Search results for: air/liquid interface cell exposure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8257

Search results for: air/liquid interface cell exposure

247 Global Evidence on the Seasonality of Enteric Infections, Malnutrition, and Livestock Ownership

Authors: Aishwarya Venkat, Anastasia Marshak, Ryan B. Simpson, Elena N. Naumova

Abstract:

Livestock ownership is simultaneously linked to improved nutritional status through increased availability of animal-source protein, and increased risk of enteric infections through higher exposure to contaminated water sources. Agrarian and agro-pastoral households, especially those with cattle, goats, and sheep, are highly dependent on seasonally various environmental conditions, which directly impact nutrition and health. This study explores global spatiotemporally explicit evidence regarding the relationship between livestock ownership, enteric infections, and malnutrition. Seasonal and cyclical fluctuations, as well as mediating effects, are further examined to elucidate health and nutrition outcomes of individual and communal livestock ownership. The US Agency for International Development’s Demographic and Health Surveys (DHS) and the United Nations International Children's Emergency Fund’s Multi-Indicator Cluster Surveys (MICS) provide valuable sources of household-level information on anthropometry, asset ownership, and disease outcomes. These data are especially important in data-sparse regions, where surveys may only be conducted in the aftermath of emergencies. Child-level disease history, anthropometry, and household-level asset ownership information have been collected since DHS-V (2003-present) and MICS-III (2005-present). This analysis combines over 15 years of survey data from DHS and MICS to study 2,466,257 children under age five from 82 countries. Subnational (administrative level 1) measures of diarrhea prevalence, mean livestock ownership by type, mean and median anthropometric measures (height for age, weight for age, and weight for height) were investigated. Effects of several environmental, market, community, and household-level determinants were studied. Such covariates included precipitation, temperature, vegetation, the market price of staple cereals and animal source proteins, conflict events, livelihood zones, wealth indices and access to water, sanitation, hygiene, and public health services. Children aged 0 – 6 months, 6 months – 2 years, and 2 – 5 years of age were compared separately. All observations were standardized to interview day of year, and administrative units were harmonized for consistent comparisons over time. Geographically weighted regressions were constructed for each outcome and subnational unit. Preliminary results demonstrate the importance of accounting for seasonality in concurrent assessments of malnutrition and enteric infections. Household assets, including livestock, often determine the intensity of these outcomes. In many regions, livestock ownership affects seasonal fluxes in malnutrition and enteric infections, which are also directly affected by environmental and local factors. Regression analysis demonstrates the spatiotemporal variability in nutrition outcomes due to a variety of causal factors. This analysis presents a synthesis of evidence from global survey data on the interrelationship between enteric infections, malnutrition, and livestock. These results provide a starting point for locally appropriate interventions designed to address this nexus in a timely manner and simultaneously improve health, nutrition, and livelihoods.

Keywords: diarrhea, enteric infections, households, livestock, malnutrition, seasonality

Procedia PDF Downloads 111
246 Miniaturizing the Volumetric Titration of Free Nitric Acid in U(vi) Solutions: On the Lookout for a More Sustainable Process Radioanalytical Chemistry through Titration-On-A-Chip

Authors: Jose Neri, Fabrice Canto, Alastair Magnaldo, Laurent Guillerme, Vincent Dugas

Abstract:

A miniaturized and automated approach for the volumetric titration of free nitric acid in U(VI) solutions is presented. Free acidity measurement refers to the acidity quantification in solutions containing hydrolysable heavy metal ions such as U(VI), U(IV) or Pu(IV) without taking into account the acidity contribution from the hydrolysis of such metal ions. It is, in fact, an operation having an essential role for the control of the nuclear fuel recycling process. The main objective behind the technical optimization of the actual ‘beaker’ method was to reduce the amount of radioactive substance to be handled by the laboratory personnel, to ease the instrumentation adjustability within a glove-box environment and to allow a high-throughput analysis for conducting more cost-effective operations. The measurement technique is based on the concept of the Taylor-Aris dispersion in order to create inside of a 200 μm x 5cm circular cylindrical micro-channel a linear concentration gradient in less than a second. The proposed analytical methodology relies on the actinide complexation using pH 5.6 sodium oxalate solution and subsequent alkalimetric titration of nitric acid with sodium hydroxide. The titration process is followed with a CCD camera for fluorescence detection; the neutralization boundary can be visualized in a detection range of 500nm- 600nm thanks to the addition of a pH sensitive fluorophore. The operating principle of the developed device allows the active generation of linear concentration gradients using a single cylindrical micro channel. This feature simplifies the fabrication and ease of use of the micro device, as it does not need a complex micro channel network or passive mixers to generate the chemical gradient. Moreover, since the linear gradient is determined by the liquid reagents input pressure, its generation can be fully achieved in faster intervals than one second, being a more timely-efficient gradient generation process compared to other source-sink passive diffusion devices. The resulting linear gradient generator device was therefore adapted to perform for the first time, a volumetric titration on a chip where the amount of reagents used is fixed to the total volume of the micro channel, avoiding an important waste generation like in other flow-based titration techniques. The associated analytical method is automated and its linearity has been proven for the free acidity determination of U(VI) samples containing up to 0.5M of actinide ion and nitric acid in a concentration range of 0.5M to 3M. In addition to automation, the developed analytical methodology and technique greatly improves the standard off-line oxalate complexation and alkalimetric titration method by reducing a thousand fold the required sample volume, forty times the nuclear waste per analysis as well as the analysis time by eight-fold. The developed device represents, therefore, a great step towards an easy-to-handle nuclear-related application, which in the short term could be used to improve laboratory safety as much as to reduce the environmental impact of the radioanalytical chain.

Keywords: free acidity, lab-on-a-chip, linear concentration gradient, Taylor-Aris dispersion, volumetric titration

Procedia PDF Downloads 375
245 Bulbar Conjunctival Kaposi's Sarcoma Unmasked by Immune Reconstitution Syndrome

Authors: S. Mohd Afzal, R. O'Connell

Abstract:

Kaposi's sarcoma (KS) is the most common HIV-related cancer, and ocular manifestations constitute at least 25% of all KS cases. However, ocular presentations often occur in the context of systemic KS, and isolated lesions are rare. We report a unique case of ocular KS masquerading as subconjunctival haemorrhage, and only developing systemic manifestations after initiation of HIV treatment. Case: A 49-year old man with previous hypertensive stroke and newly diagnosed HIV infection presented with an acutely red left eye following repeated bouts of coughing. Given the convincing history of poorly controlled hypertension and cough, a diagnosis of subconjunctival haemorrhage was made. Over the next week, his ocular lesion began to improve and he subsequently started anti-retroviral therapy. Prior to receiving anti-retroviral therapy, his CD4+ lymphocyte count was 194 cells/mm3 with HIV viral load greater than 1 million/ml. This rapidly improved to a viral load of 150 copies/ml within 2 weeks of starting treatment. However, a few days after starting HIV treatment, his ocular lesion recurred. Ophthalmic examination was otherwise normal. He also developed widespread lymphadenopathy and multiple dark lesions on his torso. Histology and virology confirmed KS, systemically triggered by Immune Reconstitution Syndrome (KS-IRIS). The patient has since undergone chemotherapy successfully. Discussion: Kaposi's sarcoma is an atypical tumour caused by human herpesvirus 8 (HHV-8), also known as Kaposi’s sarcoma-associated herpesvirus (KSHV). In immunosuppressed patients, KSHV can also cause lymphoproliferative disorders such as primary effusion lymphoma and Castleman's disease (in our patient’s case, this was excluded through histological analysis of lymph nodes). KSHV is one of the seven currently known human oncoviruses, and its pathogenesis is poorly understood. Up to 13% of patients with HIV-related KS experience worsening of the disease after starting anti-retroviral treatment, due to a sudden increase in CD4 cell counts. Histology remains the diagnostic gold standard. Current British HIV Association (BHIVA) guidelines recommend treatment using anti-retroviral drugs, with either intralesional vinblastine for local disease or systemic chemotherapy for disseminated KS. Conclusion: This case is unique as ocular KS as initial presentation is rare and our patient's diagnosis was only made after systemic lesions were triggered by immune reconstitution. KS should be considered as an important differential diagnosis for red eyes in all patients at risk of acquiring HIV infection.

Keywords: human herpesvirus 8, human immunodeficiency virus, immune reconstitution syndrome, Kaposi’s sarcoma, Kaposi’s sarcoma-associated herpesvirus

Procedia PDF Downloads 319
244 Biodegradation Ability of Polycyclic Aromatic Hydrocarbon (PAHs) Degrading Bacillus cereus Strain JMG-01 Isolated from PAHs Contaminated Soil

Authors: Momita Das, Sofia Banu, Jibon Kotoky

Abstract:

Environmental contamination of natural resources with persistent organic pollutants is of great world-wide apprehension. Polycyclic aromatic hydrocarbons (PAHs) are among the organic pollutants, released due to various anthropogenic activities. Due to their toxic, carcinogenic and mutagenic properties, PAHs are of environmental and human concern. Presently, bioremediation has evolved as the most promising biotechnology for cleanup of such contaminants because of its economical and less cost effectiveness. In the present study, distribution of 16 USEPA priority PAHs was determined in the soil samples collected from fifteen different sites of Guwahati City, the Gateway of the North East Region of India. The total concentrations of 16 PAHs (Σ16 PAHs) ranged from 42.7-742.3 µg/g. Higher concentration of total PAHs was found more in the Industrial areas compared to all the sites (742.3 µg/g and 628 µg/g). It is noted that among all the PAHs, Naphthalene, Acenaphthylene, Anthracene, Fluoranthene, Chrysene and Benzo(a)Pyrene were the most available and contain the higher concentration of all the PAHs. Since microbial activity has been deemed the most influential and significant cause of PAH removal; further, twenty-three bacteria were isolated from the most contaminated sites using the enrichment process. These strains were acclimatized to utilize naphthalene and anthracene, each at 100 µg/g concentration as sole carbon source. Among them, one Gram-positive strain (JMG-01) was selected, and biodegradation ability and initial catabolic genes of PAHs degradation were investigated. Based on 16S rDNA analysis, the isolate was identified as Bacillus cereus strain JMG-01. Topographic images obtained using Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) at scheduled time intervals of 7, 14 and 21 days, determined the variation in cell morphology during the period of degradation. AFM and SEM micrograph of biomass showed high filamentous growth leading to aggregation of cells in the form of biofilm with reference to the incubation period. The percentage degradation analysis using gas chromatography and mass analyses (GC-MS) suggested that more than 95% of the PAHs degraded when the concentration was at 500 µg/g. Naphthalene, naphthalene-2-methy, benzaldehyde-4-propyl, 1, 2, benzene di-carboxylic acid and benzene acetic acid were the major metabolites produced after degradation. Moreover, PCR experiments with specific primers for catabolic genes, ndo B and Cat A suggested that JMG-01 possess genes for PAHs degradation. Thus, the study concludes that Bacillus cereus strain JMG-01 has efficient biodegrading ability and can trigger the clean-up of PAHs contaminated soil.

Keywords: AFM, Bacillus cereus strain JMG-01, degradation, polycyclic aromatic hydrocarbon, SEM

Procedia PDF Downloads 248
243 Date Palm Wastes Turning into Biochars for Phosphorus Recovery from Aqueous Solutions: Static and Dynamic Investigations

Authors: Salah Jellali, Nusiba Suliman, Yassine Charabi, Jamal Al-Sabahi, Ahmed Al Raeesi, Malik Al-Wardy, Mejdi Jeguirim

Abstract:

Huge amounts of agricultural biomasses are worldwide produced. At the same time, large quantities of phosphorus are annually discharged into water bodies with possible serious effects onto the environment quality. The main objective of this work is to turn a local Omani biomass (date palm fronds wastes: DPFW) into an effective material for phosphorus recovery from aqueous and the reuse of this P-loaded material in agriculture as ecofriendly amendment. For this aim, the raw DPFW were firstly impregnated with 1 M salt separated solutions of CaCl₂, MgCl₂, FeCl₃, AlCl₃, and a mixture of MgCl₂/AlCl₃ for 24 h, and then pyrolyzed under N2 flow at 500 °C for 2 hours by using an adapted tubular furnace (Carbolite, UK). The synthetized biochars were deeply characterized through specific analyses concerning their morphology, structure, texture, and surface chemistry. These analyses included the use of a scanning electron microscope (SEM) coupled with an energy-dispersive X-Ray spectrometer (EDS), X-Ray diffraction (XRD), Fourier Transform Infrared (FTIR), sorption micrometrics, and X-ray Fluorescence (XRF) apparatus. Then, their efficiency in recovering phosphorus was investigated in batch mode for various contact times (1 min to 3 h), aqueous pH values (from 3 to 11), initial phosphorus concentrations (10-100 mg/L), presence of anions (nitrates, sulfates, and chlorides). In a second step, dynamic assays, by using laboratory columns (height of 30 cm and diameter of 3 cm), were performed in order to investigate the recovery of phosphorus by the modified biochar with a mixture of Mg/Al. The effect of the initial P concentration (25-100 mg/L), the bed depth height (3 to 8 g), and the flow rate (10-30 mL/min) was assessed. Experimental results showed that the biochars physico-chemical properties were very dependent on the type of the used modifying salt. The main affected parameters concerned the specific surface area, microporosity area, and the surface chemistry (pH of zero-point charge and available functional groups). These characteristics have significantly affected the phosphorus recovery efficiency from aqueous solutions. Indeed, the P removal efficiency in batch mode varies from about 5 mg/g for the Fe-modified biochar to more than 13 mg/g for the biochar functionalized with Mg/Al layered double hydroxides. Moreover, the P recovery seems to be a time dependent process and significantly affected by the pH of the aqueous media and the presence of foreign anions due to competition phenomenon. The laboratory column study of phosphorus recovery by the biochar functionalized with Mg/Al layered double hydroxides showed that this process is affected by the used phosphorus concentration, the flow rate, and especially the column bed depth height. Indeed, the phosphorus recovered amount increased from about 4.9 to more than 9.3 mg/g used biochar mass of 3 and 8 g, respectively. This work proved that salt-modified palm fronds-derived biochars could be considered as attractive and promising materials for phosphorus recovery from aqueous solutions even under dynamic conditions. The valorization of these P-loaded-modified biochars as eco-friendly amendment for agricultural soils is necessary will promote sustainability and circular economy concepts in the management of both liquid and solid wastes.

Keywords: date palm wastes, Mg/Al double-layered hydroxides functionalized biochars, phosphorus, recovery, sustainability, circular economy

Procedia PDF Downloads 63
242 Comparative Histological, Immunohistochemical and Biochemical Study on the Effect of Vit. C, Vit. E, Gallic Acid and Silymarin on Carbon Tetrachloride Model of Liver Fibrosis in Rats

Authors: Safaa S. Hassan, Mohammed H. Elbakry, Safwat A. Mangoura, Zainab M. Omar

Abstract:

Background: Liver fibrosis is the main reason for increased mortality in chronic liver disease. It has no standard treatment. Antioxidants from a variety of sources are capable of slowing or preventing oxidation of other molecules. Aim: to evaluate the hepatoprotective effect of vit. C, vit. E and gallic acid in comparison to silymarin in the rat model of carbon tetrachloride induced liver fibrosis and their possible mechanisms of action. Material& Methods: A total number of 60 adult male albino rats 160-200gm were divided into six equal groups; received subcutaneous (s.c) injection for 8 weeks. Group I: as control. Group II: received 1.5 mL/kg of CCL4 .Group III: CCL4 and co- treatment with silymarin 100mg/kg p.o. daily. Group IV: CCL4 and co-treatment with vit. C 50mg/kg p.o. daily. Group V: CCL4 and co-treatment with vit. E 200mg/kg. p.o. Group VI: CCL4 and co-treatment with Gallic acid 100mg/kg. p.o. daily. Liver was processed for histological and immunohistochemical examination. Levels of AST, ALT, ALP, reduced GSH, MDA, SOD and hydroxyproline concentration were measured and evaluated statistically. Results: Light and electron microscopic examination of liver of group II exhibited foci of altered cells with dense nuclei and vacuolated, granular cytoplasm, mononuclear cell infiltration in portal areas, profuse collagen fiber deposits were found around portal tract, more intense staining α-SMA-positive cells occupied most of the liver fibrosis tissue, electron lucent areas in the cytoplasm of the hepatocytes, margination of nuclear chromatin. Treatment by any of the antioxidants variably reduced the hepatic structural changes induced by CCL4. Biochemical analysis showed that carbon tetrachloride significantly increased the levels of serum AST, ALT, ALP, hepatic malondialdehyde and hydroxyproline content. Moreover, it decreased the activities of superoxide dismutase and glutathione. Treatment with silymarin, gallic acid, vit. C and vit. E decreased significantly the AST, ALT, and ALP levels in plasma, MDA and hydroxyproline and increased the activities of SOD and glutathione in liver tissue. The effect of administration of CCl4 was improved with the used antioxidants in variable degrees. The most efficient antioxidant was silymarin followed by gallic acid and vit. C then vit. E. It is possibly due to their antioxidant effect, free radical scavenging properties and the reduction of oxidant dependent activation and proliferation of HSCs. Conclusion: So these antioxidants can be a promising drugs candidate for ameliorating liver fibrosis better than the use of the drugs and their side effects.

Keywords: antioxidant, ccl4, gallic acid, liver fibrosis

Procedia PDF Downloads 256
241 Immune Disregulation in Inflammatory Skin Diseases with Comorbid Metabolic Disorders

Authors: Roman Khanferyan, Levon Gevorkyan, Ivan Radysh

Abstract:

Skin barrier dysfunction induces multiple inflammatory skin diseases. Epidemiological studies clearly support the link between most dermatological pathologies, immune disorders and metabolic disorders. Among them most common are psoriasis (PS) and Atopic dermatitis (AD). Psoriasis is a chronic immune-mediated inflammatory skin disease that affects 1.5 to 3.0% of the world's population. Comorbid metabolic disorders play an important role in the progression of PS and AD, as well. It is well known that PS, AD and overweight/obesity are associated with common pathophysiological mechanisms of mild chronic inflammation. The goal of the study was to study the immune disturbances in patients with PS, AD and comorbid metabolic disorders. To study the prevalence of comorbidity of PS and AD (data from 1406 patient’s histories of diseases) were analyzed. The severity of the disease is assessed using the PASI index (Psoriasis Area and Severity Index). 59 patients with psoriasis of different localizations of lesions and severity, as well as with different body mass index (BMI), were examined. The determination of the concentration of pro-inflammatory cytokines (IL-6, IL-8, IFNγ, IL-17, L-18 and TNFa) and chemokines (RANTES, IP-10, MCP-1 and Eotaxin) in sera and supernatants of 48h-cultivated peripheral blood mononuclear cell (PBMC) of psoriasis patients and healthy volunteers (36 adults) have been carried out by multiplex assay (Luminex Corporation, USA). It has been demonstrated that 42% of PS patients had comorbidity with different types of atopies. The most common was bronchial asthma and allergic rhinitis. At the same time, the prevalence of AD in PS patients was determined in 8.7% of patients. It has been shown that serum levels of all studied cytokines (IL-6, IL-8, IFNγ, IL-17, L-18 and TNF) in most of the studied patients were higher in PS patients than in those with AD and healthy controls (p<0.05). An in vitro synthesis of the IL-6 and IFNγ by PBMC demonstrated similar results to those determined in blood sera. There was a high correlation between BMI, immune mediators and the concentrations of adipokines and chemokines (p<0.05). The concentrations of Leptin and Resistin in obese psoriatic patients were greater by 28.6% and 17%, respectively, compared to non-obese psoriatic patients. In obese patients with psoriasis the serum levels of adiponectin were decreased up to 1.3-fold. The mean serum RANTES, IP-10, MCP-1, EOTAXIN levels in obese psoriatic patients were decreased by up to 13.1%, 21.9%, 40.4% and 28.2%, respectively. Similar results have been demonstrated in AD patients with comorbid overweight and obesity. Thus, the study demonstrated the important role of cytokines and chemokines dysregulation in inflammatory skin diseases, especially in patients with comorbid obesity and overweight. Metabolic disorders promote the severity of PS and AD, highly increase immune dysregulation, and synthesis of adipokines, which correlates with the production of proinflammatory immune mediators in comorbid obesity and overweight.

Keywords: psoriasis, atopic dermatitis, pro-inflammatory cytokines, chemokines, comorbid obesity

Procedia PDF Downloads 15
240 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 64
239 Made on Land, Ends Up in the Water "I-Clare" Intelligent Remediation System for Removal of Harmful Contaminants in Water using Modified Reticulated Vitreous Carbon Foam

Authors: Sabina Żołędowska, Tadeusz Ossowski, Robert Bogdanowicz, Jacek Ryl, Paweł Rostkowski, Michał Kruczkowski, Michał Sobaszek, Zofia Cebula, Grzegorz Skowierzak, Paweł Jakóbczyk, Lilit Hovhannisyan, Paweł Ślepski, Iwona Kaczmarczyk, Mattia Pierpaoli, Bartłomiej Dec, Dawid Nidzworski

Abstract:

The circular economy of water presents a pressing environmental challenge in our society. Water contains various harmful substances, such as drugs, antibiotics, hormones, and dioxides, which can pose silent threats. Water pollution has severe consequences for aquatic ecosystems. It disrupts the balance of ecosystems by harming aquatic plants, animals, and microorganisms. Water pollution poses significant risks to human health. Exposure to toxic chemicals through contaminated water can have long-term health effects, such as cancer, developmental disorders, and hormonal imbalances. However, effective remediation systems can be implemented to remove these contaminants using electrocatalytic processes, which offer an environmentally friendly alternative to other treatment methods, and one of them is the innovative iCLARE system. The project's primary focus revolves around a few main topics: Reactor design and construction, selection of a specific type of reticulated vitreous carbon foams (RVC), analytical studies of harmful contaminants parameters and AI implementation. This high-performance electrochemical reactor will be build based on a novel type of electrode material. The proposed approach utilizes the application of reticulated vitreous carbon foams (RVC) with deposited modified metal oxides (MMO) and diamond thin films. The following setup is characterized by high surface area development and satisfactory mechanical and electrochemical properties, designed for high electrocatalytic process efficiency. The consortium validated electrode modification methods that are the base of the iCLARE product and established the procedures for the detection of chemicals detection: - deposition of metal oxides WO3 and V2O5-deposition of boron-doped diamond/nanowalls structures by CVD process. The chosen electrodes (porous Ferroterm electrodes) were stress tested for various parameters that might occur inside the iCLARE machine–corosis, the long-term structure of the electrode surface during electrochemical processes, and energetic efficacy using cyclic polarization and electrochemical impedance spectroscopy (before and after electrolysis) and dynamic electrochemical impedance spectroscopy (DEIS). This tool allows real-time monitoring of the changes at the electrode/electrolyte interphase. On the other hand, the toxicity of iCLARE chemicals and products of electrolysis are evaluated before and after the treatment using MARA examination (IBMM) and HPLC-MS-MS (NILU), giving us information about the harmfulness of using electrode material and the efficiency of iClare system in the disposal of pollutants. Implementation of data into the system that uses artificial intelligence and the possibility of practical application is in progress (SensDx).

Keywords: waste water treatement, RVC, electrocatalysis, paracetamol

Procedia PDF Downloads 63
238 Solar Cell Packed and Insulator Fused Panels for Efficient Cooling in Cubesat and Satellites

Authors: Anand K. Vinu, Vaishnav Vimal, Sasi Gopalan

Abstract:

All spacecraft components have a range of allowable temperatures that must be maintained to meet survival and operational requirements during all mission phases. Due to heat absorption, transfer, and emission on one side, the satellite surface presents an asymmetric temperature distribution and causes a change in momentum, which can manifest in spinning and non-spinning satellites in different manners. This problem can cause orbital decays in satellites which, if not corrected, will interfere with its primary objective. The thermal analysis of any satellite requires data from the power budget for each of the components used. This is because each of the components has different power requirements, and they are used at specific times in an orbit. There are three different cases that are run, one is the worst operational hot case, the other one is the worst non-operational cold case, and finally, the operational cold case. Sunlight is a major source of heating that takes place on the satellite. The way in which it affects the spacecraft depends on the distance from the Sun. Any part of a spacecraft or satellite facing the Sun will absorb heat (a net gain), and any facing away will radiate heat (a net loss). We can use the state-of-the-art foldable hybrid insulator/radiator panel. When the panels are opened, that particular side acts as a radiator for dissipating the heat. Here the insulator, in our case, the aerogel, is sandwiched with solar cells and radiator fins (solar cells outside and radiator fins inside). Each insulated side panel can be opened and closed using actuators depending on the telemetry data of the CubeSat. The opening and closing of the panels are dependent on the special code designed for this particular application, where the computer calculates where the Sun is relative to the satellites. According to the data obtained from the sensors, the computer decides which panel to open and by how many degrees. For example, if the panels open 180 degrees, the solar panels will directly face the Sun, in turn increasing the current generator of that particular panel. One example is when one of the corners of the CubeSat is facing or if more than one side is having a considerable amount of sun rays incident on it. Then the code will analyze the optimum opening angle for each panel and adjust accordingly. Another means of cooling is the passive way of cooling. It is the most suitable system for a CubeSat because of its limited power budget constraints, low mass requirements, and less complex design. Other than this fact, it also has other advantages in terms of reliability and cost. One of the passive means is to make the whole chase act as a heat sink. For this, we can make the entire chase out of heat pipes and connect the heat source to this chase with a thermal strap that transfers the heat to the chassis.

Keywords: passive cooling, CubeSat, efficiency, satellite, stationary satellite

Procedia PDF Downloads 81
237 Antibiotic Susceptibility Pattern of the Pathogens Isolated from Hospital Acquired Acute Bacterial Meningitis in a Tertiary Health Care Centre in North India

Authors: M. S. Raza, A. Kapil, Sonu Tyagi, H. Gautam, S. Mohapatra, R. Chaudhry, S. Sood, V. Goyal, R. Lodha, V. Sreenivas, B. K. Das

Abstract:

Background: Acute bacterial meningitis remains the major cause of mortality and morbidity. More than half of the survivors develop the significant lifelong neurological abnormalities. Diagnosis of the hospital acquired acute bacterial meningitis (HAABM) is challenging as it appears either in the post operative patients or patients acquire the organisms from the hospital environment. In both the situations, pathogens are exposed to high dose of antibiotics. Chances of getting multidrug resistance organism are very high. We have performed this experiment to find out the etiological agents of HAABM and its antibiotics susceptibility pattern. Methodology: A perspective study was conducted at the Department of Microbiology, All India Institute of Medical Sciences, New Delhi. From March 2015 to April 2018 total 400 Cerebro spinal fluid samples were collected aseptically. Samples were processed for cell count, Gram staining, and culture. Culture plates were incubated at 37°C for 18-24 hours. Organism grown on blood and MacConkey agar were identified by MALDI-TOF Vitek MS (BioMerieux, France) and antibiotic susceptibility tests were performed by Kirby Bauer disc diffusion method as per CLSI 2015 guideline. Results: Of the 400 CSF samples processed, 43 (10.75%) were culture positive for different bacteria. Out of 43 isolates, the most prevalent Gram-positive organisms were S. aureus 4 (9.30%) followed by E. faecium 3 (6.97%) & CONS 2 (4.65%). Similarly, E. coli 13 (30.23%) was the commonest Gram-negative isolates followed by A. baumannii 12 (27.90%), K. pneumonia 5 (11.62%) and P. aeruginosa 4(9.30%). Most of the antibiotics tested against the Gram-negative isolates were resistance to them. Colistin was most effective followed by Meropenem and Imepenim for all Gram-negative HAABM isolates. Similarly, most of antibiotics tested were susceptible to S. aureus and CONS. However, E. faecium (100%) were only susceptible to vancomycin and teicoplanin. Conclusion: Hospital acquired acute bacterial meningitis (HAABM) is becoming the emerging challenge as most of isolates are showing resistance to commonly used antibiotics. Gram-negative organisms are emerging as the major player of HAABM. Great care needs to be taken especially in tertiary care hospitals. Similarly, antibiotic stewardship should be followed and antibiotic susceptibility test (AST) should be performed regularly to update the antibiotic patter and to prevent from the emergence of resistance. Updated information of the AST will be helpful for the better management of the meningitis patient.

Keywords: CSF, MALDI-TOF, hospital acquired acute bacterial meningitis, AST

Procedia PDF Downloads 144
236 Canadian Undergraduate and Graduate Nursing Students: Interest in Education in Medical and Recreational Cannabis for Practice and Career Development

Authors: Margareth S. Zanchetta, Kateryna Metersky, Valerie Tan, Charissa Cordon, Stephanie Lucchese, Yana Siganevich, Prasha Sivasundaram, Truong Binh Nguyen, Imran Qureshi

Abstract:

Due to a new area of practice, Canadian nurses possess knowledge gaps regarding the use of cannabis-based therapies by clients/patients. Education related to medical cannabis (MC) and recreational cannabis (RC) is required to promote nurses’ competency and confidence in supporting clients/patients using MC/RC toward the improvement of health outcomes. A team composed of nursing researchers and undergraduate/graduate students implemented a national survey to explore this theme with the population of undergraduate, graduate (MN and NP), and Post-Diploma (RN Bridging) nursing students enrolled in Canadian Universities Nursing Programs. Upon Research Ethics Board approval, survey recruitment was supported by major nursing stakeholders. The research questions were : (a) Which are the most preferred sources of information on MC/RC for nursing students? (b) Which are the factors and preferred learning modalities that could increase interest in learning about MC/RC, and (c) What are the future career plans among nursing students, and how would they consider the prospective use of cannabis in their practice? The survey was available from Sept. 2022 to Feb. 2023, hosted by a remote platform. An original questionnaire (English-French) was composed of 18 multiple choice questions and 2 open-ended questions. Sociodemographic information and closed-ended responses were compiled as descriptive statistics, while narrative accounts will be analysed through thematic analysis. Respondents (n=153) were from 7 Canadian provinces, national (99%) and international students (1%); the majority of respondents (61%) were in the age range of 21-30 years old. Results indicated that respondents perceive a gap in the undergraduate curriculum on the topics of MC/RC (91%) and that their learning needs include regulations (90%), data on effectiveness (88%), dosing best practices (86%), contraindications (83%), and clinical and medical indications (76%). Respondents reported motivation to learn more about MC/RC through online lectures/videos (65%), e-learning modules or online interactive training (61%), workshops (51%), webinars (36%), and social media (35%). Their primary career-related motivations regarding MC/RC knowledge include enhancing nursing practice (76%), learning about this growing scope of practice (61%), keeping up-to-date responding to scientific curiosity (59%), learning about evidence-based practice (59%), and utilizing alternative forms of medical treatment (37%). Respondents indicated that the integration of topics on cannabis in any course in the undergraduate and/or graduate curriculum would increase their desire to learn about MC/RC as equally as exposure within a clinical setting (75%). The emerging trend in the set of narrative responses (n=130) suggests that respondents believe educational MC/RC content should be integrated into core nursing courses. Respondents also urged educators to be well-informed about evidence-based practice related to MC/RC and to reflect upon stigma and biases surrounding its use. Future knowledge dissemination and translation activities include scholarly products and presentations to stimulate discussion amongst nursing faculty and students, as well as nurses in clinical settings. The goal is to mobilise talents and build collaboration for the development of a socially responsive curriculum on MC/RC competency to address the education-related expectations of all these social actors.

Keywords: Canada, medical cannabis, nursing education, nursing graduate student, nursing undergraduate student, online survey, recreational cannabis

Procedia PDF Downloads 74
235 Study of Operating Conditions Impact on Physicochemical and Functional Properties of Dairy Powder Produced by Spray-drying

Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit

Abstract:

Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular, compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins, which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed, and the use of genetic algorithm will allow the optimization of powder functionalities.

Keywords: dairy powders, spray-drying, powders functionalities, design of experiment

Procedia PDF Downloads 52
234 Acceleration of Adsorption Kinetics by Coupling Alternating Current with Adsorption Process onto Several Adsorbents

Authors: A. Kesraoui, M. Seffen

Abstract:

Applications of adsorption onto activated carbon for water treatment are well known. The process has been demonstrated to be widely effective for removing dissolved organic substances from wastewaters, but this treatment has a major drawback is the high operating cost. The main goal of our research work is to improve the retention capacity of Tunisian biomass for the depollution of industrial wastewater and retention of pollutants considered toxic. The biosorption process is based on the retention of molecules and ions onto a solid surface composed of biological materials. The evaluation of the potential use of these materials is important to propose as an alternative to the adsorption process generally expensive, used to remove organic compounds. Indeed, these materials are very abundant in nature and are low cost. Certainly, the biosorption process is effective to remove the pollutants, but it presents a slow kinetics. The improvement of the biosorption rates is a challenge to make this process competitive with respect to oxidation and adsorption onto lignocellulosic fibers. In this context, the alternating current appears as a new alternative, original and a very interesting phenomenon in the acceleration of chemical reactions. Our main goal is to increase the retention acceleration of dyes (indigo carmine, methylene blue) and phenol by using a new alternative: alternating current. The adsorption experiments have been performed in a batch reactor by adding some of the adsorbents in 150 mL of pollutants solution with the desired concentration and pH. The electrical part of the mounting comprises a current source which delivers an alternating current voltage of 2 to 15 V. It is connected to a voltmeter that allows us to read the voltage. In a 150 mL capacity cell, we plunged two zinc electrodes and the distance between two Zinc electrodes has been 4 cm. Thanks to alternating current, we have succeeded to improve the performance of activated carbon by increasing the speed of the indigo carmine adsorption process and reducing the treatment time. On the other hand, we have studied the influence of the alternating current on the biosorption rate of methylene blue onto Luffa cylindrica fibers and the hybrid material (Luffa cylindrica-ZnO). The results showed that the alternating current accelerated the biosorption rate of methylene blue onto the Luffa cylindrica and the Luffa cylindrica-ZnO hybrid material and increased the adsorbed amount of methylene blue on both adsorbents. In order to improve the removal of phenol, we performed the coupling between the alternating current and the biosorption onto two adsorbents: Luffa cylindrica and the hybrid material (Luffa cylindrica-ZnO). In fact, the alternating current has succeeded to improve the performance of adsorbents by increasing the speed of the adsorption process and the adsorption capacity and reduce the processing time.

Keywords: adsorption, alternating current, dyes, modeling

Procedia PDF Downloads 142
233 Pharmacokinetics of First-Line Tuberculosis Drugs in South African Patients from Kwazulu-Natal: Effects of Pharmacogenetic Variation on Rifampicin and Isoniazid Concentrations

Authors: Anushka Naidoo, Veron Ramsuran, Maxwell Chirehwa, Paolo Denti, Kogieleum Naidoo, Helen McIlleron, Nonhlanhla Yende-Zuma, Ravesh Singh, Sinaye Ngcapu, Nesri Padayatachi

Abstract:

Background: Despite efforts to introduce new drugs and shorter drug regimens for drug-susceptible tuberculosis (TB), the standard first-line treatment has not changed in over 50 years. Rifampicin, isoniazid, and pyrazinamide are critical components of the current standard treatment regimens. Some studies suggest that microbiologic failure and acquired drug resistance are primarily driven by low drug concentrations that result from pharmacokinetic (PK) variability independent of adherence to treatment. Wide between-patient pharmacokinetic variability for rifampin, isoniazid, and pyrazinamide has been reported in prior studies. There may be several reasons for this variability. However, genetic variability in genes coding for drug metabolizing and transporter enzymes have been shown to be a contributing factor for variable tuberculosis drug exposures. Objective: We describe the pharmacokinetics of first-line TB drugs rifampicin, isoniazid, and pyrazinamide and assess the effect of genetic variability in relevant selected drug metabolizing and transporter enzymes on pharmacokinetic parameters of isoniazid and rifampicin. Methods: We conducted the randomized-controlled Improving retreatment success TB trial in Durban, South Africa. The drug regimen included rifampicin, isoniazid, and pyrazinamide. Drug concentrations were measured in plasma, and concentration-time data were analysed using nonlinear-mixed-effects models to quantify the effects of relevant covariates and single nucleotide polymorphisms (SNP’s) of drug metabolizing and transporter genes on rifampicin, isoniazid and pyrazinamide exposure. A total of 25 SNP’s: four NAT2 (used to determine acetylator status), four SLCO1B1, three Pregnane X receptor (NR1), six ABCB1 and eight UGT1A, were selected for analysis in this study. Genotypes were determined for each of the SNP’s using a TaqMan® Genotyping OpenArray™. Results: Among fifty-eight patients studied; 41 (70.7%) were male, 97% black African, 42 (72.4%) HIV co-infected and 40 (95%) on efavirenz-based ART. Median weight, fat-free mass (FFM), and age at baseline were 56.9 kg (interquartile range, IQR: 51.1-65.2), 46.8 kg (IQR: 42.5-50.3) and 37 years (IQR: 31-42), respectively. The pharmacokinetics of rifampicin and pyrazinamide was best described using one-compartment models with first-order absorption and elimination, while for isoniazid two-compartment disposition was used. The median (interquartile range: IQR) AUC (h·mg/L) and Cmax (mg/L) for rifampicin, isoniazid, and pyrazinamide were; 25.62 (23.01-28.53) and 4.85 (4.36-5.40), 10.62 (9.20-12.25) and 2.79 (2.61-2.97), 345.74 (312.03-383.10) and 28.06 (25.01-31.52), respectively. Eighteen percent of patients were classified as rapid acetylators, and 34% and 43% as slow and intermediate acetylators, respectively. Rapid and intermediate acetylator status based on NAT 2 genotype resulted in 2.3 and 1.6 times higher isoniazid clearance than slow acetylators. We found no effects of the SLCO1B1 genotypes on rifampicin pharmacokinetics. Conclusion: Plasma concentrations of rifampicin, isoniazid, and pyrazinamide were low overall in our patients. Isoniazid clearance was high overall and as expected higher in rapid and intermediate acetylators resulting in lower drug exposures. In contrast to reports from previous South African or Ugandan studies, we did not find any effects of the SLCO1B1 or other genotypes tested on rifampicin PK. However, our findings are in keeping with more recent studies from Malawi and India emphasizing the need for geographically diverse and adequately powered studies. The clinical relevance of the low tuberculosis drug concentrations warrants further investigation.

Keywords: rifampicin, isoniazid pharmacokinetics, genetics, NAT2, SLCO1B1, tuberculosis

Procedia PDF Downloads 164
232 Oxidative Damage to Lipids, Proteins, and DNA during Differentiation of Mesenchymal Stem Cells Derived from Umbilical Cord into Biologically Active Hepatocytes

Authors: Abdolamir Allameh, Shahnaz Esmaeili, Mina Allameh, Safoura Khajeniazi

Abstract:

Stem cells with therapeutic applications can be isolated from human placenta/umblical cord blood (UCB) as well as the cord tissue (UC). Stem cells in culture are vulnerable to oxidative stress, particularly when subjected to differentiation process. The aim of this study was to examine the chnages in the rate of oxidation that occurs to cellular macromolecules during hepatic differentiation of mononuclear cells (MSCs). In addition, the impact of the hepatic differentiation process of MSC on cellular and biological activity of the cells will be undertaken. For this purpose, first mononuclear cells (MNCs) were isolated from human UCB which was obtained from a healthy full-term infant. The cells were cultured at a density of 3×10⁵ cells/cm² in DMEM- low-glucose culture media supplemented with 20% FBS, 2 mM L-glutamine, 100 μg/ml streptomycin and 100 U/ml penicillin. Cell cultures were then incubated at 37°C in a humidified 5% CO₂ incubator. After removing non-adherent cells by replacing culture medium, fibroblast-like adherent cells were resuspended in 0.25% trypsin-EDTA and plated in 25 cm² flasks (1×10⁴/ml). Characterization of the MSCs was routinely done by observing their morphology and growth curve. MSCs were subjected to a 2-step hepatocyte differentiation protocol in presence of hepatocyte growth factor (HGF), dexamethazone (DEX) and oncostatin M (OSM). The hepatocyte-like cells derived from MSCs were checked every week for 3 weeks for changes in lipid peroxidation, protein carbonyl formation and DNA oxidation i.e., 8-hydroxy-2'-deoxyguanosine (8-OH-dG) assay. During the 3-week differentiation process of MSCs to hepatocyte-like cells we found that expression liver-specific markers such as albumin, was associated with increased levels of lipid peroxidation and protein carbonyl formation. Whereas, undifferentiated MSCs has relatively low levels of lipid peroxidation products. There was a significant increase ( p < 0.05) in lipid peroxidation products in hepatocytes on days 7, 14, and 21 of differentiation. Likewise, the level of protein carbonyls in the cells was elevated during the differentiation. The level of protein carbonyls measured in hepatocyte-like cells obtained 3 weeks after differentiation induction was estimated to be ~6 fold higher compared to cells recovered on day 7 of differentiation. On the contrary, there was a small but significant decrease in DNA damage marker (8-OH-dG) in hepatocytes recovered 3 weeks after differentiation onset. The level of 8-OHdG which was in consistent with formation of reactive oxygen species (ROS). In conclusion, this data suggest that despite the elevation in oxidation of lipid and protein molecules during hepatocyte development, the cells were normal in terms of DNA integrity, morphology, and biologically activity.

Keywords: adult stem cells, DNA integrity, free radicals, hepatic differentiation

Procedia PDF Downloads 133
231 Solymorph: Design and Fabrication of AI-Driven Kinetic Facades with Soft Robotics for Optimized Building Energy Performance

Authors: Mohammadreza Kashizadeh, Mohammadamin Hashemi

Abstract:

Solymorph, a kinetic building facade designed for optimal energy capture and architectural expression, is explored in this paper. The system integrates photovoltaic panels with soft robotic actuators for precise solar tracking, resulting in enhanced electricity generation compared to static facades. Driven by the growing interest in dynamic building envelopes, the exploration of novel facade systems is necessitated. Increased energy generation and regulation of energy flow within buildings are potential benefits offered by integrating photovoltaic (PV) panels as kinetic elements. However, incorporating these technologies into mainstream architecture presents challenges due to the complexity of coordinating multiple systems. To address this, Solymorph leverages soft robotic actuators, known for their compliance, resilience, and ease of integration. Additionally, the project investigates the potential for employing Large Language Models (LLMs) to streamline the design process. The research methodology involved design development, material selection, component fabrication, and system assembly. Grasshopper (GH) was employed within the digital design environment for parametric modeling and scripting logic, and an LLM was experimented with to generate Python code for the creation of a random surface with user-defined parameters. Various techniques, including casting, 3D printing, and laser cutting, were utilized to fabricate the physical components. Finally, a modular assembly approach was adopted to facilitate installation and maintenance. A case study focusing on the application of Solymorph to an existing library building at Politecnico di Milano is presented. The facade system is divided into sub-frames to optimize solar exposure while maintaining a visually appealing aesthetic. Preliminary structural analyses were conducted using Karamba3D to assess deflection behavior and axial loads within the cable net structure. Additionally, Finite Element (FE) simulations were performed in Abaqus to evaluate the mechanical response of the soft robotic actuators under pneumatic pressure. To validate the design, a physical prototype was created using a mold adapted for a 3D printer's limitations. Casting Silicone Rubber Sil 15 was used for its flexibility and durability. The 3D-printed mold components were assembled, filled with the silicone mixture, and cured. After demolding, nodes and cables were 3D-printed and connected to form the structure, demonstrating the feasibility of the design. Solymorph demonstrates the potential of soft robotics and Artificial Intelligence (AI) for advancements in sustainable building design and construction. The project successfully integrates these technologies to create a dynamic facade system that optimizes energy generation and architectural expression. While limitations exist, Solymorph paves the way for future advancements in energy-efficient facade design. Continued research efforts will focus on cost reduction, improved system performance, and broader applicability.

Keywords: artificial intelligence, energy efficiency, kinetic photovoltaics, pneumatic control, soft robotics, sustainable building

Procedia PDF Downloads 38
230 Scenario of Some Minerals and Impact of Promoter Hypermethylation of DAP-K Gene in Gastric Carcinoma Patients of Kashmir Valley

Authors: Showkat Ahmad Bhat, Iqra Reyaz, Falaque ul Afshan, Ahmad Arif Reshi, Muneeb U. Rehman, Manzoor R. Mir, Sabhiya Majid, Sonallah, Sheikh Bilal, Ishraq Hussain

Abstract:

Background: Gastric cancer is the fourth most common cancer and the second leading cause of worldwide cancer-related deaths, with a wide variation in incidence rates across different geographical areas. The current view of cancer is that a malignancy arises from a transformation of the genetic material of a normal cell, followed by successive mutations and by chain of alterations in genes such as DNA repair genes, oncogenes, Tumor suppressor genes. Minerals are necessary for the functioning of several transcriptional factors, proteins that recognize certain DNA sequences and have been found to play a role in gastric cancer. Material Methods:The present work was a case control study and its aim was to ascertain the role of minerals and promoter hypermethylation of CpG islands of DAP-K gene in Gastric cancer patients among the Kashmiri population. Serum was extracted from all the samples and mineral estimation was done by AAS from serum, DNA was also extracted and was modified using bisulphite modification kit. Methylation-specific PCR was used for the analysis of the promoter hypermethylation status of DAP-K gene. The epigenetic analysis revealed that unlike other high risk regions, Kashmiri population has a different promoter hypermethylation profile of DAP-K gene and has different mineral profile. Results: In our study mean serum copper levels were significantly different for the two genders (p<0.05), while as no significant differences were observed for iron and zinc levels. In Methylation-specific PCR the methylation status of the promoter region of DAP-K gene was as 67.50% (27/40) of the gastric cancer tissues showed methylated DAP-K promoter and 32.50% (13/40) of the cases however showed unmethylated DAP-K promoter. Almost all 85% (17/20) of the histopathologically confirmed normal tissues showed unmethylated DAP-K promoter except only in 3 cases where DAP-K promoter was found to be methylated. The association of promoter hypermethylation with gastric cancer was evaluated by χ2 (Chi square) test and was found to be significant (P=0.0006). Occurrence of DAP-K methylation was found to be unequally distributed in males and females with more frequency in males than in females but the difference was not statistically significant (P =0.7635, Odds ratio=1.368 and 95% C.I=0.4197 to 4.456). When the frequency of DAP-K promoter methylation was compared with clinical staging of the disease, DAP-K promoter methylation was found to be certainly higher in Stage III/IV (85.71%) compared to Stage I/ II (57.69%) but the difference was not statistically significant (P =0.0673). These results suggest that DAP-K aberrant promoter hypermethylation in Kashmiri population contributes to the process of carcinogenesis in Gastric cancer and is reportedly one of the commonest epigenetic changes in the development of Gastric cancer.

Keywords: gastric cancer, minerals, AAS, hypermethylation, CpG islands, DAP-K gene

Procedia PDF Downloads 503
229 Synthesis of LiMₓMn₂₋ₓO₄ Doped Co, Ni, Cr and Its Characterization as Lithium Battery Cathode

Authors: Dyah Purwaningsih, Roto Roto, Hari Sutrisno

Abstract:

Manganese dioxide (MnO₂) and its derivatives are among the most widely used materials for the positive electrode in both primary and rechargeable lithium batteries. The MnO₂ derivative compound of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) is one of the leading candidates for positive electrode materials in lithium batteries as it is abundant, low cost and environmentally friendly. Over the years, synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) has been carried out using various methods including sol-gel, gas condensation, spray pyrolysis, and ceramics. Problems with these various methods persist including high cost (so commercially inapplicable) and must be done at high temperature (environmentally unfriendly). This research aims to: (1) synthesize LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) by reflux technique; (2) develop microstructure analysis method from XRD Powder LiMₓMn₂₋ₓO₄ data with the two-stage method; (3) study the electrical conductivity of LiMₓMn₂₋ₓO₄. This research developed the synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) with reflux. The materials consisting of Mn(CH₃COOH)₂. 4H₂O and Na₂S₂O₈ were refluxed for 10 hours at 120°C to form β-MnO₂. The doping of Co, Ni and Cr were carried out using solid-state method with LiOH to form LiMₓMn₂₋ₓO₄. The instruments used included XRD, SEM-EDX, XPS, TEM, SAA, TG/DTA, FTIR, LCR meter and eight-channel battery analyzer. Microstructure analysis of LiMₓMn₂₋ₓO₄ was carried out on XRD powder data by two-stage method using FullProf program integrated into WinPlotR and Oscail Program as well as on binding energy data from XPS. The morphology of LiMₓMn₂₋ₓO₄ was studied with SEM-EDX, TEM, and SAA. The thermal stability test was performed with TG/DTA, the electrical conductivity was studied from the LCR meter data. The specific capacity of LiMₓMn₂₋ₓO₄ as lithium battery cathode was tested using an eight-channel battery analyzer. The results showed that the synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) was successfully carried out by reflux. The optimal temperature of calcination is 750°C. XRD characterization shows that LiMn₂O₄ has a cubic crystal structure with Fd3m space group. By using the CheckCell in the WinPlotr, the increase of Li/Mn mole ratio does not result in changes in the LiMn₂O₄ crystal structure. The doping of Co, Ni and Cr on LiMₓMn₂₋ₓO₄ (x = 0.02; 0.04; 0; 0.6; 0.08; 0.10) does not change the cubic crystal structure of Fd3m. All the formed crystals are polycrystals with the size of 100-450 nm. Characterization of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) microstructure by two-stage method shows the shrinkage of lattice parameter and cell volume. Based on its range of capacitance, the conductivity obtained at LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) is an ionic conductivity with varying capacitance. The specific battery capacity at a voltage of 4799.7 mV for LiMn₂O₄; Li₁.₀₈Mn₁.₉₂O₄; LiCo₀.₁Mn₁.₉O₄; LiNi₀.₁Mn₁.₉O₄ and LiCr₀.₁Mn₁.₉O₄ are 88.62 mAh/g; 2.73 mAh/g; 89.39 mAh/g; 85.15 mAh/g; and 1.48 mAh/g respectively.

Keywords: LiMₓMn₂₋ₓO₄, solid-state, reflux, two-stage method, ionic conductivity, specific capacity

Procedia PDF Downloads 181
228 Enabling Wire Arc Additive Manufacturing in Aircraft Landing Gear Production and Its Benefits

Authors: Jun Wang, Chenglei Diao, Emanuele Pagone, Jialuo Ding, Stewart Williams

Abstract:

As a crucial component in aircraft, landing gear systems are responsible for supporting the plane during parking, taxiing, takeoff, and landing. Given the need for high load-bearing capacity over extended periods, 300M ultra-high strength steel (UHSS) is often the material of choice for crafting these systems due to its exceptional strength, toughness, and fatigue resistance. In the quest for cost-effective and sustainable manufacturing solutions, Wire Arc Additive Manufacturing (WAAM) emerges as a promising alternative for fabricating 300M UHSS landing gears. This is due to its advantages in near-net-shape forming of large components, cost-efficiency, and reduced lead times. Cranfield University has conducted an extensive preliminary study on WAAM 300M UHSS, covering feature deposition, interface analysis, and post-heat treatment. Both Gas Metal Arc (GMA) and Plasma Transferred Arc (PTA)-based WAAM methods were explored, revealing their feasibility for defect-free manufacturing. However, as-deposited 300M features showed lower strength but higher ductility compared to their forged counterparts. Subsequent post-heat treatments were effective in normalising the microstructure and mechanical properties, meeting qualification standards. A 300M UHSS landing gear demonstrator was successfully created using PTA-based WAAM, showcasing the method's precision and cost-effectiveness. The demonstrator, measuring Ф200mm x 700mm, was completed in 16 hours, using 7 kg of material at a deposition rate of 1.3kg/hr. This resulted in a significant reduction in the Buy-to-Fly (BTF) ratio compared to traditional manufacturing methods, further validating WAAM's potential for this application. A "cradle-to-gate" environmental impact assessment, which considers the cumulative effects from raw material extraction to customer shipment, has revealed promising outcomes. Utilising Wire Arc Additive Manufacturing (WAAM) for landing gear components significantly reduces the need for raw material extraction and refinement compared to traditional subtractive methods. This, in turn, lessens the burden on subsequent manufacturing processes, including heat treatment, machining, and transportation. Our estimates indicate that the carbon footprint of the component could be halved when switching from traditional machining to WAAM. Similar reductions are observed in embodied energy consumption and other environmental impact indicators, such as emissions to air, water, and land. Additionally, WAAM offers the unique advantage of part repair by redepositing only the necessary material, a capability not available through conventional methods. Our research shows that WAAM-based repairs can drastically reduce environmental impact, even when accounting for additional transportation for repairs. Consequently, WAAM emerges as a pivotal technology for reducing environmental impact in manufacturing, aiding the industry in its crucial and ambitious journey towards Net Zero. This study paves the way for transformative benefits across the aerospace industry, as we integrate manufacturing into a hybrid solution that offers substantial savings and access to more sustainable technologies for critical component production.

Keywords: WAAM, aircraft landing gear, microstructure, mechanical performance, life cycle assessment

Procedia PDF Downloads 143
227 Synthesis of Carbonyl Iron Particles Modified with Poly (Trimethylsilyloxyethyl Methacrylate) Nano-Grafts

Authors: Martin Cvek, Miroslav Mrlik, Michal Sedlacik, Tomas Plachy

Abstract:

Magnetorheological elastomers (MREs) are multi-phase composite materials containing micron-sized ferromagnetic particles dispersed in an elastomeric matrix. Their properties such as modulus, damping, magneto-striction, and electrical conductivity can be controlled by an external magnetic field and/or pressure. These features of the MREs are used in the development of damping devices, shock attenuators, artificial muscles, sensors or active elements of electric circuits. However, imperfections on the particle/matrix interfaces result in the lower performance of the MREs when compared with theoretical values. Moreover, magnetic particles are susceptible to corrosion agents such as acid rains or sea humidity. Therefore, the modification of particles is an effective tool for the improvement of MRE performance due to enhanced compatibility between particles and matrix as well as improvements of their thermo-oxidation and chemical stability. In this study, the carbonyl iron (CI) particles were controllably modified with poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) nano-grafts to develop magnetic core–shell structures exhibiting proper wetting with various elastomeric matrices resulting in improved performance within a frame of rheological, magneto-piezoresistance, pressure-piezoresistance, or radio-absorbing properties. The desired molecular weight of PHEMATMS nano-grafts was precisely tailored using surface-initiated atom transfer radical polymerization (ATRP). The CI particles were firstly functionalized using a 3-aminopropyltriethoxysilane agent, followed by esterification reaction with α-bromoisobutyryl bromide. The ATRP was performed in the anisole medium using ethyl α-bromoisobutyrate as a macroinitiator, N, N´, N´´, N´´-pentamethyldiethylenetriamine as a ligand, and copper bromide as an initiator. To explore the effect PHEMATMS molecular weights on final properties, two variants of core-shell structures with different nano-graft lengths were synthesized, while the reaction kinetics were designed through proper reactant feed ratios and polymerization times. The PHEMATMS nano-grafts were characterized by nuclear magnetic resonance and gel permeation chromatography proving information to their monomer conversions, molecular chain lengths, and low polydispersity indexes (1.28 and 1.35) as the results of the executed ATRP. The successful modifications were confirmed via Fourier transform infrared- and energy-dispersive spectroscopies while expected wavenumber outputs and element presences, respectively, of constituted PHEMATMS nano-grafts, were occurring in the spectra. The surface morphology of bare CI and their PHEMATMS-grafted analogues was further studied by scanning electron microscopy, and the thicknesses of grafted polymeric layers were directly observed by transmission electron microscopy. The contact angles as a measure of particle/matrix compatibility were investigated employing the static sessile drop method. The PHEMATMS nano-grafts enhanced compatibility of hydrophilic CI with low-surface-energy hydrophobic polymer matrix in terms of their wettability and dispersibility in an elastomeric matrix. Thus, the presence of possible defects at the particle/matrix interface is reduced, and higher performance of modified MREs is expected.

Keywords: atom transfer radical polymerization, core-shell, particle modification, wettability

Procedia PDF Downloads 184
226 Cytotoxic Effect of Biologically Transformed Propolis on HCT-116 Human Colon Cancer Cells

Authors: N. Selvi Gunel, L. M. Oktay, H. Memmedov, B. Durmaz, H. Kalkan Yildirim, E. Yildirim Sozmen

Abstract:

Object: Propolis which consists of compounds that are accepted as antioxidant, antimicrobial, antiseptic, antibacterial, anti-inflammatory, anti-mutagenic, immune-modulator and cytotoxic, is frequently used in current therapeutic applications. However, some of them result in allergic side effects, causing consumption to be restricted. Previously our group has succeeded in producing a new biotechnological product which was less allergenic. In this study, we purpose to optimize production conditions of this biologically-transformed propolis and determine the cytotoxic effects of obtained new products on colon cancer cell line (HCT-116). Method: Firstly, solid propolis samples were dissolved in water after weighing, grinding and sizing (sieve-35mesh) and applied 40 kHz/10 min ultrasonication. Samples were prepared according to inoculation with Lactobacillus plantarum in two different proportions (2.5% and 3.5%). Chromatographic analyzes of propolis were performed by UPLC-MS/MS (Waters, Milford, MA) system. Results were analysed by UPLC-MS/MS system MassLynx™ 4.1 software. HCT-116 cells were treated with propolis examples at 25-1000 µg/ml concentrations and cytotoxicity were measured by using WST-8 assay at 24, 48, and 72 hours. Samples with biological transformation were compared with the non-transformed control group samples. Our experiment groups were formed as follows: untreated (group 1), propolis dissolved in water ultrasonicated at 40 kHz/10 min (group 2), propolis dissolved in water ultrasonicated at 40 kHz/10 min and inoculated 2.5% L. plantarum L1 strain (group 3), propolis dissolved in water ultrasonicated at 40 kHz/10 min and inoculated 3.5% L. plantarum L3 strain (group 4). Obtained data were calculated with Graphpad Software V5 and analyzed by two-way ANOVA test followed by Bonferroni test. Result: As a result of our study, the cytotoxic effect of propolis samples on HCT-116 cells was evaluated. There was a 7.21 fold increase in group 3 compared to group 2 in the concentration of 1000 µg/ml, and it was a 6.66 fold increase in group 3 compared to group 1 at the end of 24 hours. At the end of 48 hours, in the concentration of 500 µg/ml, it was determined 4.7 fold increase in group 4 compared to group 3. At the same time, in the concentration of 750 µg/ml it was determined 2.01 fold increase in group 4 compared to group 3 and in the same concentration, it was determined 3.1 fold increase in group 4 compared to group 2. Also, at the 72 hours, in the concentration of 750 µg/ml, it was determined 2.42 fold increase in group 3 according to group 2 and in the same time, in the concentration of 1000 µg/ml, it was determined 2.13 fold increase in group 4 according to group 2. According to cytotoxicity results, the group which were ultrasonicated at 40 kHz/10min and inoculated 3.5% L. plantarum L3-strain had a higher cytotoxic effect. Conclusion: It is known that bioavailability of propolis is halved in six months. The data obtained from our results indicated that biologically-transformed propolis had more cytotoxic effect than non-transformed group on colon cancer cells. Consequently, we suggested that L. plantarum-transformation provides both reduction of allergenicity and extension of bioavailability period by enhancing healthful polyphenols.

Keywords: bio-transformation, propolis, colon cancer, cytotoxicity

Procedia PDF Downloads 122
225 Drug Delivery Cationic Nano-Containers Based on Pseudo-Proteins

Authors: Sophio Kobauri, Temur Kantaria, Nina Kulikova, David Tugushi, Ramaz Katsarava

Abstract:

The elaboration of effective drug delivery vehicles is still topical nowadays since targeted drug delivery is one of the most important challenges of the modern nanomedicine. The last decade has witnessed enormous research focused on synthetic cationic polymers (CPs) due to their flexible properties, in particular as non-viral gene delivery systems, facile synthesis, robustness, not oncogenic and proven gene delivery efficiency. However, the toxicity is still an obstacle to the application in pharmacotherapy. For overcoming the problem, creation of new cationic compounds including the polymeric nano-size particles – nano-containers (NCs) loading with different pharmaceuticals and biologicals is still relevant. In this regard, a variety of NCs-based drug delivery systems have been developed. We have found that amino acid-based biodegradable polymers called as pseudo-proteins (PPs), which can be cleared from the body after the fulfillment of their function are highly suitable for designing pharmaceutical NCs. Among them, one of the most promising are NCs made of biodegradable Cationic PPs (CPPs). For preparing new cationic NCs (CNCs), we used CPPs composed of positively charged amino acid L-arginine (R). The CNCs were fabricated by two approaches using: (1) R-based homo-CPPs; (2) Blends of R-based CPPs with regular (neutral) PPs. According to the first approach NCs we prepared from CPPs 8R3 (composed of R, sebacic acid and 1,3-propanediol) and 8R6 (composed of R, sebacic acid and 1,6-hexanediol). The NCs prepared from these CPPs were 72-101 nm in size with zeta potential within +30 ÷ +35 mV at a concentration 6 mg/mL. According to the second approach, CPPs 8R6 was blended in organic phase with neutral PPs 8L6 (composed of leucine, sebacic acid and 1,6-hexanediol). The NCs prepared from the blends were 130-140 nm in size with zeta potential within +20 ÷ +28 mV depending on 8R6/8L6 ratio. The stability studies of fabricated NCs showed that no substantial change of the particle size and distribution and no big particles’ formation is observed after three months storage. In vitro biocompatibility study of the obtained NPs with four different stable cell lines: A549 (human), U-937 (human), RAW264.7 (murine), Hepa 1-6 (murine) showed both type cathionic NCs are biocompatible. The obtained data allow concluding that the obtained CNCs are promising for the application as biodegradable drug delivery vehicles. This work was supported by the joint grant from the Science and Technology Center in Ukraine and Shota Rustaveli National Science Foundation of Georgia #6298 'New biodegradable cationic polymers composed of arginine and spermine-versatile biomaterials for various biomedical applications'.

Keywords: biodegradable polymers, cationic pseudo-proteins, nano-containers, drug delivery vehicles

Procedia PDF Downloads 138
224 Older Consumer’s Willingness to Trust Social Media Advertising: A Case of Australian Social Media Users

Authors: Simon J. Wilde, David M. Herold, Michael J. Bryant

Abstract:

Social media networks have become the hotbed for advertising activities due mainly to their increasing consumer/user base and, secondly, owing to the ability of marketers to accurately measure ad exposure and consumer-based insights on such networks. More than half of the world’s population (4.8 billion) now uses social media (60%), with 150 million new users having come online within the last 12 months (to June 2022). As the use of social media networks by users grows, key business strategies used for interacting with these potential customers have matured, especially social media advertising. Unlike other traditional media outlets, social media advertising is highly interactive and digital channel specific. Social media advertisements are clearly targetable, providing marketers with an extremely powerful marketing tool. Yet despite the measurable benefits afforded to businesses engaged in social media advertising, recent controversies (such as the relationship between Facebook and Cambridge Analytica in 2018) have only heightened the role trust and privacy play within these social media networks. Using a web-based quantitative survey instrument, survey participants were recruited via a reputable online panel survey site. Respondents to the survey represented social media users from all states and territories within Australia. Completed responses were received from a total of 258 social media users. Survey respondents represented all core age demographic groupings, including Gen Z/Millennials (18-45 years = 60.5% of respondents) and Gen X/Boomers (46-66+ years = 39.5% of respondents). An adapted ADTRUST scale, using a 20 item 7-point Likert scale, measured trust in social media advertising. The ADTRUST scale has been shown to be a valid measure of trust in advertising within traditional media, such as broadcast media and print media, and, more recently, the Internet (as a broader platform). The adapted scale was validated through exploratory factor analysis (EFA), resulting in a three-factor solution. These three factors were named reliability, usefulness and affect, and the willingness to rely on. Factor scores (weighted measures) were then calculated for these factors. Factor scores are estimates of the scores survey participants would have received on each of the factors had they been measured directly, with the following results recorded (Reliability = 4.68/7; Usefulness and Affect = 4.53/7; and Willingness to Rely On = 3.94/7). Further statistical analysis (independent samples t-test) determined the difference in factor scores between the factors when age (Gen Z/Millennials vs. Gen X/Boomers) was utilized as the independent, categorical variable. The results showed the difference in mean scores across all three factors to be statistically significant (p<0.05) for these two core age groupings: (1) Gen Z/Millennials Reliability = 4.90/7 vs. Gen X/Boomers Reliability = 4.34/7; (2) Gen Z/Millennials Usefulness and Affect = 4.85/7 vs Gen X/Boomers Usefulness and Affect = 4.05/7; and (3) Gen Z/Millennials Willingness to Rely On = 4.53/7 vs Gen X/Boomers Willingness to Rely On = 3.03/7. The results clearly indicate that older social media users lack trust in the quality of information conveyed in social media ads when compared to younger, more social media-savvy consumers. This is especially evident with respect to Factor 3 (Willingness to Rely On), whose underlying variables reflect one’s behavioral intent to act based on the information conveyed in advertising. These findings can be useful to marketers, advertisers, and brand managers in that the results highlight a critical need to design ‘authentic’ advertisements on social media sites to better connect with these older users in an attempt to foster positive behavioral responses from within this large demographic group – whose engagement with social media sites continues to increase year on year.

Keywords: social media advertising, trust, older consumers, internet studies

Procedia PDF Downloads 12
223 Traditional Medicine in Children: A Significant Cause of Morbidity and Mortality

Authors: Atitallah Sofien, Bouyahia Olfa, Romdhani Meriam, Missaoui Nada, Ben Rabeh Rania, Yahyaoui Salem, Mazigh Sonia, Boukthir Samir

Abstract:

Introduction: Traditional medicine refers to a diverse range of therapeutic practices and knowledge systems that have been employed by different cultures over an extended period to uphold and rejuvenate health. These practices can involve herbal remedies, acupuncture, massage, and alternative healing methods that deviate from conventional medical approaches. In Tunisia, we often use unidentified utensils to scratch the oral cavity internally in infants in order to widen the oral cavity for better breathing and swallowing. However, these practices can be risky and may jeopardize the patients' prognosis or even their lives. Aim: This is the case of a nine-month-old infant, admitted to the pediatric department and subsequently to the intensive care unit due to a peritonsillar abscess following the utilization of an unidentifiable tool to scrape the interior of the oral cavity. Case Report: This is a 9-month-old infant with no particular medical history, admitted for high respiratory distress and a fever persisting for 4 days. On clinical examination, he had a respiratory rate of 70 cycles per minute with an oxygen saturation of 97% and subcostal retractions, along with a heart rate of 175 beats per minute. His white blood cell count was 40,960/mm³, and his C-reactive protein was 250 mg/L. Given the severity of the clinical presentation, the infant was transferred to the intensive care unit, intubated, and mechanically ventilated. A cervical-thoracic CT scan was performed, revealing a ruptured 18 mm left peritonsillar abscess in the oropharynx associated with cellulitis of the retropharyngeal space. The oto-rhino-laryngoscopic examination revealed an asymmetry involving the left lateral wall of the oropharynx with the presence of a fistula behind the posterior pillar. Dissection of the collection cavity was performed, allowing the drainage of 2 ml of pus. The culture was negative. The patient received cefotaxime in combination with metronidazole and gentamicin for a duration of 10 days, followed by a switch to amoxicillin-clavulanic acid for 7 days. The patient was extubated after 4 days of treatment, and the clinical and radiological progress was favorable. Conclusions: Traditional medicine remains risky due to the lack of scientific evidence and the potential for injuries and transmission of infectious diseases, especially in children, who constitute a vulnerable population. Therefore, parents should consult healthcare professionals and rely on evidence-based care.

Keywords: children, peritonsillar abscess, traditional medicine, respiratory distress

Procedia PDF Downloads 52
222 Reagentless Detection of Urea Based on ZnO-CuO Composite Thin Film

Authors: Neha Batra Bali, Monika Tomar, Vinay Gupta

Abstract:

A reagentless biosensor for detection of urea based on ZnO-CuO composite thin film is presented in following work. Biosensors have immense potential for varied applications ranging from environmental to clinical testing, health care, and cell analysis. Immense growth in the field of biosensors is due to the huge requirement in today’s world to develop techniques which are both cost effective and accurate for prevention of disease manifestation. The human body comprises of numerous biomolecules which in their optimum levels are essential for functioning. However mismanaged levels of these biomolecules result in major health issues. Urea is one of the key biomolecules of interest. Its estimation is of paramount significance not only for healthcare sector but also from environmental perspectives. If level of urea in human blood/serum is abnormal, i.e., above or below physiological range (15-40mg/dl)), it may lead to diseases like renal failure, hepatic failure, nephritic syndrome, cachexia, urinary tract obstruction, dehydration, shock, burns and gastrointestinal, etc. Various metal nanoparticles, conducting polymer, metal oxide thin films, etc. have been exploited to act as matrix to immobilize urease to fabricate urea biosensor. Amongst them, Zinc Oxide (ZnO), a semiconductor metal oxide with a wide band gap is of immense interest as an efficient matrix in biosensors by virtue of its natural abundance, biocompatibility, good electron communication feature and high isoelectric point (9.5). In spite of being such an attractive candidate, ZnO does not possess a redox couple of its own which necessitates the use of electroactive mediators for electron transfer between the enzyme and the electrode, thereby causing hindrance in realization of integrated and implantable biosensor. In the present work, an effort has been made to fabricate a matrix based on ZnO-CuO composite prepared by pulsed laser deposition (PLD) technique in order to incorporate redox properties in ZnO matrix and to utilize the same for reagentless biosensing applications. The prepared bioelectrode Urs/(ZnO-CuO)/ITO/glass exhibits high sensitivity (70µAmM⁻¹cm⁻²) for detection of urea (5-200 mg/dl) with high stability (shelf life ˃ 10 weeks) and good selectivity (interference ˂ 4%). The enhanced sensing response obtained for composite matrix is attributed to the efficient electron exchange between ZnO-CuO matrix and immobilized enzymes, and subsequently fast transfer of generated electrons to the electrode via matrix. The response is encouraging for fabricating reagentless urea biosensor based on ZnO-CuO matrix.

Keywords: biosensor, reagentless, urea, ZnO-CuO composite

Procedia PDF Downloads 282
221 VIAN-DH: Computational Multimodal Conversation Analysis Software and Infrastructure

Authors: Teodora Vukovic, Christoph Hottiger, Noah Bubenhofer

Abstract:

The development of VIAN-DH aims at bridging two linguistic approaches: conversation analysis/interactional linguistics (IL), so far a dominantly qualitative field, and computational/corpus linguistics and its quantitative and automated methods. Contemporary IL investigates the systematic organization of conversations and interactions composed of speech, gaze, gestures, and body positioning, among others. These highly integrated multimodal behaviour is analysed based on video data aimed at uncovering so called “multimodal gestalts”, patterns of linguistic and embodied conduct that reoccur in specific sequential positions employed for specific purposes. Multimodal analyses (and other disciplines using videos) are so far dependent on time and resource intensive processes of manual transcription of each component from video materials. Automating these tasks requires advanced programming skills, which is often not in the scope of IL. Moreover, the use of different tools makes the integration and analysis of different formats challenging. Consequently, IL research often deals with relatively small samples of annotated data which are suitable for qualitative analysis but not enough for making generalized empirical claims derived quantitatively. VIAN-DH aims to create a workspace where many annotation layers required for the multimodal analysis of videos can be created, processed, and correlated in one platform. VIAN-DH will provide a graphical interface that operates state-of-the-art tools for automating parts of the data processing. The integration of tools that already exist in computational linguistics and computer vision, facilitates data processing for researchers lacking programming skills, speeds up the overall research process, and enables the processing of large amounts of data. The main features to be introduced are automatic speech recognition for the transcription of language, automatic image recognition for extraction of gestures and other visual cues, as well as grammatical annotation for adding morphological and syntactic information to the verbal content. In the ongoing instance of VIAN-DH, we focus on gesture extraction (pointing gestures, in particular), making use of existing models created for sign language and adapting them for this specific purpose. In order to view and search the data, VIAN-DH will provide a unified format and enable the import of the main existing formats of annotated video data and the export to other formats used in the field, while integrating different data source formats in a way that they can be combined in research. VIAN-DH will adapt querying methods from corpus linguistics to enable parallel search of many annotation levels, combining token-level and chronological search for various types of data. VIAN-DH strives to bring crucial and potentially revolutionary innovation to the field of IL, (that can also extend to other fields using video materials). It will allow the processing of large amounts of data automatically and, the implementation of quantitative analyses, combining it with the qualitative approach. It will facilitate the investigation of correlations between linguistic patterns (lexical or grammatical) with conversational aspects (turn-taking or gestures). Users will be able to automatically transcribe and annotate visual, spoken and grammatical information from videos, and to correlate those different levels and perform queries and analyses.

Keywords: multimodal analysis, corpus linguistics, computational linguistics, image recognition, speech recognition

Procedia PDF Downloads 92
220 Modification of Escherichia coli PtolT Expression Vector via Site-Directed Mutagenesis

Authors: Yakup Ulusu, Numan Eczacıoğlu, İsa Gökçe, Helen Waller, Jeremy H. Lakey

Abstract:

Besides having the appropriate amino acid sequence to perform the function of proteins, it is important to have correct conformation after this sequence to process. To consist of this conformation depends on the amino acid sequence at the primary structure, hydrophobic interaction, chaperones and enzymes in charge of folding etc. Misfolded proteins are not functional and tend to be aggregated. Cysteine originating disulfide cross-links make stable this conformation of functional proteins. When two of the cysteine amino acids come side by side, disulfide bond is established that forms a cystine bridge. Due to this feature cysteine plays an important role on the formation of three-dimensional structure of many proteins. There are two cysteine amino acids (C44, C69) in the Tol-A-III protein. Unlike protein disulfide bonds from within his own, any non-specific cystine bridge causes a change in the three dimensional structure of the protein. Proteins can be expressed in various host cells as directly or fusion (chimeric). As a result of overproduction of the recombinant proteins, aggregation of insoluble proteins in the host cell can occur by forming a crystal structure called inclusion body. In general fusion proteins are produced for provide affinity tags to make proteins more soluble and production of some toxic proteins via fusion protein expression system like pTolT. Proteins can be modified by using a site-directed mutagenesis. By this way, creation of non-specific disulfide crosslinks can be prevented at fusion protein expression system via the present cysteine replaced by another amino acid such as serine, glycine or etc. To do this, we need; a DNA molecule that contains the gene that encodes for the target protein, required primers for mutation to be designed according to site directed mutagenesis reaction. This study was aimed to be replaced cysteine encoding codon TGT with serine encoding codon AGT. For this sense and reverse primers designed (given below) and used site-directed mutagenesis reaction. Several new copy of the template plasmid DNA has been formed with above mentioned mutagenic primers via polymerase chain reaction (PCR). PCR product consists of both the master template DNA (wild type) and the new DNA sequences containing mutations. Dpn-l endonuclease restriction enzyme which is specific for methylated DNA and cuts them to the elimination of the master template DNA. E. coli cells obtained after transformation were incubated LB medium with antibiotic. After purification of plasmid DNA from E. coli, the presence of the mutation was determined by DNA sequence analysis. Developed this new plasmid is called PtolT-δ.

Keywords: site directed mutagenesis, Escherichia coli, pTolT, protein expression

Procedia PDF Downloads 348
219 Renewable Energy Micro-Grid Control Using Microcontroller in LabVIEW

Authors: Meena Agrawal, Chaitanya P. Agrawal

Abstract:

The power systems are transforming and becoming smarter with innovations in technologies to enable embark simultaneously upon the sustainable energy needs, rising environmental concerns, economic benefits and quality requirements. The advantages provided by inter-connection of renewable energy resources are becoming more viable and dependable with the smart controlling technologies. The limitation of most renewable resources have their diversity and intermittency causing problems in power quality, grid stability, reliability, security etc. is being cured by these efforts. A necessitate of optimal energy management by intelligent Micro-Grids at the distribution end of the power system has been accredited to accommodate sustainable renewable Distributed Energy Resources on large scale across the power grid. All over the world Smart Grids are emerging now as foremost concern infrastructure upgrade programs. The hardware setup includes NI cRIO 9022, Compact Reconfigurable Input Output microcontroller board connected to the PC on a LAN router with three hardware modules. The Real-Time Embedded Controller is reconfigurable controller device consisting of an embedded real-time processor controller for communication and processing, a reconfigurable chassis housing the user-programmable FPGA, Eight hot-swappable I/O modules, and graphical LabVIEW system design software. It has been employed for signal analysis, controls and acquisition and logging of the renewable sources with the LabVIEW Real-Time applications. The employed cRIO chassis controls the timing for the module and handles communication with the PC over the USB, Ethernet, or 802.11 Wi-Fi buses. It combines modular I/O, real-time processing, and NI LabVIEW programmable. In the presented setup, the Analog Input Module NI 9205 five channels have been used for input analog voltage signals from renewable energy sources and NI 9227 four channels have been used for input analog current signals of the renewable sources. For switching actions based on the programming logic developed in software, a module having Electromechanical Relays (single-pole single throw) with 4-Channels, electrically isolated and LED indicating the state of that channel have been used for isolating the renewable Sources on fault occurrence, which is decided by the logic in the program. The module for Ethernet based Data Acquisition Interface ENET 9163 Ethernet Carrier, which is connected on the LAN Router for data acquisition from a remote source over Ethernet also has the module NI 9229 installed. The LabVIEW platform has been employed for efficient data acquisition, monitoring and control. Control logic utilized in program for operation of the hardware switching Related to Fault Relays has been portrayed as a flowchart. A communication system has been successfully developed amongst the sources and loads connected on different computers using Hypertext transfer protocol, HTTP or Ethernet Local Stacked area Network TCP/IP protocol. There are two main I/O interfacing clients controlling the operation of the switching control of the renewable energy sources over internet or intranet. The paper presents experimental results of the briefed setup for intelligent control of the micro-grid for renewable energy sources, besides the control of Micro-Grid with data acquisition and control hardware based on a microcontroller with visual program developed in LabVIEW.

Keywords: data acquisition and control, LabVIEW, microcontroller cRIO, Smart Micro-Grid

Procedia PDF Downloads 312
218 Association between TNF-α and Its Receptor TNFRSF1B Polymorphism with Pulmonary Tuberculosis in Tomsk, Russia Federation

Authors: K. A. Gladkova, N. P. Babushkina, E. Y. Bragina

Abstract:

Purpose: Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the major public health problems worldwide. It is clear that the immune response to M. tuberculosis infection is a relationship between inflammatory and anti-inflammatory responses in which Tumour Necrosis Factor-α (TNF-α) plays key roles as a pro-inflammatory cytokine. TNF-α involved in various cell immune responses via binding to its two types of membrane-bound receptors, TNFRSF1A and TNFRSF1B. Importantly, some variants of the TNFRSF1B gene have been considered as possible markers of host susceptibility to TB. However, the possible impact of such TNF-α and its receptor genes polymorphism on TB cases in Tomsk is missing. Thus, the purpose of our study was to investigate polymorphism of TNF-α (rs1800629) and its receptor TNFRSF1B (rs652625 and rs525891) genes in population of Tomsk and to evaluate their possible association with the development of pulmonary TB. Materials and Methods: The population distribution features of genes polymorphisms were investigated and made case-control study based on group of people from Tomsk. Human blood was collected during routine patients examination at Tomsk Regional TB Dispensary. Altogether, 234 TB-positive patients (80 women, 154 men, average age is 28 years old) and 205 health-controls (153 women, 52 men, average age is 47 years old) were investigated. DNA was extracted from blood plasma by phenol-chloroform method. Genotyping was carried out by a single-nucleotide-specific real-time PCR assay. Results: First, interpopulational comparison was carried out between healthy individuals from Tomsk and available data from the 1000 Genomes project. It was found that polymorphism rs1800629 region demonstrated that Tomsk population was significantly different from Japanese (P = 0.0007), but it was similar with the following Europeans subpopulations: Italians (P = 0.052), Finns (P = 0.124) and British (P = 0.910). Polymorphism rs525891 clear demonstrated that group from Tomsk was significantly different from population of South Africa (P = 0.019). However, rs652625 demonstrated significant differences from Asian population: Chinese (P = 0.03) and Japanese (P = 0.004). Next, we have compared healthy individuals versus patients with TB. It was detected that no association between rs1800629, rs652625 polymorphisms, and positive TB cases. Importantly, AT genotype of polymorphism rs525891 was significantly associated with resistance to TB (odds ratio (OR) = 0.61; 95% confidence interval (CI): 0.41-0.9; P < 0.05). Conclusion: To the best of our knowledge, the polymorphism of TNFRSF1B (rs525891) was associated with TB, while genotype AT is protective [OR = 0.61] in Tomsk population. In contrast, no significant correlation was detected between polymorphism TNF-α (rs1800629) and TNFRSF1B (rs652625) genes and alveolar TB cases among population of Tomsk. In conclusion, our data expands the molecular particularities associated with TB. The study was supported by the grant of the Russia for Basic Research #15-04-05852.

Keywords: polymorphism, tuberculosis, TNF-α, TNFRSF1B gene

Procedia PDF Downloads 163