low and high). The results of the measurement showed that the IE was higher and the force range in the ML direction was lower with the high position than with the low position. The developed measurement sensor and its application results will be useful in understanding and explaining the complicated pedaling technique, and will enable diverse kinematic analyses of the pedal force on the sagittal plane and the frontal plane.

Keywords: cycling, pedal force, index of effectiveness, measuring

Procedia PDF Downloads 661
4632 Multi-objective Rationality Optimisation for Robotic-fabrication-oriented Free-form Timber Structure Morphology Design

Authors: Yiping Meng, Yiming Sun

Abstract:

The traditional construction industry is unable to meet the requirements for novel fabrication and construction. Automated construction and digital design have emerged as industry development trends that compensate for this shortcoming under the backdrop of Industrial Revolution 4.0. Benefitting from more flexible working space and more various end-effector tools compared to CNC methods, robot fabrication and construction techniques have been used in irregular architectural design. However, there is a lack of a systematic and comprehensive design and optimisation workflow considering geometric form, material, and fabrication methods. This paper aims to propose a design optimisation workflow for improving the rationality of a free-form timber structure fabricated by the robotic arm. Firstly, the free-form surface is described by NURBS, while its structure is calculated using the finite element analysis method. Then, by considering the characteristics and limiting factors of robotic timber fabrication, strain energy and robustness are set as optimisation objectives to optimise structural morphology by gradient descent method. As a result, an optimised structure with axial force as the main force and uniform stress distribution is generated after the structure morphology optimisation process. With the decreased strain energy and the improved robustness, the generated structure's bearing capacity and mechanical properties have been enhanced. The results prove the feasibility and effectiveness of the proposed optimisation workflow for free-form timber structure morphology design.

Keywords: robotic fabrication, free-form timber structure, Multi-objective optimisation, Structural morphology, rational design

Procedia PDF Downloads 194
4631 Computed Tomography Differential Diagnose of Intraventicular Masses in the Emergency Departemen

Authors: Angelis P. Barlampas

Abstract:

Purpose: A 29 years old woman presented in the emergency department with psychiatric symptoms. The psychiatrist ordered a computed tomography scan as part of a general examination. Material and methods: The CT showed bilateral enlarged choroid plexus structures mimicking papillomata and situated in the trigones of the lateral ventricles. The left choroid plexus was heavily calcified, but the right one has no any obvious calcifications. Results: It is well kown that any brain mass can present with behavioral changes and even psychiatric symptomatology. Papillomata of the ventricular system have been described to cause psychotic episodes. According to literature, choroid plexus papillomas are seldom neuroepithelial intraventricular tumors, which are benign and categorized as WHO grade 1 tumors. They are more common in the pediatric population, but they can occur in the adults, too1. In addition, the distinction between choroid plexus papilloma and carcinoma is very difficult and impossible by imagine alone. It can only be implied with more advanced imaging, such as arterial spin labeling and MRI. The final diagnosis is, of course, after surgical excision. The usual location in adults is the fourth ventricle, but in children, it is the lateral ventricles. Their imaging appearance is that of a solid vascular tumor, which enhances intensely after the intravenous administration of contrast material. One out of fourth tumors presents speckled calcifications1. In our case, there are symmetrically sized masses at the trigones, and there are no calcifications in one of them, whereas the other one is grossly calcified. Also, there is no obvious hydrocephalus or any other evidence of increased intracranial pressure. General conclusions: When there is a new psychiatric patient, someone must undergo any possible examination, and of course, a brain CT study should be done to exclude any rare organic causes that may be responsible for the disease.

Keywords: phycosis, intraventricular masses, CT, brain calcifications

Procedia PDF Downloads 57
4630 Roundabout Implementation Analyses Based on Traffic Microsimulation Model

Authors: Sanja Šurdonja, Aleksandra Deluka-Tibljaš, Mirna Klobučar, Irena Ištoka Otković

Abstract:

Roundabouts are a common choice in the case of reconstruction of an intersection, whether it is to improve the capacity of the intersection or traffic safety, especially in urban conditions. The regulation for the design of roundabouts is often related to driving culture, the tradition of using this type of intersection, etc. Individual values in the regulation are usually recommended in a wide range (this is the case in Croatian regulation), and the final design of a roundabout largely depends on the designer's experience and his/her choice of design elements. Therefore, before-after analyses are a good way to monitor the performance of roundabouts and possibly improve the recommendations of the regulation. This paper presents a comprehensive before-after analysis of a roundabout on the country road network near Rijeka, Croatia. The analysis is based on a thorough collection of traffic data (operating speeds and traffic load) and design elements data, both before and after the reconstruction into a roundabout. At the chosen location, the roundabout solution aimed to improve capacity and traffic safety. Therefore, the paper analyzed the collected data to see if the roundabout achieved the expected effect. A traffic microsimulation model (VISSIM) of the roundabout was created based on the real collected data, and the influence of the increase of traffic load and different traffic structures, as well as of the selected design elements on the capacity of the roundabout, were analyzed. Also, through the analysis of operating speeds and potential conflicts by application of the Surrogate Safety Assessment Model (SSAM), the traffic safety effect of the roundabout was analyzed. The results of this research show the practical value of before-after analysis as an indicator of roundabout effectiveness at a specific location. The application of a microsimulation model provides a practical method for analyzing intersection functionality from a capacity and safety perspective in present and changed traffic and design conditions.

Keywords: before-after analysis, operating speed, capacity, design.

Procedia PDF Downloads 22
4629 Intersection of Sports and Society

Authors: Josh Felton

Abstract:

There’s a common misconception that sports is an escape from the reality of life, and that it is what disconnects us from the agendas of tomorrow. While this may be true for a select few, there’s more to sports than just competition and banter. The bearing and impact society has on the sports we know and love has always existed and is greater than ever. However, to many in the national media, it is almost seen as a taboo subject. Whether one realizes it or not, sports and society intersect at every turn and it’s not a coincidence. In collaboration with the Woodrow Wilson Fellowship at Johns Hopkins University, a video and podcast series titled Intersection of sports and society (ISS), dedicated to studying some of the most polarizing and some of the least recognized issues in the world of sports that have a powerful social bearing on every demographic will debut in the Summer of 2023. Issues like race, gender, and sexuality, as well as how they have been challenged and addressed historically in the sports realm will be discussed to a great extent in the series. With the collaboration of many authors, researchers, and former athletes, the podcast will be a platform for them to not only share their discoveries but to have an extensive dialogue on the impact their work and current events have had on the issues. Set to be released in the summer of 2023, the series will have a list of great researchers and authors, headlined by New York Times writer and best-selling author Jonathan Abrams, who in 2017, published a book titled Boys Among Men: How the Prep-to-Pro Generation Redefined the NBA and Sparked a Basketball Revolution. His expertise on the matters of the high school and collegiate sports will be reflected in a very important conversation on the evolution of the high school-to-professional route, the historic exploitation of black student athletes by the NCAA, and how the new rules allowing for greater freedom of choice for young athletes has benefitted minority athletes coming from impoverished backgrounds. This episode is just a preview of a list of important topics that to the author’s best knowledge aren't typically discussed by the national media. Many more topics include women’s sports representation, the struggle for achieving fair minority representation in NFL coaching and front office positions, the story of race and baseball within the Boston Red Sox organization, and what the rise of the black quarterback means for America. Many people fail to realize how the sports we all know and love have any social bearing on them and the athletes who play them. The hope with this project is to shed light on the social relevance that exists in the realm of sports, where we have for years failed to see and acknowledge a connection between sports and society.

Keywords: sports, society, race, gender

Procedia PDF Downloads 107
4628 Performance of Axially Loaded Single Pile Embedded in Cohesive Soil with Cavities

Authors: Ali A. Al-Jazaairry, Tahsin T. Sabbagh

Abstract:

The stability of a single model pile located adjacent to a continuous cavity was studied. This paper is an attempt to understand the behaviour of axially loaded single pile embedded in clayey soil with the presences of cavities. The performance of piles located in such soils was studied analytically. A verification analysis was carried out on available studies to assess the ability of analytical model to correctly interpret the system behaviour. The study was adopted by finite element program (PLAXIS). The study included many cases; in each case, there is a critical value in which the presence of cavities has shown minimum effect on the pile performance. Figures including the load carrying capacity of pile with the affecting factors are presented. These figures provide beneficial information for pile design constructed close to underground cavities. It was concluded that the load carrying capacity of the pile is reduced by the presence of the cavity within the soil mass. This reduction varies according to the size and location of cavity.

Keywords: axial load, cavity, clay, pile, ultimate capacity

Procedia PDF Downloads 271
4627 Neuromuscular Control and Performance during Sudden Acceleration in Subjects with and without Unilateral Acute Ankle Sprains

Authors: M. Qorbani

Abstract:

Neuromuscular control of posture as understood through studies of responses to mechanical sudden acceleration automatically has been previously demonstrated in individuals with chronic ankle instability (CAI), but the presence of acute condition has not been previously explored specially in a sudden acceleration. The aim of this study was to determine neuromuscular control pattern in those with and without unilateral acute ankle sprains. Design: Case - control. Setting: University research laboratory. The sinker–card protocol with surface translation was be used as a sudden acceleration protocol with study of EMG upon 4 posture stabilizer muscles in two sides of the body in response to sudden acceleration in forward and backward directions. 20 young adult women in two groups (10 LAS; 23.9 ± 2.03 yrs and 10 normal; 26.4 ± 3.2 yrs). The data of EMG were assessed by using multivariate test and one-way repeated measures 2×2×4 ANOVA (P< 0.05). The results showed a significant muscle by direction interaction. Higher TA activity of left and right side in LAS group than normal group in forward direction significantly be showed. Higher MGR activity in normal group than LAS group in backward direction significantly showed. These findings suggest that compared two sides of the body in two directions for 4 muscles EMG activities between and within group for neuromuscular control of posture in avoiding fall. EMG activations of two sides of the body in lateral ankle sprain (LAS) patients were symmetric significantly. Acute ankle instability following once ankle sprains caused to coordinated temporal spatial patterns and strategy selection.

Keywords: neuromuscular response, sEMG, lateral ankle sprain, posture.

Procedia PDF Downloads 482
4626 Detection of Patient Roll-Over Using High-Sensitivity Pressure Sensors

Authors: Keita Nishio, Takashi Kaburagi, Yosuke Kurihara

Abstract:

Recent advances in medical technology have served to enhance average life expectancy. However, the total time for which the patients are prescribed complete bedrest has also increased. With patients being required to maintain a constant lying posture- also called bedsore- development of a system to detect patient roll-over becomes imperative. For this purpose, extant studies have proposed the use of cameras, and favorable results have been reported. Continuous on-camera monitoring, however, tends to violate patient privacy. We have proposed unconstrained bio-signal measurement system that could detect body-motion during sleep and does not violate patient’s privacy. Therefore, in this study, we propose a roll-over detection method by the date obtained from the bi-signal measurement system. Signals recorded by the sensor were assumed to comprise respiration, pulse, body motion, and noise components. Compared the body-motion and respiration, pulse component, the body-motion, during roll-over, generate large vibration. Thus, analysis of the body-motion component facilitates detection of the roll-over tendency. The large vibration associated with the roll-over motion has a great effect on the Root Mean Square (RMS) value of time series of the body motion component calculated during short 10 s segments. After calculation, the RMS value during each segment was compared to a threshold value set in advance. If RMS value in any segment exceeded the threshold, corresponding data were considered to indicate occurrence of a roll-over. In order to validate the proposed method, we conducted experiment. A bi-directional microphone was adopted as a high-sensitivity pressure sensor and was placed between the mattress and bedframe. Recorded signals passed through an analog Band-pass Filter (BPF) operating over the 0.16-16 Hz bandwidth. BPF allowed the respiration, pulse, and body-motion to pass whilst removing the noise component. Output from BPF was A/D converted with the sampling frequency 100Hz, and the measurement time was 480 seconds. The number of subjects and data corresponded to 5 and 10, respectively. Subjects laid on a mattress in the supine position. During data measurement, subjects—upon the investigator's instruction—were asked to roll over into four different positions—supine to left lateral, left lateral to prone, prone to right lateral, and right lateral to supine. Recorded data was divided into 48 segments with 10 s intervals, and the corresponding RMS value for each segment was calculated. The system was evaluated by the accuracy between the investigator’s instruction and the detected segment. As the result, an accuracy of 100% was achieved. While reviewing the time series of recorded data, segments indicating roll-over tendencies were observed to demonstrate a large amplitude. However, clear differences between decubitus and the roll-over motion could not be confirmed. Extant researches possessed a disadvantage in terms of patient privacy. The proposed study, however, demonstrates more precise detection of patient roll-over tendencies without violating their privacy. As a future prospect, decubitus estimation before and after roll-over could be attempted. Since in this paper, we could not confirm the clear differences between decubitus and the roll-over motion, future studies could be based on utilization of the respiration and pulse components.

Keywords: bedsore, high-sensitivity pressure sensor, roll-over, unconstrained bio-signal measurement

Procedia PDF Downloads 121
4625 Experimental Study of Hydrothermal Properties of Cool Pavements to Mitigate Urban Heat Islands

Authors: Youssef Wardeh, Elias Kinab, Pierre Rahme, Gilles Escadeillas, Stephane Ginestet

Abstract:

Urban heat islands designate a local phenomenon that appears in high density cities. This results in a rise ofambient temperature in the urban area compared to the neighboring rural area. Solar radiation plays an important role in this phenomenon since it is partially absorbed by the materials, especially roads and parking lots. Cool pavements constitute an innovative and promising technique to mitigate urban heat islands. The cool pavements studied in this work allow to limit the increase of the surface temperature, thanks to evaporation of the water conducted through capillary pores, from the humidified base to the surface exposed to solar radiation. However, the performance or the cooling capacity of a pavement sometimes remained difficult to characterize. In this work, a new definition of the cooling capacity of a pavement is presented, and a correlation between the latter and the hydrothermal properties of cool pavements is revealed. Firstly, several porous concrete pavements were characterized through their hydrothermal properties, which can be related to the cooling effect, such as albedo, thermal conductivity, water absorption, etc. Secondly, these pavements initially saturated and continuously supplied with water through their bases, were exposed to external solar radiation during three sunny summer days, and their surface temperatures were measured. For draining pavements, a strong second-degreepolynomial correlation(R² = 0.945) was found between the cooling capacity and the term, which reflects the interconnection of capillary water to the surface. Moreover, it was noticed that the cooling capacity reaches its maximum for an optimal range of capillary pores for which the capillary rise is stronger than gravity. For non-draining pavements, a good negative linear correlation (R² = 0.828) was obtained between the cooling capacity and the term, which expresses the ability to heat the capillary water by the energystored far from the surface, and, therefore, the dominance of the evaporation process by diffusion. The latest tests showed that this process is, however, likely to be disturbed by the material resistance to the water vapor diffusion.

Keywords: urban heat islands, cool pavement, cooling capacity, hydrothermal properties, evaporation

Procedia PDF Downloads 97
4624 The Effect of Zeolite on Sandy-Silt Soil Mechanical Properties

Authors: Shahryar Aftabi, Saeed Fathi, Mohammad H. Aminfar

Abstract:

It is well known that cemented sand is one of the best approaches for soil stabilization. In some cases, a blend of sand, cement and other pozzolan materials such as zeolite, nano-particles and fiber can be widely (commercially) available and be effectively used in soil stabilization, especially in road construction. In this research, we investigate the effects of CaO which is based on the geotechnical characteristics of zeolite composition with sandy silt soil. Zeolites have low amount of CaO in their structures, that is, varying from 3% to 10%, and by removing the cement paste, we want to investigate the effect of zeolite pozzolan without any activator on soil samples strength. In this research, experiments are concentrated on various weight percentages of zeolite in the soil to examine the effect of the zeolite on drainage shear strength and California Bearing Ratio (CBR) both with and without curing. The study also investigates their liquid limit and plastic limit behavior and makes a comparative result by using Feng's and Wroth-Wood's methods in fall cone (cone penetrometer) device; in the final the SEM images have been presented. The results show that by increasing the percentage of zeolite in without-curing samples, the fine zeolite particles increase some soil's strength, but in the curing-state we can see a relatively higher strength toward without-curing state, since the zeolites have no plastic behavior, the pozzolanic property of zeolites plays a much higher role than cementing properties. Indeed, it is better to combine zeolite particle with activator material such as cement or lime to gain better results.

Keywords: California bearing ratio, CBR, direct shear, fall-cone, sandy silt, SEM, zeolite

Procedia PDF Downloads 136
4623 A Finite Element Study of Laminitis in Horses

Authors: Naeim Akbari Shahkhosravi, Reza Kakavand, Helen M. S. Davies, Amin Komeili

Abstract:

Equine locomotion and performance are significantly affected by hoof health. One of the most critical diseases of the hoof is laminitis, which can lead to horse lameness in a severe condition. This disease exhibits the mechanical properties degradation of the laminar junction tissue within the hoof. Therefore, it is essential to investigate the biomechanics of the hoof, focusing specifically on excessive and cumulatively accumulated stresses within the laminar junction tissue. For this aim, the current study generated a novel equine hoof Finite Element (FE) model under dynamic physiological loading conditions and employing a hyperelastic material model. Associated tissues of the equine hoof were segmented from computed tomography scans of an equine forelimb, including the navicular bone, third phalanx, sole, frog, laminar junction, digital cushion, and medial- dorsal- lateral wall areas. The inner tissues were connected based on the hoof anatomy, and the hoof was under a dynamic loading over cyclic strides at the trot. The strain distribution on the hoof wall of the model was compared with the published in vivo strain measurements to validate the model. Then the validated model was used to study the development of laminitis. The ultimate stress tolerated by the laminar junction before rupture was considered as a stress threshold. The tissue damage was simulated through iterative reduction of the tissue’s mechanical properties in the presence of excessive maximum principal stresses. The findings of this investigation revealed how damage initiates from the medial and lateral sides of the tissue and propagates through the hoof dorsal area.

Keywords: horse hoof, laminitis, finite element model, continuous damage

Procedia PDF Downloads 182
4622 Experimental Study on Connection Method of Precast Beam-Column Using CFRPS

Authors: Harmonis Rante, Rudy Djamaluddin, Herman Parung, Victor Sampebulu

Abstract:

Many research of FRP strengthening on beam-column joint have been done. They used FRP as a strengthening material but not as a connection method. This paper presents a result of experimental-study on connection method of precast beam-column using CFRP sheet to investigate the possibility of CFRP sheet to be a connecting material. Six specimens were prepared and tested to investigate the behavior of CFRP-s connection capacity. The performance of two-connection method is presented in this paper. Three specimens have been tested so far, they were specimen without belt, specimen using one belt and monolith specimen as a control specimen. Result indicated that FRP joint system without belt reached higher capacity than joint system using one belt, but both are lower than monolith joint. Capacity of joint system without belt is 90.6% and 62.5% for the joint system using one belt, respectively compared to the control specimen.

Keywords: belt, CFRP-s, connection method, strengthening

Procedia PDF Downloads 251
4621 Study on Heat Transfer Capacity Limits of Heat Pipe with Working Fluids Ammonia and Water

Authors: M. Heydari, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region, and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.used in the abstract.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 400
4620 Modulating Photoelectrochemical Water-Splitting Activity by Charge-Storage Capacity of Electrocatalysts

Authors: Yawen Dai, Ping Cheng, Jian Ru Gong

Abstract:

Photoelctrochemical (PEC) water splitting using semiconductors (SCs) provides a convenient way to convert sustainable but intermittent solar energy into clean hydrogen energy, and it has been regarded as one of most promising technology to solve the energy crisis and environmental pollution in modern society. However, the record energy conversion efficiency of a PEC cell (~3%) is still far lower than the commercialization requirement (~10%). The sluggish kinetics of oxygen evolution reaction (OER) half reaction on photoanodes is a significant limiting factor of the PEC device efficiency, and electrocatalysts (ECs) are always deposited on SCs to accelerate the hole injection for OER. However, an active EC cannot guarantee enhanced PEC performance, since the newly emerged SC-EC interface complicates the interfacial charge behavior. Herein, α-Fe2O3 photoanodes coated with Co3O4 and CoO ECs are taken as the model system to glean fundamental understanding on the EC-dependent interfacial charge behavior. Intensity modulated photocurrent spectroscopy and electrochemical impedance spectroscopy were used to investigate the competition between interfacial charge transfer and recombination, which was found to be dominated by the charge storage capacities of ECs. The combined results indicate that both ECs can store holes and increase the hole density on photoanode surface. It is like a double-edged sword that benefit the multi-hole participated OER, as well as aggravate the SC-EC interfacial charge recombination due to the Coulomb attraction, thus leading to a nonmonotonic PEC performance variation trend with the increasing surface hole density. Co3O4 has low hole storage capacity which brings limited interfacial charge recombination, and thus the increased surface holes can be efficiently utilized for OER to generate enhanced photocurrent. In contrast, CoO has overlarge hole storage capacity that causes severe interfacial charge recombination, which hinders hole transfer to electrolyte for OER. Therefore, the PEC performance of α-Fe2O3 is improved by Co3O4 but decreased by CoO despite the similar electrocatalytic activity of the two ECs. First-principle calculation was conducted to further reveal how the charge storage capacity depends on the EC’s intrinsic property, demonstrating that the larger hole storage capacity of CoO than that of Co3O4 is determined by their Co valence states and original Fermi levels. This study raises up a new strategy to manipulate interfacial charge behavior and the resultant PEC performance by the charge storage capacity of ECs, providing insightful guidance for the interface design in PEC devices.

Keywords: charge storage capacity, electrocatalyst, interfacial charge behavior, photoelectrochemistry, water-splitting

Procedia PDF Downloads 141
4619 Contextualizing Communication through Culture and Social Structure: An Exploration of Media Life

Authors: Jyoti Ranjan Sahoo

Abstract:

Communication is a social phenomenon which mediates to our everyday life and it creates, maintains, builds, circulates, and propagates for a common identity the society. The symbolic forms of communication such as aural, sounds, oral expressions, signs, and language as means of communication are being used in everyday life in helping to identify as construction of social reality. These symbolic forms of communication are treated as the social process in everyday life. Therefore, there is an intrinsic relationship between communication and culture to understand media life for village communities. Similarly, the interface of communication with social life is reflected upon it’s formulation of the notions of social structure and culture. It has been observed that there is an overlapping and new phenomenonal change of media life among marginalized communities in general and village communities in particular. Therefore, this paper is an outcome of decadal stock of literature and an empirical investigation on understanding of communication in a tribal village in India. It has examined the idea of American scientist Edward T. Hall “the culture is communication, and the communication is culture” in village society on understanding media life. Thus, the Harold Innis’s theoretical idea of “communication” has been critically examined in these contexts since author tries to explore and understand the inter-disciplinarity on understanding media life through communication and culture which is embedded in socio-cultural life bearing on epistemological and ontological implications. The paper tries to explore and understand the inter-disciplinary and historical trajectories of communication embedded with other social science disciplines; and also tries to map these studies relevant for the future directions and engagement which would have bearing on epistemological and ontological implications in the field of media and communication.

Keywords: culture, communication, history, media, oral, tradition

Procedia PDF Downloads 361
4618 Development and Characterization of a Bio-Sourced Composite Material Based on Phase Change Material and Hemp Shives

Authors: Hachmi Toifane, Pierre Tittelein, Anh Dung Tran Le, Laurent Zalewsi

Abstract:

This study introduces a composite material composed of bio-sourced phase-change material (PCM) of plant origin combined with hemp shives, developed in response to environmental challenges in the construction sector. The state of the art emphasizes the low thermal storage capacity of bio-based materials and highlights increasing need for developing sustainable materials that offer optimal thermal, mechanical, and hydric performances. The combining of PCM's thermal properties and hygric properties of hemp shives results in a material that combines lightness, strength, and hygrothermal regulation. Various formulations are being assessed and compared to conventional hemp concrete. Thermal characterization includes the measurements of thermal conductivity and numerical simulations to evaluate the thermal storage capacity. The results indicate that the addition of PCM significantly enhances the material's thermal storage capacity, positioning this one as a promising, eco-friendly solution for sustainable construction and for improving the energy efficiency of buildings.

Keywords: hemp composite, bio-sourced phase change material, thermal storage, hemp shives

Procedia PDF Downloads 45
4617 Ductility Spectrum Method for the Design and Verification of Structures

Authors: B. Chikh, L. Moussa, H. Bechtoula, Y. Mehani, A. Zerzour

Abstract:

This study presents a new method, applicable to evaluation and design of structures has been developed and illustrated by comparison with the capacity spectrum method (CSM, ATC-40). This method uses inelastic spectra and gives peak responses consistent with those obtained when using the nonlinear time history analysis. Hereafter, the seismic demands assessment method is called in this paper DSM, Ductility Spectrum Method. It is used to estimate the seismic deformation of Single-Degree-Of-Freedom (SDOF) systems based on DDRS, Ductility Demand Response Spectrum, developed by the author.

Keywords: seismic demand, capacity, inelastic spectra, design and structure

Procedia PDF Downloads 396
4616 The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition

Authors: Gabi N. Nehme, Saeed Ghalambor

Abstract:

The use of titanium fluoride and iron fluoride (TiF3/FeF3) catalysts in combination with polutetrafluoroethylene (PTFE) in plain zinc dialkyldithiophosphate (ZDDP) oil is important for the study of engine tribocomponents and is increasingly a strategy to improve the formation of tribofilm and to provide low friction and excellent wear protection in reduced phosphorus plain ZDDP oil. The influence of surface roughness and the concentration of TiF3/FeF3/PTFE were investigated using bearing steel samples dipped in lubricant solution @100°C for two different heating time durations. This paper addresses the effects of water drop contact angle using different surface finishes after treating them with different lubricant combination. The calculated water drop contact angles were analyzed using Design of Experiment software (DOE) and it was determined that a 0.05 μm Ra surface roughness would provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance as reflected in the scanning electron microscopy (SEM) images and the tribological testing under extreme pressure conditions. Both friction and wear performance depend greatly on the PTFE/and catalysts in plain ZDDP oil with 0.05% phosphorous and on the surface finish of bearing steel. The friction and wear reducing effects, which was observed in the tribological tests, indicated a better micro lubrication effect of the 0.05 μm Ra surface roughness treated at 100°C for 24 hours when compared to the 0.1 μm Ra surface roughness with the same treatment.

Keywords: scanning electron microscopy, ZDDP, catalysts, PTFE, friction, wear

Procedia PDF Downloads 350
4615 Increasing Power Transfer Capacity of Distribution Networks Using Direct Current Feeders

Authors: Akim Borbuev, Francisco de León

Abstract:

Economic and population growth in densely-populated urban areas introduce major challenges to distribution system operators, planers, and designers. To supply added loads, utilities are frequently forced to invest in new distribution feeders. However, this is becoming increasingly more challenging due to space limitations and rising installation costs in urban settings. This paper proposes the conversion of critical alternating current (ac) distribution feeders into direct current (dc) feeders to increase the power transfer capacity by a factor as high as four. Current trends suggest that the return of dc transmission, distribution, and utilization are inevitable. Since a total system-level transformation to dc operation is not possible in a short period of time due to the needed huge investments and utility unreadiness, this paper recommends that feeders that are expected to exceed their limits in near future are converted to dc. The increase in power transfer capacity is achieved through several key differences between ac and dc power transmission systems. First, it is shown that underground cables can be operated at higher dc voltage than the ac voltage for the same dielectric stress in the insulation. Second, cable sheath losses, due to induced voltages yielding circulation currents, that can be as high as phase conductor losses under ac operation, are not present under dc. Finally, skin and proximity effects in conductors and sheaths do not exist in dc cables. The paper demonstrates that in addition to the increased power transfer capacity utilities substituting ac feeders by dc feeders could benefit from significant lower costs and reduced losses. Installing dc feeders is less expensive than installing new ac feeders even when new trenches are not needed. Case studies using the IEEE 342-Node Low Voltage Networked Test System quantify the technical and economic benefits of dc feeders.

Keywords: DC power systems, distribution feeders, distribution networks, power transfer capacity

Procedia PDF Downloads 128
4614 A Study of Kinematical Parameters I9N Instep Kicking in Soccer

Authors: Abdolrasoul Daneshjoo

Abstract:

Introduction: Soccer is a game which draws more attention in different countries especially in Brazil. Kicking among different skills in soccer and soccer players is an excellent role for the success and preference of a team. The way of point gaining in this game is passing the ball over the goal lines which are gained by shoot skill in attack time and or during the penalty kicks.Regarding the above assumption, identifying the effective factors in instep kicking in different distances shoot with maximum force and high accuracy or pass and penalty kick, may assist the coaches and players in raising qualitative level of performing the skill. Purpose: The aim of the present study was to study of a few kinematical parameters in instep kicking from 3 and 5 meter distance among the male and female elite soccer players. Methods: 24 right dominant lower limb subjects (12 males and 12 females) among Tehran elite soccer players with average and the standard deviation (22.5 ± 1.5) & (22.08± 1.31) years, height of (179.5 ± 5.81) & (164.3 ± 4.09) cm, weight of (69.66 ± 4.09) & (53.16 ± 3.51) kg, %BMI (21.06 ± .731) & (19.67 ± .709), having playing history of (4 ± .73) & (3.08 ± .66) years respectively participated in this study. They had at least two years of continuous playing experience in Tehran soccer league.For sampling player's kick; Kinemetrix Motion analysis with three cameras with 500 Hz was used. Five reflective markers were placed laterally on the kicking leg over anatomical points (the iliac crest, major trochanter, lateral epicondyle of femur, lateral malleolus, and lateral aspect of distal head of the fifth metatarsus). Instep kick was filmed, with one step approach and 30 to 45 degrees angle from stationary ball. Three kicks were filmed, one kick selected for further analyses. Using Kinemetrix 3D motion analysis software, the position of the markers was analyzed. Descriptive statistics were used to describe the mean and standard deviation, while the analysis of variance, and independent t-test (P < 0.05) were used to compare the kinematic parameters between two genders. Results and Discussion: Among the evaluated parameters, the knee acceleration, the thigh angular velocity, the angle of knee proportionately showed significant relationship with consequence of kick. While company performance on 5m in 2 genders, significant differences were observed in internal – external displacement of toe, ankle, hip and the velocity of toe, ankle and the acceleration of toe and the angular velocity of pelvic, thigh and before time contact. Significant differences showed the internal – external displacement of toe, the ankle, the knee and the hip, the iliac crest and the velocity of toe, the ankle and acceleration of ankle and angular velocity of the pelvic and the knee.

Keywords: biomechanics, kinematics, soccer, instep kick, male, female

Procedia PDF Downloads 415
4613 Exploring Disruptive Innovation Capacity Effects on Firm Performance: An Investigation in Industries 4.0

Authors: Selma R. Oliveira, E. W. Cazarini

Abstract:

Recently, studies have referenced innovation as a key factor affecting the performance of firms. Companies make use of its innovative capacities to achieve sustainable competitive advantage. In this perspective, the objective of this paper is to contribute to innovation planning policies in industry 4.0. Thus, this paper examines the disruptive innovation capacity on firm performance in Europe. This procedure was prepared according to the following phases: Phase 1: Determination of the conceptual model; and Phase 2: Verification of the conceptual model. The research was initially conducted based on the specialized literature, which extracted the data regarding the constructs/structure and content in order to build the model. The research involved the intervention of experts knowledgeable on the object studied, selected by technical-scientific criteria. The data were extracted using an assessment matrix. To reduce subjectivity in the results achieved the following methods were used complementarily and in combination: multicriteria analysis, multivariate analysis, psychometric scaling and neurofuzzy technology. The data were extracted using an assessment matrix and the results were satisfactory, validating the modeling approach.

Keywords: disruptive innovation, capacity, performance, Industry 4.0

Procedia PDF Downloads 165
4612 Estimation of Delay Due to Loading–Unloading of Passengers by Buses and Reduction of Number of Lanes at Selected Intersections in Dhaka City

Authors: Sumit Roy, A. Uddin

Abstract:

One of the significant reasons that increase the delay time in the intersections at heterogeneous traffic condition is a sudden reduction of the capacity of the roads. In this study, the delay for this sudden capacity reduction is estimated. Two intersections at Dhaka city were brought in to thestudy, i.e., Kakrail intersection, and SAARC Foara intersection. At Kakrail intersection, the sudden reduction of capacity in the roads is seen at three downstream legs of the intersection, which are because of slowing down or stopping of buses for loading and unloading of passengers. At SAARC Foara intersection, sudden reduction of capacity was seen at two downstream legs. At one leg, it was due to loading and unloading of buses, and at another leg, it was for both loading and unloading of buses and reduction of the number of lanes. With these considerations, the delay due to intentional stoppage or slowing down of buses and reduction of the number of lanes for these two intersections are estimated. Here the delay was calculated by two approaches. The first approach came from the concept of shock waves in traffic streams. Here the delay was calculated by determining the flow, density, and speed before and after the sudden capacity reduction. The second approach came from the deterministic analysis of queues. Here the delay is calculated by determining the volume, capacity and reduced capacity of the road. After determining the delay from these two approaches, the results were compared. For this study, the video of each of the two intersections was recorded for one hour at the evening peak. Necessary geometric data were also taken to determine speed, flow, and density, etc. parameters. The delay was calculated for one hour with one-hour data at both intersections. In case of Kakrail intersection, the per hour delay for Kakrail circle leg was 5.79, and 7.15 minutes, for Shantinagar cross intersection leg they were 13.02 and 15.65 minutes, and for Paltan T intersection leg, they were 3 and 1.3 minutes for 1st and 2nd approaches respectively. In the case of SAARC Foara intersection, the delay at Shahbag leg was only due to intentional stopping or slowing down of busses, which were 3.2 and 3 minutes respectively for both approaches. For the Karwan Bazar leg, the delays for buses by both approaches were 5 and 7.5 minutes respectively, and for reduction of the number of lanes, the delays for both approaches were 2 and 1.78 minutes respectively. Measuring the delay per hour for the Kakrail leg at Kakrail circle, it is seen that, with consideration of the first approach of delay estimation, the intentional stoppage and lowering of speed by buses contribute to 26.24% of total delay at Kakrail circle. If the loading and unloading of buses at intersection is made forbidden near intersection, and any other measures for loading and unloading of passengers are established far enough from the intersections, then the delay at intersections can be reduced at significant scale, and the performance of the intersections can be enhanced.

Keywords: delay, deterministic queue analysis, shock wave, passenger loading-unloading

Procedia PDF Downloads 178
4611 Brittle Fracture Tests on Steel Bridge Bearings: Application of the Potential Drop Method

Authors: Natalie Hoyer

Abstract:

Usually, steel structures are designed for the upper region of the steel toughness-temperature curve. To address the reduced toughness properties in the temperature transition range, additional safety assessments based on fracture mechanics are necessary. These assessments enable the appropriate selection of steel materials to prevent brittle fracture. In this context, recommendations were established in 2011 to regulate the appropriate selection of steel grades for bridge bearing components. However, these recommendations are no longer fully aligned with more recent insights: Designing bridge bearings and their components in accordance with DIN EN 1337 and the relevant sections of DIN EN 1993 has led to an increasing trend of using large plate thicknesses, especially for long-span bridges. However, these plate thicknesses surpass the application limits specified in the national appendix of DIN EN 1993-2. Furthermore, compliance with the regulations outlined in DIN EN 1993-1-10 regarding material toughness and through-thickness properties requires some further modifications. Therefore, these standards cannot be directly applied to the material selection for bearings without additional information. In addition, recent findings indicate that certain bridge bearing components are subjected to high fatigue loads, necessitating consideration in structural design, material selection, and calculations. To address this issue, the German Center for Rail Traffic Research initiated a research project aimed at developing a proposal to enhance the existing standards. This proposal seeks to establish guidelines for the selection of steel materials for bridge bearings to prevent brittle fracture, particularly for thick plates and components exposed to specific fatigue loads. The results derived from theoretical analyses, including finite element simulations and analytical calculations, are verified through component testing on a large-scale. During these large-scale tests, where a brittle failure is deliberately induced in a bearing component, an artificially generated defect is introduced into the specimen at the predetermined hotspot. Subsequently, a dynamic load is imposed until the crack initiation process transpires, replicating realistic conditions akin to a sharp notch resembling a fatigue crack. To stop the action of the dynamic load in time, it is important to precisely determine the point at which the crack size transitions from stable crack growth to unstable crack growth. To achieve this, the potential drop measurement method is employed. The proposed paper informs about the choice of measurement method (alternating current potential drop (ACPD) or direct current potential drop (DCPD)), presents results from correlations with created FE models, and may proposes a new approach to introduce beach marks into the fracture surface within the framework of potential drop measurement.

Keywords: beach marking, bridge bearing design, brittle fracture, design for fatigue, potential drop

Procedia PDF Downloads 42
4610 A Numerical Study on Semi-Active Control of a Bridge Deck under Seismic Excitation

Authors: A. Yanik, U. Aldemir

Abstract:

This study investigates the benefits of implementing the semi-active devices in relation to passive viscous damping in the context of seismically isolated bridge structures. Since the intrinsically nonlinear nature of semi-active devices prevents the direct evaluation of Laplace transforms, frequency response functions are compiled from the computed time history response to sinusoidal and pulse-like seismic excitation. A simple semi-active control policy is used in regard to passive linear viscous damping and an optimal non-causal semi-active control strategy. The control strategy requires optimization. Euler-Lagrange equations are solved numerically during this procedure. The optimal closed-loop performance is evaluated for an idealized controllable dash-pot. A simplified single-degree-of-freedom model of an isolated bridge is used as numerical example. Two bridge cases are investigated. These cases are; bridge deck without the isolation bearing and bridge deck with the isolation bearing. To compare the performances of the passive and semi-active control cases, frequency dependent acceleration, velocity and displacement response transmissibility ratios Ta(w), Tv(w), and Td(w) are defined. To fully investigate the behavior of the structure subjected to the sinusoidal and pulse type excitations, different damping levels are considered. Numerical results showed that, under the effect of external excitation, bridge deck with semi-active control showed better structural performance than the passive bridge deck case.

Keywords: bridge structures, passive control, seismic, semi-active control, viscous damping

Procedia PDF Downloads 242
4609 A Reminder of a Rare Anatomical Variant of the Spinal Accessory Nerve Encountered During Routine Neck Dissection: A Case Report and Updated Review of the Literature

Authors: Sophie Mills, Constantinos Aristotelous, Leila L. Touil, Richard C. W. James

Abstract:

Objectives: Historical studies of the anatomy of the spinal accessory nerve (SAN) have reported conflicting results regarding its relationship with the internal jugular vein (IJV). A literature review was undertaken to establish the prevalence of anatomical variations of the SAN encountered during routine neck dissection surgery in order to increase awareness and reduce morbidity associated with iatrogenic SAN injury. Materials and Methods: The largest systematic review to date was performed using PRISMA-ScR guidelines, which yielded nine articles following the application of inclusion and exclusion criteria. A case report is also included, which demonstrates the rare anatomical relationship of the SAN traversing a fenestrated IJV, seen for the first time in the senior author’s career. Results: The mean number of dissections per study was 119, of which 55.6% (n=5) studies were performed on cadaver subjects, and 44.4% (n=4) were surgical dissections. Incidences of the SAN lateral to the IJV and medial to the IJV ranged from 38.9%-95.7% and 2.8%-57.4%, respectively. Over half of the studies reported incidences of the SAN traversing the IJV in 0.9%-2.8% of dissections. One study reported an isolated variant of the SAN dividing around the IJV with a prevalence of 0.5%. Conclusion: At the level of the posterior belly of the digastric muscle, the surgeon can anticipate the identification of the SAN lateral to the IJV in approximately three-quarters of cases, whilst around one-quarter are estimated to be medial. A mean of 1.6% of SANs traverses a fenestration of the vein. It is essential for surgeons to be aware of these anatomical variations and their prevalence to prevent injury to vital structures during surgery.

Keywords: anatomical variant, internal jugular vein, neck dissection, spinal accessory nerve

Procedia PDF Downloads 145
4608 Experimental and Numerical Investigation of Fracture Behavior of Foamed Concrete Based on Three-Point Bending Test of Beams with Initial Notch

Authors: M. Kozłowski, M. Kadela

Abstract:

Foamed concrete is known for its low self-weight and excellent thermal and acoustic properties. For many years, it has been used worldwide for insulation to foundations and roof tiles, as backfill to retaining walls, sound insulation, etc. However, in the last years it has become a promising material also for structural purposes e.g. for stabilization of weak soils. Due to favorable properties of foamed concrete, many interests and studies were involved to analyze its strength, mechanical, thermal and acoustic properties. However, these studies do not cover the investigation of fracture energy which is the core factor governing the damage and fracture mechanisms. Only limited number of publications can be found in literature. The paper presents the results of experimental investigation and numerical campaign of foamed concrete based on three-point bending test of beams with initial notch. First part of the paper presents the results of a series of static loading tests performed to investigate the fracture properties of foamed concrete of varying density. Beam specimens with dimensions of 100×100×840 mm with a central notch were tested in three-point bending. Subsequently, remaining halves of the specimens with dimensions of 100×100×420 mm were tested again as un-notched beams in the same set-up with reduced distance between supports. The tests were performed in a hydraulic displacement controlled testing machine with a load capacity of 5 kN. Apart from measuring the loading and mid-span displacement, a crack mouth opening displacement (CMOD) was monitored. Based on the load – displacement curves of notched beams the values of fracture energy and tensile stress at failure were calculated. The flexural tensile strength was obtained on un-notched beams with dimensions of 100×100×420 mm. Moreover, cube specimens 150×150×150 mm were tested in compression to determine the compressive strength. Second part of the paper deals with numerical investigation of the fracture behavior of beams with initial notch presented in the first part of the paper. Extended Finite Element Method (XFEM) was used to simulate and analyze the damage and fracture process. The influence of meshing and variation of mechanical properties on results was investigated. Numerical models simulate correctly the behavior of beams observed during three-point bending. The numerical results show that XFEM can be used to simulate different fracture toughness of foamed concrete and fracture types. Using the XFEM and computer simulation technology allow for reliable approximation of load–bearing capacity and damage mechanisms of beams made of foamed concrete, which provides some foundations for realistic structural applications.

Keywords: foamed concrete, fracture energy, three-point bending, XFEM

Procedia PDF Downloads 300