Search results for: air flow performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16217

Search results for: air flow performance

8207 Plant Layout Analysis by Computer Simulation for Electronic Manufacturing Service Plant

Authors: D. Visuwan, B. Phruksaphanrat

Abstract:

In this research, computer simulation is used for Electronic Manufacturing Service (EMS) plant layout analysis. The current layout of this manufacturing plant is a process layout, which is not suitable due to the nature of an EMS that has high-volume and high-variety environment. Moreover, quick response and high flexibility are also needed. Then, cellular manufacturing layout design was determined for the selected group of products. Systematic layout planning (SLP) was used to analyse and design the possible cellular layouts for the factory. The cellular layout was selected based on the main criteria of the plant. Computer simulation was used to analyse and compare the performance of the proposed cellular layout and the current layout. It is found that the proposed cellular layout can generate better performances than the current layout. In this research, computer simulation is used for Electronic Manufacturing Service (EMS) plant layout analysis. The current layout of this manufacturing plant is a process layout, which is not suitable due to the nature of an EMS that has high-volume and high-variety environment. Moreover, quick response and high flexibility are also needed. Then, cellular manufacturing layout design was determined for the selected group of products. Systematic layout planning (SLP) was used to analyse and design the possible cellular layouts for the factory. The cellular layout was selected based on the main criteria of the plant. Computer simulation was used to analyse and compare the performance of the proposed cellular layout and the current layout. It found that the proposed cellular layout can generate better performances than the current layout.

Keywords: layout, electronic manufacturing service plant, computer simulation, cellular manufacturing system

Procedia PDF Downloads 289
8206 Environmental Impacts and Ecological Utilization of Water Hyacinth (Eichhornia crassipes) in the Niger Delta Fresh Ecosystem

Authors: Seiyaboh E. I.

Abstract:

Water Hyacinth (Eichhornia crassipes) was introduced into many parts of the world, including Africa, as an ornamental garden pond plant because of its beauty. However, it is considered a dangerous pest today because when not controlled, water hyacinth will cover rivers, lakes and ponds entirely; this dramatically impacts water flow, blocks sunlight from reaching native aquatic plants, and starves the water of oxygen, often killing fish and other aquatic organisms. In the Niger Delta region, water hyacinth is considered a nuisance because of its very obvious devastating environmental impacts in the region. However, water hyacinth (Eichhornia crassipes) constitutes a very important part of an aquatic ecosystem. It possesses specialized growth habits, physiological characteristics and reproductive strategies that allow for rapid growth and spread in freshwater environments and this explains its very rapid spread in the Niger Delta freshwater ecosystem. This paper therefore focuses on the environmental consequences of the proliferation of water hyacinth (Eichhornia crassipes) in the Niger Delta freshwater ecosystem, extent of impact, and options available for its ecological utilization which will help mitigate proliferation, restore effective freshwater ecosystem utilization and balance. It concludes by recommending sustainable practices outlining the beneficial uses of water hyacinth (Eichhornia crassipes) rather than control.

Keywords: environmental impacts, ecological utilization, Niger Delta, water hyacinth, Eichhornia crassipes

Procedia PDF Downloads 261
8205 Development of a Solar Energy Based Prototype, CyanoClean, for Arsenic Removal from Water with the Use of a Cyanobacterial Consortium in Field Conditions of India

Authors: Anurakti Shukla, Sudhakar Srivastava

Abstract:

Cyanobacteria are known for rapid growth rates, high biomass, and the ability to accumulate potentially toxic elements and contaminants. The present work was planned to develop a low-cost, feasible prototype, CyanoClean, for the growth of a cyanobacterial consortium for the removal of arsenic (As) from water. The cyanobacterial consortium consisting of Oscillatoria, Phormidiumand Gloeotrichiawas used, and the conditions for optimal growth of the consortium were standardized. A pH of 7.6, initial cyanobacterial biomass of 10 g/L, and arsenite [As(III)] and arsenate [As(V)] concentration of 400 μΜand 600 μM, respectively, were found to be suitable. The CyanoClean prototype was designed with acrylic sheet and had arrangements for optimal cyanobacterial growth in natural sunlight and also in artificial light. The As removal experiments in concentration- and duration-dependent manner demonstrated removal of up to 39-69% and 9-33% As respectively from As(III) and As(V)-contaminated water. In field testing of CyanoClean, natural As-contaminated groundwater was used, and As reduction was monitored when a flow rate of 3 L/h was maintained. In a field experiment, As concentration in groundwater was found to reduce from 102.43 μg L⁻¹ to <10 μg L⁻¹ after 6 h in natural sunlight. However, in shaded conditions under artificial light, the same result was achieved after 9 h. The CyanoClean prototype is of simple design and can be easily up-scaled for application at a small- to medium-size land and shall be affordable even for a low- to middle-income group farmer.

Keywords: cyanoclean, gloeotrichia, oscillatoria, phormidium, phycoremediation

Procedia PDF Downloads 124
8204 Measuring the Biomechanical Effects of Worker Skill Level and Joystick Crane Speed on Forestry Harvesting Performance Using a Simulator

Authors: Victoria L. Chester, Usha Kuruganti

Abstract:

The forest industry is a major economic sector of Canada and also one of the most dangerous industries for workers. The use of mechanized mobile forestry harvesting machines has successfully reduced the incidence of injuries in forest workers related to manual labor. However, these machines have also created additional concerns, including a high machine operation learning curve, increased the length of the workday, repetitive strain injury, cognitive load, physical and mental fatigue, and increased postural loads due to sitting in a confined space. It is critical to obtain objective performance data for employers to develop appropriate work practices for this industry, however ergonomic field studies of this industry are lacking mainly due to the difficulties in obtaining comprehensive data while operators are cutting trees in the woods. The purpose of this study was to establish a measurement and experimental protocol to examine the effects of worker skill level and movement training speed (joystick crane speed) on harvesting performance using a forestry simulator. A custom wrist angle measurement device was developed as part of the study to monitor Euler angles during operation of the simulator. The device of the system consisted of two accelerometers, a Bluetooth module, three 3V coin cells, a microcontroller, a voltage regulator and an application software. Harvesting performance and crane data was provided by the simulator software and included tree to frame collisions, crane to tree collisions, boom tip distance, number of trees cut, etc. A pilot study of 3 operators with various skill levels was tested to identify factors that distinguish highly skilled operators from novice or intermediate operators. Dependent variables such as reaction time, math skill, past work experience, training movement speed (e.g. joystick control speeds), harvesting experience level, muscle activity, and wrist biomechanics were measured and analyzed. A 10-channel wireless surface EMG system was used to monitor the amplitude and mean frequency of 10 upper extremity muscles during pre and postperformance on the forestry harvest stimulator. The results of the pilot study showed inconsistent changes in median frequency pre-and postoperation, but there was the increase in the activity of the flexor carpi radialis, anterior deltoid and upper trapezius of both arms. The wrist sensor results indicated that wrist supination and pronation occurred more than flexion and extension with radial-ulnar rotation demonstrating the least movement. Overall, wrist angular motion increased as the crane speed increased from slow to fast. Further data collection is needed and will help industry partners determine those factors that separate skill levels of operators, identify optimal training speeds, and determine the length of training required to bring new operators to an efficient skill level effectively. In addition to effective and employment training programs, results of this work will be used for selective employee recruitment strategies to improve employee retention after training. Further, improved training procedures and knowledge of the physical and mental demands on workers will lead to highly trained and efficient personnel, reduced risk of injury, and optimal work protocols.

Keywords: EMG, forestry, human factors, wrist biomechanics

Procedia PDF Downloads 128
8203 Understanding the Productivity Effect on Industrial Management: The Portuguese Wood Furniture Industry Case Study

Authors: Jonas A. R. H. Lima, Maria Antonia Carravilla

Abstract:

As productivity concepts are widely related to industrial savings, it is becoming particularly important in a more and more competitive world, to really understand how productivity can be well used in industrial management techniques. Nowadays, consumers are no more willing to pay for mistakes and inefficiencies. Therefore, one way for companies to stay competitive is to control and increase their productivity. This study aims to define clearly the productivity concept, understand how a company can affect productivity, and, if possible, identify the relation between each identified productivity factor. This will help managers, by clarifying the main issues behind productivity concepts and proposing a methodology to measure, control and increase productivity. The main questions to be answered are: what is the importance of productivity for the Portuguese Wood Furniture Industry? Is it possible to control productivity internally, or is it a phenomenon external to companies, hard or even impossible to control? How to understand, control and adjust productivity performance? How to make productivity to become one main asset for maximizing the use of the available resources? This essay will follow a constructive approach mostly based in the research hypothesis mentioned above. For that, a literature review is being done to find the main conceptual frameworks and empirical studies that already exist, and by doing so, highlight eventual knowledge or conflicting research to be addressed in this work. We expect to build theoretical explanations and test theoretical predictions from participants understandings and own experiences, by elaborating field surveys and interviews, to select adjusted productivity indicators and analyze the productivity evolution according the adjustments on other variables. Its intended the conduction of an exploratory work that can simultaneous clarify productivity concepts, objectives, and define frameworks. This investigation intends to migrate from merely academic concepts to a daily basis operational reality of the companies from the Portuguese Wood Furniture Industry highlighting productivity increased importance within modern engineering and industrial management. The ambition is to clarify, systemize and develop a management tool that may not only control but positively influence the way resources are used.

Keywords: industrial management, motivation, productivity, performance indicators, reward management, wood furniture industry

Procedia PDF Downloads 220
8202 The Effect of Combined Doxorubicin and Dioscorea esculenta on Apoptosis Induction in Human Breast Cancer Cells

Authors: Dina Fatmawati, Sofia Mubarika, Mae Sri Wahyuningsih

Abstract:

Chemotherapy for breast cancer is largely ineffective, but innovative combinations of chemotherapeutic agents and natural compounds represent a promising strategy. In our previous study, the combination of Doxorubicin (Dox) and ethanolic extract of Dioscorea esculenta tuber ((EED) was found to have a synergistic effect on T47D human breast cancer cell line. In this study, we investigated the apoptotic effect of the combination on T47D human breast cancer cells and normal fibroblasts cell line and its effects on the expression of Caspase-3 and cleaved poly (ADP-Ribose) Polymerase-1 (cPARP-1) protein. T47D cell lines and fibroblasts cells were treated with the combination of Dox and EED. Apoptotic effect of the combination was determined using flow cytrometry assay. Protein expressions were determined by immunocytochemistry staining. The percentage of apoptotic cells were significantly higher in T47D cell lines (75%) than that of in fibroblast cells (23%). The expression of Caspase 3 (84.53%) and cPARP-1 (83.36%) were significantly higher in the cancer cell lines than those of normal cells. These results indicate that the combination of doxorubicin and Dioscorea esculenta is a promising candidate for the treatment of breast cancer cells.

Keywords: Dioscorea esculenta, Doxorubicin, apoptosis, immunocytochemistry, cancer cells

Procedia PDF Downloads 437
8201 Sparse Representation Based Spatiotemporal Fusion Employing Additional Image Pairs to Improve Dictionary Training

Authors: Dacheng Li, Bo Huang, Qinjin Han, Ming Li

Abstract:

Remotely sensed imagery with the high spatial and temporal characteristics, which it is hard to acquire under the current land observation satellites, has been considered as a key factor for monitoring environmental changes over both global and local scales. On a basis of the limited high spatial-resolution observations, challenged studies called spatiotemporal fusion have been developed for generating high spatiotemporal images through employing other auxiliary low spatial-resolution data while with high-frequency observations. However, a majority of spatiotemporal fusion approaches yield to satisfactory assumption, empirical but unstable parameters, low accuracy or inefficient performance. Although the spatiotemporal fusion methodology via sparse representation theory has advantage in capturing reflectance changes, stability and execution efficiency (even more efficient when overcomplete dictionaries have been pre-trained), the retrieval of high-accuracy dictionary and its response to fusion results are still pending issues. In this paper, we employ additional image pairs (here each image-pair includes a Landsat Operational Land Imager and a Moderate Resolution Imaging Spectroradiometer acquisitions covering the partial area of Baotou, China) only into the coupled dictionary training process based on K-SVD (K-means Singular Value Decomposition) algorithm, and attempt to improve the fusion results of two existing sparse representation based fusion models (respectively utilizing one and two available image-pair). The results show that more eligible image pairs are probably related to a more accurate overcomplete dictionary, which generally indicates a better image representation, and is then contribute to an effective fusion performance in case that the added image-pair has similar seasonal aspects and image spatial structure features to the original image-pair. It is, therefore, reasonable to construct multi-dictionary training pattern for generating a series of high spatial resolution images based on limited acquisitions.

Keywords: spatiotemporal fusion, sparse representation, K-SVD algorithm, dictionary learning

Procedia PDF Downloads 246
8200 A Parallel Implementation of k-Means in MATLAB

Authors: Dimitris Varsamis, Christos Talagkozis, Alkiviadis Tsimpiris, Paris Mastorocostas

Abstract:

The aim of this work is the parallel implementation of k-means in MATLAB, in order to reduce the execution time. Specifically, a new function in MATLAB for serial k-means algorithm is developed, which meets all the requirements for the conversion to a function in MATLAB with parallel computations. Additionally, two different variants for the definition of initial values are presented. In the sequel, the parallel approach is presented. Finally, the performance tests for the computation times respect to the numbers of features and classes are illustrated.

Keywords: K-means algorithm, clustering, parallel computations, Matlab

Procedia PDF Downloads 372
8199 Analysis of Bed Load Sediment Transport Mataram-Babarsari Irrigation Canal

Authors: Agatha Padma Laksitaningtyas, Sumiyati Gunawan

Abstract:

Mataram Irrigation Canal has 31,2 km length, is the main irrigation canal in Special Region Province of Yogyakarta, connecting Progo River on the west side and Opak River on the east side. It has an important role as the main water carrier distribution for various purposes such as agriculture, fishery, and plantation which should be free from sediment material. Bed Load Sediment is the basic sediment that will make the sediment process on the irrigation canal. Sediment process is a simultaneous event that can make deposition sediment at the base of irrigation canal and can make the height of elevation water change, it will affect the availability of water to be used for irrigation functions. To predict the amount of drowning sediments in the irrigation canal using two methods: Meyer-Peter and Muller’s Method which is an energy approach method and Einstein Method which is a probabilistic approach. Speed measurement using floating method and using current meters. The channel geometry is measured directly in the field. The basic sediment of the channel is taken in the field by taking three samples from three different points. The result of the research shows that by using the formula Meyer -Peter Muller get the result of 60,75799 kg/s, whereas with Einsten’s Method get result of 13,06461 kg/s. the results may serve as a reference for dredging the sediments on the channel so as not to disrupt the flow of water in irrigation canal.

Keywords: bed load, sediment, irrigation, Mataram canal

Procedia PDF Downloads 211
8198 The Ontological Memory in Bergson as a Conceptual Tool for the Analysis of the Digital Conjuncture

Authors: Douglas Rossi Ramos

Abstract:

The current digital conjuncture, called by some authors as 'Internet of Things' (IoT), 'Web 2.0' or even 'Web 3.0', consists of a network that encompasses any communication of objects and entities, such as data, information, technologies, and people. At this juncture, especially characterized by an "object socialization," communication can no longer be represented as a simple informational flow of messages from a sender, crossing a channel or medium, reaching a receiver. The idea of communication must, therefore, be thought of more broadly in which it is possible to analyze the process communicative from interactions between humans and nonhumans. To think about this complexity, a communicative process that encompasses both humans and other beings or entities communicating (objects and things), it is necessary to constitute a new epistemology of communication to rethink concepts and notions commonly attributed to humans such as 'memory.' This research aims to contribute to this epistemological constitution from the discussion about the notion of memory according to the complex ontology of Henri Bergson. Among the results (the notion of memory in Bergson presents itself as a conceptual tool for the analysis of posthumanism and the anthropomorphic conjuncture of the new advent of digital), there was the need to think about an ontological memory, analyzed as a being itself (being itself of memory), as a strategy for understanding the forms of interaction and communication that constitute the new digital conjuncture, in which communicating beings or entities tend to interact with each other. Rethinking the idea of communication beyond the dimension of transmission in informative sequences paves the way for an ecological perspective of the digital dwelling condition.

Keywords: communication, digital, Henri Bergson, memory

Procedia PDF Downloads 142
8197 Trip Reduction in Turbo Machinery

Authors: Pranay Mathur, Carlo Michelassi, Simi Karatha, Gilda Pedoto

Abstract:

Industrial plant uptime is top most importance for reliable, profitable & sustainable operation. Trip and failed start has major impact on plant reliability and all plant operators focussed on efforts required to minimise the trips & failed starts. The performance of these CTQs are measured with 2 metrics, MTBT(Mean time between trips) and SR (Starting reliability). These metrics helps to identify top failure modes and identify units need more effort to improve plant reliability. Baker Hughes Trip reduction program structured to reduce these unwanted trip 1. Real time machine operational parameters remotely available and capturing the signature of malfunction including related boundary condition. 2. Real time alerting system based on analytics available remotely. 3. Remote access to trip logs and alarms from control system to identify the cause of events. 4. Continuous support to field engineers by remotely connecting with subject matter expert. 5. Live tracking of key CTQs 6. Benchmark against fleet 7. Break down to the cause of failure to component level 8. Investigate top contributor, identify design and operational root cause 9. Implement corrective and preventive action 10. Assessing effectiveness of implemented solution using reliability growth models. 11. Develop analytics for predictive maintenance With this approach , Baker Hughes team is able to support customer in achieving their Reliability Key performance Indicators for monitored units, huge cost savings for plant operators. This Presentation explains these approach while providing successful case studies, in particular where 12nos. of LNG and Pipeline operators with about 140 gas compressing line-ups has adopted these techniques and significantly reduce the number of trips and improved MTBT

Keywords: reliability, availability, sustainability, digital infrastructure, weibull, effectiveness, automation, trips, fail start

Procedia PDF Downloads 60
8196 Investigation of Contact Pressure Distribution at Expanded Polystyrene Geofoam Interfaces Using Tactile Sensors

Authors: Chen Liu, Dawit Negussey

Abstract:

EPS (Expanded Polystyrene) geofoam as light-weight material in geotechnical applications are made of pre-expanded resin beads that form fused cellular micro-structures. The strength and deformation properties of geofoam blocks are determined by unconfined compression of small test samples between rigid loading plates. Applied loads are presumed to be supported uniformly over the entire mating end areas. Predictions of field performance on the basis of such laboratory tests widely over-estimate actual post-construction settlements and exaggerate predictions of long-term creep deformations. This investigation examined the development of contact pressures at a large number of discrete points at low and large strain levels for different densities of geofoam. Development of pressure patterns for fine and coarse interface material textures as well as for molding skin and hot wire cut geofoam surfaces were examined. The lab testing showed that I-Scan tactile sensors are useful for detailed observation of contact pressures at a large number of discrete points simultaneously. At low strain level (1%), the lower density EPS block presents low variations in localized stress distribution compared to higher density EPS. At high strain level (10%), the dense geofoam reached the sensor cut-off limit. The imprint and pressure patterns for different interface textures can be distinguished with tactile sensing. The pressure sensing system can be used in many fields with real-time pressure detection. The research findings provide a better understanding of EPS geofoam behavior for improvement of design methods and performance prediction of critical infrastructures, which will be anticipated to guide future improvements in design and rapid construction of critical transportation infrastructures with geofoam in geotechnical applications.

Keywords: geofoam, pressure distribution, tactile pressure sensors, interface

Procedia PDF Downloads 158
8195 An Evaluation of Solubility of Wax and Asphaltene in Crude Oil for Improved Flow Properties Using a Copolymer Solubilized in Organic Solvent with an Aromatic Hydrocarbon

Authors: S. M. Anisuzzaman, Sariah Abang, Awang Bono, D. Krishnaiah, N. M. Ismail, G. B. Sandrison

Abstract:

Wax and asphaltene are high molecular weighted compounds that contribute to the stability of crude oil at a dispersed state. Transportation of crude oil along pipelines from the oil rig to the refineries causes fluctuation of temperature which will lead to the coagulation of wax and flocculation of asphaltenes. This paper focuses on the prevention of wax and asphaltene precipitate deposition on the inner surface of the pipelines by using a wax inhibitor and an asphaltene dispersant. The novelty of this prevention method is the combination of three substances; a wax inhibitor dissolved in a wax inhibitor solvent and an asphaltene solvent, namely, ethylene-vinyl acetate (EVA) copolymer dissolved in methylcyclohexane (MCH) and toluene (TOL) to inhibit the precipitation and deposition of wax and asphaltene. The objective of this paper was to optimize the percentage composition of each component in this inhibitor which can maximize the viscosity reduction of crude oil. The optimization was divided into two stages which are the laboratory experimental stage in which the viscosity of crude oil samples containing inhibitor of different component compositions is tested at decreasing temperatures and the data optimization stage using response surface methodology (RSM) to design an optimizing model. The results of experiment proved that the combination of 50% EVA + 25% MCH + 25% TOL gave a maximum viscosity reduction of 67% while the RSM model proved that the combination of 57% EVA + 20.5% MCH + 22.5% TOL gave a maximum viscosity reduction of up to 61%.

Keywords: asphaltene, ethylene-vinyl acetate, methylcyclohexane, toluene, wax

Procedia PDF Downloads 398
8194 Robustness of the Deep Chroma Extractor and Locally-Normalized Quarter Tone Filters in Automatic Chord Estimation under Reverberant Conditions

Authors: Luis Alvarado, Victor Poblete, Isaac Gonzalez, Yetzabeth Gonzalez

Abstract:

In MIREX 2016 (http://www.music-ir.org/mirex), the deep neural network (DNN)-Deep Chroma Extractor, proposed by Korzeniowski and Wiedmer, reached the highest score in an audio chord recognition task. In the present paper, this tool is assessed under acoustic reverberant environments and distinct source-microphone distances. The evaluation dataset comprises The Beatles and Queen datasets. These datasets are sequentially re-recorded with a single microphone in a real reverberant chamber at four reverberation times (0 -anechoic-, 1, 2, and 3 s, approximately), as well as four source-microphone distances (32, 64, 128, and 256 cm). It is expected that the performance of the trained DNN will dramatically decrease under these acoustic conditions with signals degraded by room reverberation and distance to the source. Recently, the effect of the bio-inspired Locally-Normalized Cepstral Coefficients (LNCC), has been assessed in a text independent speaker verification task using speech signals degraded by additive noise at different signal-to-noise ratios with variations of recording distance, and it has also been assessed under reverberant conditions with variations of recording distance. LNCC showed a performance so high as the state-of-the-art Mel Frequency Cepstral Coefficient filters. Based on these results, this paper proposes a variation of locally-normalized triangular filters called Locally-Normalized Quarter Tone (LNQT) filters. By using the LNQT spectrogram, robustness improvements of the trained Deep Chroma Extractor are expected, compared with classical triangular filters, and thus compensating the music signal degradation improving the accuracy of the chord recognition system.

Keywords: chord recognition, deep neural networks, feature extraction, music information retrieval

Procedia PDF Downloads 218
8193 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals

Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor

Abstract:

This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.

Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers

Procedia PDF Downloads 62
8192 IL-21 Production by CD4+ Effector T Cells and Frequency of Circulating Follicular Helper T Cells Are Increased in Type 1 Diabetes Patients

Authors: Ferreira RC, Simons HZ, Thompson WS, Cutler AJ, Dopico XC, Smyth DJ, Mashar M, Schuilenburg H, Walker NM, Dunger DB, Wallace C, Todd JA, Wicker LS, Pekalski ML

Abstract:

Type 1 diabetes is caused by autoimmune destruction of insulin-secreting beta cells in the pancreas. T cells are known to play an important role in this immune-mediated destruction; however, there is no general consensus regarding alterations in cytokine production or T cell subsets in peripheral blood of patients with type 1 diabetes. Using polychromatic flow cytometry of peripheral blood mononuclear cells (PBMCs), we assessed production of the proinflammatory cytokines IL-21, IFN-γ and IL-17 by memory CD4 T effector (Teff) cells in 69 patients with type 1 diabetes and 61 healthy donors. We found a 21.9% (95% CI 5.8, 40.2; p = 3.9 × 10(-3)) higher frequency of IL-21(+) CD45RA(-) memory CD4(+) Teffs in patients with type 1 diabetes (geometric mean 5.92% [95% CI 5.44, 6.44]) compared with healthy donors (geometric mean 4.88% [95% CI 4.33, 5.50]). In a separate cohort of 30 patients with type 1 diabetes and 32 healthy donors, we assessed the frequency of circulating T follicular helper (Tfh) cells in whole blood. Consistent with the increased production of IL-21, we also found a 14.9% increase in circulating Tfh cells in the patients with type 1 diabetes (95% CI 2.9, 26.9; p = 0.016). Analysis of IL-21 production by PBMCs from a subset of 46 of the 62 donors immunophenotyped for Tfh showed that frequency of Tfh cells was associated with the frequency of IL-21+ cells (r2 = 0.174, p = 0.004). These results indicate that increased IL-21 production is likely to be an aetiological factor in the pathogenesis of type 1 diabetes that could be considered as a potential therapeutic target.

Keywords: T follicular helper cell, IL-21, IL-17, type 1 diabetes

Procedia PDF Downloads 367
8191 CFD Analysis of an Aft Sweep Wing in Subsonic Flow and Making Analogy with Roskam Methods

Authors: Ehsan Sakhaei, Ali Taherabadi

Abstract:

In this study, an aft sweep wing with specific characteristic feature was analysis with CFD method in Fluent software. In this analysis wings aerodynamic coefficient was calculated in different rake angle and wing lift curve slope to rake angle was achieved. Wing section was selected among NACA airfoils version 6. The sweep angle of wing is 15 degree, aspect ratio 8 and taper ratios 0.4. Designing and modeling this wing was done in CATIA software. This model was meshed in Gambit software and its three dimensional analysis was done in Fluent software. CFD methods used here were based on pressure base algorithm. SIMPLE technique was used for solving Navier-Stokes equation and Spalart-Allmaras model was utilized to simulate three dimensional wing in air. Roskam method is one of the common and most used methods for determining aerodynamics parameters in the field of airplane designing. In this study besides CFD analysis, an advanced aircraft analysis was used for calculating aerodynamic coefficient using Roskam method. The results of CFD were compared with measured data acquired from Roskam method and authenticity of relation was evaluated. The results and comparison showed that in linear region of lift curve there is a minor difference between aerodynamics parameter acquired from CFD to relation present by Roskam.

Keywords: aft sweep wing, CFD method, fluent, Roskam, Spalart-Allmaras model

Procedia PDF Downloads 493
8190 Effect of Permeability on Glass Fiber Reinforced Plastic Laminate Produced by Vacuum Assisted Resin Transfer Molding Process

Authors: Nagri Sateesh, Kundavarapu Vengalrao, Kopparthi Phaneendra Kumar

Abstract:

Vacuum assisted resin transfer molding (VARTM) is one of the manufacturing technique that is viable for production of fiber reinforced polymer composite components suitable for aerospace, marine and commercial applications. However, the repeatable quality of the product can be achieved by critically fixing the process parameters such as Vacuum Pressure (VP) and permeability of the preform. The present investigation is aimed at studying the effect of permeability for production of Glass Fiber Reinforced Plastic (GFRP) components with consistent quality. The VARTM mould is made with an acrylic transparent top cover to observe and record the resin flow pattern. Six layers of randomly placed glass fiber under five different vacuum pressures VP1 = 0.013, VP2 = 0.026, VP3 = 0.039, VP4 = 0.053 and VP5 = 0.066 MPa were studied. The laminates produced by this process under the above mentioned conditions were characterized with ASTM D procedures so as to study the effect of these process parameters on the quality of the laminate. Moreover, as mentioned there is a considerable effect of permeability on the impact strength and the void content in the laminates under different vacuum pressures. SEM analysis of the impact tested fractured GFRP composites showed the bonding of fiber and matrix.

Keywords: permeability, vacuum assisted resin transfer molding (VARTM), ASTM D standards, SEM

Procedia PDF Downloads 141
8189 Endothelial Progenitor Cell Biology in Ankylosing Spondylitis

Authors: Ashit Syngle, Inderjit Verma, Pawan Krishan

Abstract:

Aim: Endothelial progenitor cells (EPCs) are unique populations which have reparative potential in overcoming the endothelial damage and reducing cardiovascular risk. Patients with ankylosing spondylitis (AS) have increased risk of cardiovascular morbidity and mortality. The aim of this study was to investigate the endothelial progenitor cell population in AS patients and its potential relationships with disease variables. Methods: Endothelial progenitor cells were measured in peripheral blood samples from 20 AS and 20 healthy controls by flow cytometry on the basis of CD34 and CD133 expression. Disease activity was evaluated by using Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). Functional ability was monitored by using Bath Ankylosing Spondylitis Functional Index (BASFI). Results: EPCs were depleted in AS patients as compared to the healthy controls (CD34+/CD133+: 0.027 ± 0.010 % vs. 0.044 ± 0.011 %, p<0.001). EPCs depletion were significantly associated with disease duration (r=-0.52, p=0.01) and BASDAI (r=-0.45, p=0.04). Conclusion: This is the first study to demonstrate endothelial progenitor cells depletion in AS patients. EPCs depletion inversely correlates with disease duration and disease activity, suggesting the pivotal role of inflammation in depletion of EPCs. EPC would possibly also serve as a therapeutic target for preventing cardiovascular disease in AS.

Keywords: ankylosing spondylitis, endothelial progenitor cells, inflammation, vascular damage

Procedia PDF Downloads 421
8188 Critical Factors in the Formation, Development and Survival of an Eco-Industrial Park: A Systemic Understanding of Industrial Symbiosis

Authors: Iván González, Pablo Andrés Maya, Sebastián Jaén

Abstract:

Eco-industrial parks (EIPs) work as networks for the exchange of by-products, such as materials, water, or energy. This research identifies the relevant factors in the formation of EIPs in different industrial environments around the world. Then an aggregation of these factors is carried out to reduce them from 50 to 17 and classify them according to 5 fundamental axes. Subsequently, the Vester Sensitivity Model (VSM) systemic methodology is used to determine the influence of the 17 factors on an EIP system and the interrelationship between them. The results show that the sequence of effects between factors: Trust and Cooperation → Business Association → Flows → Additional Income represents the “backbone” of the system, being the most significant chain of influences. In addition, the Organizational Culture represents the turning point of the Industrial Symbiosis on which it must act correctly to avoid falling into unsustainable economic development. Finally, the flow of Information should not be lost since it is what feeds trust between the parties, and the latter strengthens the system in the face of individual or global imbalances. This systemic understanding will enable the formulation of pertinent policies by the actors that interact in the formation and permanence of the EIP. In this way, it seeks to promote large-scale sustainable industrial development, integrating various community actors, which in turn will give greater awareness and appropriation of the current importance of sustainability in industrial production.

Keywords: critical factors, eco-industrial park, industrial symbiosis, system methodology

Procedia PDF Downloads 102
8187 A Comparative Study on Supercritical C02 and Water as Working Fluids in a Heterogeneous Geothermal Reservoir

Authors: Musa D. Aliyu, Ouahid Harireche, Colin D. Hills

Abstract:

The incapability of supercritical C02 to transport and dissolve mineral species from the geothermal reservoir to the fracture apertures and other important parameters in heat mining makes it an attractive substance for Heat extraction from hot dry rock. In other words, the thermodynamic efficiency of hot dry rock (HDR) reservoirs also increases if supercritical C02 is circulated at excess temperatures of 3740C without the drawbacks connected with silica dissolution. Studies have shown that circulation of supercritical C02 in homogenous geothermal reservoirs is quite encouraging; in comparison to that of the water. This paper aims at investigating the aforementioned processes in the case of the heterogeneous geothermal reservoir located at the Soultz site (France). The MultiPhysics finite element package COMSOL with an interface of coupling different processes encountered in the geothermal reservoir stimulation is used. A fully coupled numerical model is developed to study the thermal and hydraulic processes in order to predict the long-term operation of the basic reservoir parameters that give optimum energy production. The results reveal that the temperature of the SCC02 at the production outlet is higher than that of water in long-term stimulation; as the temperature is an essential ingredient in rating the energy production. It is also observed that the mass flow rate of the SCC02 is far more favourable compared to that of water.

Keywords: FEM, HDR, heterogeneous reservoir, stimulation, supercritical C02

Procedia PDF Downloads 372
8186 Thermal Cracking Approach Investigation to Improve Biodiesel Properties

Authors: Roghaieh Parvizsedghy, Seyyed Mojtaba Sadrameli

Abstract:

Biodiesel as an alternative diesel fuel is steadily gaining more attention and significance. However, there are some drawbacks while using biodiesel regarding its properties that requires it to be blended with petrol based diesel and/or additives to improve the fuel characteristics. This study analyses thermal cracking as an alternative technology to improve biodiesel characteristics in which, FAME based biodiesel produced by transesterification of castor oil is fed into a continuous thermal cracking reactor at temperatures range of 450-500°C and flowrate range of 20-40 g/hr. Experiments designed by response surface methodology and subsequent statistical studies show that temperature and feed flowrate significantly affect the products yield. Response surfaces were used to study the impact of temperature and flowrate on the product properties. After each experiment, the produced crude bio-oil was distilled and diesel cut was separated. As shorter chain molecules are produced through thermal cracking, the distillation curve of the diesel cut fitted more with petrol based diesel curve in comparison to the biodiesel. Moreover, the produced diesel cut properties adequately pose within property ranges defined by the related standard of petrol based diesel. Cold flow properties, high heating value as the main drawbacks of the biodiesel are improved by this technology. Thermal cracking decreases kinematic viscosity, Flash point and cetane number.

Keywords: biodiesel, castor oil, fuel properties, thermal cracking

Procedia PDF Downloads 246
8185 Enhancing the Flotation of Fine and Ultrafine Pyrite Particles Using Electrolytically Generated Bubbles

Authors: Bogale Tadesse, Krutik Parikh, Ndagha Mkandawire, Boris Albijanic, Nimal Subasinghe

Abstract:

It is well established that the floatability and selectivity of mineral particles are highly dependent on the particle size. Generally, a particle size of 10 micron is considered as the critical size below which both flotation selectivity and recovery decline sharply. It is widely accepted that the majority of ultrafine particles, including highly liberated valuable minerals, will be lost in tailings during a conventional flotation process. This is highly undesirable particularly in the processing of finely disseminated complex and refractory ores where there is a requirement for fine grinding in order to liberate the valuable minerals. In addition, the continuing decline in ore grade worldwide necessitates intensive processing of low grade mineral deposits. Recent advances in comminution allow the economic grinding of particles down to 10 micron sizes to enhance the probability of liberating locked minerals from low grade ores. Thus, it is timely that the flotation of fine and ultrafine particles is improved in order to reduce the amount of valuable minerals lost as slimes. It is believed that the use of fine bubbles in flotation increases the bubble-particle collision efficiency and hence the flotation performance. Electroflotation, where bubbles are generated by the electrolytic breakdown of water to produce oxygen and hydrogen gases, leads to the formation of extremely finely dispersed gas bubbles with dimensions varying from 5 to 95 micron. The sizes of bubbles generated by this method are significantly smaller than those found in conventional flotation (> 600 micron). In this study, microbubbles generated by electrolysis of water were injected into a bench top flotation cell to assess the performance electroflotation in enhancing the flotation of fine and ultrafine pyrite particles of sizes ranging from 5 to 53 micron. The design of the cell and the results from optimization of the process variables such as current density, pH, percent solid and particle size will be presented at this conference.

Keywords: electroflotation, fine bubbles, pyrite, ultrafine particles

Procedia PDF Downloads 313
8184 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags

Authors: Zhang Shuqi, Liu Dan

Abstract:

For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.

Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation

Procedia PDF Downloads 87
8183 Coalescence Cascade of Vertically-aligned Water Drops on a Super-hydrophobic Surface in Silicone Oil

Authors: M. Brik, S. Harmand, I. Zaaroura

Abstract:

This report, an experimental investigation, concerns the sessile daughter drop remaining during the coalescence of water drops in a liquid-liquid (LL) system. The two drops are initially vertically aligned where the sessile drop is deposited on a chemically treated super-hydrophobic surface of a cube fill of silicone oil. In order to analyze the coalescence dynamics, a series of experiments have been performed using a generation droplets system (KRUSS) that measures contact angles as well coupled with a high-speed camera (Keyence VW-9000E) to record the process at a frame rate of 15000s-1. It’s depicted that in such configuration, the head drop volume has a primordial impact on the dynamics of the coalescence process, especially at the last stage. It’s found that for a sessile drop deposited on a super-hydrophobic surface, where the contact angle is about θ ≈ 145°, the coalescence process is remarked to be complete without any recoiling of the coalesced drop or a generation of a sessile daughter drop at the super-hydrophobic surface when the head drop volume is small enough (Vₐᵦ< Vₛ up to Vₐᵦ = 3Vₛ). On the other side, the coalescence process starts to be followed by jumping off the resulted drop as well as a remaining of a small sessile daughter drop on the bottom surface of the cube from a head drop volume Vₐᵦ of about 4 times than that of the sessile drop Vₛ.

Keywords: drops coalescence, dispersed multiphase flow, drops dynamics, liquid-liquid system

Procedia PDF Downloads 132
8182 Sustained-Release Persulfate Tablets for Groundwater Remediation

Authors: Yu-Chen Chang, Yen-Ping Peng, Wei-Yu Chen, Ku-Fan Chen

Abstract:

Contamination of soil and groundwater has become a serious and widespread environmental problem. In this study, sustained-release persulfate tablets were developed using persulfate powder and a modified cellulose binder for organic-contaminated groundwater remediation. Conventional cement-based persulfate-releasing materials were also synthesized for the comparison. The main objectives of this study were to: (1) evaluate the release rates of the remedial tablets; (2) obtain the optimal formulas of the tablets; and (3) evaluate the effects of the tablets on the subsurface environment. The results of batch experiments show that the optimal parameter for the preparation of the persulfate-releasing tablet was persulfate:cellulose = 1:1 (wt:wt) with a 5,000 kg F/cm2 of pressure application. The cellulose-based persulfate tablet was able to release 2,030 mg/L of persulfate per day for 10 days. Compared to cement-based persulfate-releasing materials, the persulfate release rates of the cellulose-based persulfate tablets were much more stable. Moreover, since the tablets are soluble in water, no waste will be produced in the subsurface. The results of column tests show that groundwater flow would shorten the release time of the tablets. This study successfully developed unique persulfate tablets based on green remediation perspective. The efficacy of the persulfate-releasing tablets on the removal of organic pollutants needs to be further evaluated. The persulfate tablets are expected to be applied for site remediation in the future.

Keywords: sustained-release persulfate tablet, modified cellulose, green remediation, groundwater

Procedia PDF Downloads 268
8181 Spectral Linewidth Measurement of Linear Frequency Modulated Continuous Wave Laser with Short Delay within the Coherence Length

Authors: Jongpil La, Jieun Choi

Abstract:

Optical frequency modulation technology for FMCW LiDAR based on Optical Phase Locked Loop(OPLL) configuration is addressed in this paper. The spectral linewidth measurement method of the linear frequency-modulated laser is also described. The single-frequency laser with narrow spectral linewidth is generated using an external cavity diode laser and the excitation frequency of the laser is adjusted by controlling the injection current of the laser. If the injection current of the laser is increased, the lasing frequency is decreased because of the slight increase in the refractive index of the laser gain chip. Dynamic optical frequency change rate is measured by using a Mach-Zehnder interferometer and compared with a proper reference signal. The phase difference between the reference signal and the measured signal using the Mach-Zehnder interferometer is obtained by mixing those two signals. The phase error is used to detect the frequency deviation error from the target value, which is then fed back to the driving current of the laser to compensate for it. The frequency sweep error from the ideal linear frequency waveform will degrade the spectral linewidth of the target spectrum and will degrade the maximum range performance of FMCW LiDAR. Therefore, the spectral linewidth measurement of frequency modulated laser is very important to evaluate the performance of the LiDAR system. However, it is impossible to apply the conventional self-homodyne or self-heterodyne method with a long delay line to evaluate the spectral linewidth of the frequency-modulated laser because the beat frequency generated by the long delay line is too high to measure with a high bandwidth frequency modulated laser. In this article, the spectral linewidth of the frequency-modulated laser is measured by using the newly proposed self-heterodyne method with a short delay line. The theoretical derivation for the proposed linewidth measurement method is provided in this article. The laser's spectral modulation bandwidth and linewidth are measured as 2.91GHz and 287kHz, respectively. LiDAR.

Keywords: FMCW, LiDAR, spectral linewidth, self-heterodyne

Procedia PDF Downloads 25
8180 Comparison of Shell-Facemask Responses in American Football Helmets during NOCSAE Drop Tests

Authors: G. Alston Rush, Gus A. Rush III, M. F. Horstemeyer

Abstract:

This study compares the shell-facemask responses of four commonly used American football helmets, under the National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop impact test method, to show that the test standard would more accurately simulate in-use conditions by modification to include the facemask. In our study, the need for a more vigorous systematic approach to football helmet testing procedures is emphasized by comparing the Head Injury Criterion (HIC), the Gadd Severity Index (SI), and peak acceleration values for different helmets at different locations on the helmet under modified NOCSAE standard drop tower tests. Drop tests were performed on the Rawlings Quantum Plus, Riddell 360, Schutt Ion 4D, and Xenith X2 helmets at eight impact locations, impact velocities of 5.46 and 4.88 meters per second, and helmet configurations with and without facemasks. Analysis of NOCSAE drop test results reveal significant differences (p < 0.05) for when the facemasks were attached to helmets, as compared to the NOCSAE Standard, without facemask configuration. The boundary conditions of the facemask attachment can have up to a 50% decrease (p < 0.001) in helmet performance with respect to peak acceleration. While generally, all helmets with the facemasks gave greater HIC, SI, and acceleration values than helmets without the facemasks, significant helmet dependent variations were observed across impact locations and impact velocities. The variations between helmet responses could be attributed to the unique design features of each helmet tested, which include different liners, chin strap attachments, and faceguard attachment systems. In summary, these comparative drop test results revealed that the current NOCSAE standard test methods need improvement by attaching the facemasks to helmets during testing. The modified NOCSAE football helmet standard test gives a more accurate representation of a helmet’s performance and its ability to mitigate the on-field impact.

Keywords: football helmet testing, gadd severity index, head injury criterion, mild traumatic brain injury

Procedia PDF Downloads 437
8179 Prevalence of Common Mental Disorders and Its Correlation with Mental Toughness among Professional South African Rugby Players

Authors: H. B. Grobler, K. Du Plooy, P. Kruger, S. Ellis

Abstract:

Objectives: The primary objective of the study was to determine the common mental disorders (CMD) identified by professional South African rugby players and its correlation with their mental toughness, as a first step towards developing such a programme within a larger research project. Design: Survey research, within the theoretical perspective of field theory, was conducted, utilising an adaptation of an already existing mental health questionnaire. The aim was to obtain feedback from as many possible professional South African rugby players in order to make certain generalizations and come to conclusions with regard to the current mental health experiences of these rugby players. Methods: Non-randomized sampling was done, linking it with internet research in the form of the online completion of a questionnaire. A sample of 215 rugby players participated and completed the online questionnaire. Permission was obtained to make use of an existing questionnaire, previously used by the specific authors with retired professional rugby players. A section on mental toughness was added. Data were descriptively analysed by means of the SPSS software platform. Results: Results indicated that the most significant problem that the players are experiencing, is a problem with alcohol (47.9%). Other problems that featured are distress (16.3%), sleep disturbances (7%), as well as anxiety and depression (4.2%). 4.7% of the players indicated that they smoke. 3.3% of the players experience themselves as not being mentally tough. A positive correlation between mental toughness and sound sleep (0.262) was found while a negative correlation was found between mental toughness and the following: anxiety/depression (-0.401), anxiety/depression positive (-0.423), distress (-0.259) and common mental disorder problems in general (-0.220). Conclusions: Although the presence of CMD at first glance do not seem significantly high amongst all the players, it must be considered that if one player in a team experiences the presence of CMD, it will have an impact on his mental toughness and most likely on his performance, as well as on the performance of the whole team. It is therefore important to ensure mental health in the whole team, by addressing individual CMD problems. A mental health support programme is therefore needed to be implemented to the benefit of these players within the South African context.

Keywords: common mental disorders, mental toughness, professional athletes, rugby players

Procedia PDF Downloads 201
8178 Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity

Authors: Fumihiro Ima, Shinichi Watanabe, Shingo Maeda, Haruna Imai, Hiroki Niimi

Abstract:

It is important to know growth rate of brain tumors before surgery because it influences treatment planning including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without administration of contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients and WHO grade 4 in 2 patients), meningioma WHO grade1 in 2 patients and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW-signals than that in low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW-signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors.

Keywords: amides, magnetic resonance imaging, brain tumors, cell proliferation

Procedia PDF Downloads 127