Search results for: leadership capacity building
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8390

Search results for: leadership capacity building

410 An Early Intervention Framework for Supporting Students’ Mathematical Development in the Transition to University STEM Programmes

Authors: Richard Harrison

Abstract:

Developing competency in mathematics and related critical thinking skills is essential to the education of undergraduate students of Science, Technology, Engineering and Mathematics (STEM). Recently, the HE sector has been impacted by a seemingly widening disconnect between the mathematical competency of incoming first-year STEM students and their entrance qualification tariffs. Despite relatively high grades in A-Level Mathematics, students may initially lack fundamental skills in key areas such as algebraic manipulation and have limited capacity to apply problem solving strategies. Compounded by compensatory measures applied to entrance qualifications during the pandemic, there has been an associated decline in student performance on introductory university mathematics modules. In the UK, a number of online resources have been developed to help scaffold the transition to university mathematics. However, in general, these do not offer a structured learning journey focused on individual developmental needs, nor do they offer an experience coherent with the teaching and learning characteristics of the destination institution. In order to address some of these issues, a bespoke framework has been designed and implemented on our VLE in the Faculty of Engineering & Physical Sciences (FEPS) at the University of Surrey. Called the FEPS Maths Support Framework, it was conceived to scaffold the mathematical development of individuals prior to entering the university and during the early stages of their transition to undergraduate studies. More than 90% of our incoming STEM students voluntarily participate in the process. Students complete a set of initial diagnostic questions in the late summer. Based on their performance and feedback on these questions, they are subsequently guided to self-select specific mathematical topic areas for review using our proprietary resources. This further assists students in preparing for discipline related diagnostic tests. The framework helps to identify students who are mathematically weak and facilitates early intervention to support students according to their specific developmental needs. This paper presents a summary of results from a rich data set captured from the framework over a 3-year period. Quantitative data provides evidence that students have engaged and developed during the process. This is further supported by process evaluation feedback from the students. Ranked performance data associated with seven key mathematical topic areas and eight engineering and science discipline areas reveals interesting patterns which can be used to identify more generic relative capabilities of the discipline area cohorts. In turn, this facilitates evidence based management of the mathematical development of the new cohort, informing any associated adjustments to teaching and learning at a more holistic level. Evidence is presented establishing our framework as an effective early intervention strategy for addressing the sector-wide issue of supporting the mathematical development of STEM students transitioning to HE

Keywords: competency, development, intervention, scaffolding

Procedia PDF Downloads 50
409 Techno Economic Analysis of CAES Systems Integrated into Gas-Steam Combined Plants

Authors: Coriolano Salvini

Abstract:

The increasing utilization of renewable energy sources for electric power production calls for the introduction of energy storage systems to match the electric demand along the time. Although many countries are pursuing as a final goal a “decarbonized” electrical system, in the next decades the traditional fossil fuel fed power plant still will play a relevant role in fulfilling the electric demand. Presently, such plants provide grid ancillary services (frequency control, grid balance, reserve, etc.) by adapting the output power to the grid requirements. An interesting option is represented by the possibility to use traditional plants to improve the grid storage capabilities. The present paper is addressed to small-medium size systems suited for distributed energy storage. The proposed Energy Storage System (ESS) is based on a Compressed Air Energy Storage (CAES) integrated into a Gas-Steam Combined Cycle (GSCC) or a Gas Turbine based CHP plants. The systems can be incorporated in an ex novo built plant or added to an already existing one. To avoid any geological restriction related to the availability of natural compressed air reservoirs, artificial storage is addressed. During the charging phase, electric power is absorbed from the grid by an electric driven intercooled/aftercooled compressor. In the course of the discharge phase, the compressed stored air is sent to a heat transfer device fed by hot gas taken upstream the Heat Recovery Steam Generator (HRSG) and subsequently expanded for power production. To maximize the output power, a staged reheated expansion process is adopted. The specific power production related to the kilogram per second of exhaust gas used to heat the stored air is two/three times larger than that achieved if the gas were used to produce steam in the HRSG. As a result, a relevant power augmentation is attained with respect to normal GSCC plant operations without additional use of fuel. Therefore, the excess of output power can be considered “fuel free” and the storage system can be compared to “pure” ESSs such as electrochemical, pumped hydro or adiabatic CAES. Representative cases featured by different power absorption, production capability, and storage capacity have been taken into consideration. For each case, a technical optimization aimed at maximizing the storage efficiency has been carried out. On the basis of the resulting storage pressure and volume, number of compression and expansion stages, air heater arrangement and process quantities found for each case, a cost estimation of the storage systems has been performed. Storage efficiencies from 0.6 to 0.7 have been assessed. Capital costs in the range of 400-800 €/kW and 500-1000 €/kWh have been estimated. Such figures are similar or lower to those featuring alternative storage technologies.

Keywords: artificial air storage reservoir, compressed air energy storage (CAES), gas steam combined cycle (GSCC), techno-economic analysis

Procedia PDF Downloads 198
408 Lignin Valorization: Techno-Economic Analysis of Three Lignin Conversion Routes

Authors: Iris Vural Gursel, Andrea Ramirez

Abstract:

Effective utilization of lignin is an important mean for developing economically profitable biorefineries. Current literature suggests that large amounts of lignin will become available in second generation biorefineries. New conversion technologies will, therefore, be needed to carry lignin transformation well beyond combustion to produce energy, but towards high-value products such as chemicals and transportation fuels. In recent years, significant progress on catalysis has been made to improve transformation of lignin, and new catalytic processes are emerging. In this work, a techno-economic assessment of two of these novel conversion routes and comparison with more established lignin pyrolysis route were made. The aim is to provide insights into the potential performance and potential hotspots in order to guide the experimental research and ease the commercialization by early identifying cost drivers, strengths, and challenges. The lignin conversion routes selected for detailed assessment were: (non-catalytic) lignin pyrolysis as the benchmark, direct hydrodeoxygenation (HDO) of lignin and hydrothermal lignin depolymerisation. Products generated were mixed oxygenated aromatic monomers (MOAMON), light organics, heavy organics, and char. For the technical assessment, a basis design followed by process modelling in Aspen was done using experimental yields. A design capacity of 200 kt/year lignin feed was chosen that is equivalent to a 1 Mt/y scale lignocellulosic biorefinery. The downstream equipment was modelled to achieve the separation of the product streams defined. For determining external utility requirement, heat integration was considered and when possible gasses were combusted to cover heating demand. The models made were used in generating necessary data on material and energy flows. Next, an economic assessment was carried out by estimating operating and capital costs. Return on investment (ROI) and payback period (PBP) were used as indicators. The results of the process modelling indicate that series of separation steps are required. The downstream processing was found especially demanding in the hydrothermal upgrading process due to the presence of significant amount of unconverted lignin (34%) and water. Also, external utility requirements were found to be high. Due to the complex separations, hydrothermal upgrading process showed the highest capital cost (50 M€ more than benchmark). Whereas operating costs were found the highest for the direct HDO process (20 M€/year more than benchmark) due to the use of hydrogen. Because of high yields to valuable heavy organics (32%) and MOAMON (24%), direct HDO process showed the highest ROI (12%) and the shortest PBP (5 years). This process is found feasible with a positive net present value. However, it is very sensitive to the prices used in the calculation. The assessments at this stage are associated with large uncertainties. Nevertheless, they are useful for comparing alternatives and identifying whether a certain process should be given further consideration. Among the three processes investigated here, the direct HDO process was seen to be the most promising.

Keywords: biorefinery, economic assessment, lignin conversion, process design

Procedia PDF Downloads 248
407 Abuse against Elderly Widows in India and Selected States: An Exploration

Authors: Rasmita Mishra, Chander Shekher

Abstract:

Background: Population ageing is an inevitable outcome of demographic transition. Due to increased life expectancy, the old age population in India and worldwide has increased, and it will continue to grow more alarmingly in the near future. There are redundant austerity that has been bestowed upon the widows, thus, the life of widows is never been easy in India. The loss of spouse along with other disadvantaged socioeconomic intermediaries like illiteracy and poverty often make the life of widows more difficult to live. Methodology: Ethical statement: The study used secondary data available in the public domain for its wider use in social research. Thus, there was no requirement of ethical consent in the present study. Data source: Building a Knowledge Base on Population Aging in India (BKPAI), 2011 dataset is used to fulfill the objectives of this study. It was carried out in seven states – Himachal Pradesh, Kerala, Maharashtra, Odisha, Punjab, Tamil Nadu, and West Bengal – having a higher percentage of the population in the age group 60 years and above compared to the national average. Statistical analysis: Descriptive and inferential statistics were used to understand the level of elderly widows and incidence of abuse against them in India and selected states. Bivariate and Trivariate analysis were carried out to check the pattern of abuse by selected covariates. Chi-Square test is used to verify the significance of the association. Further, Discriminant Analysis (DA) is carried out to understand which factor can separate out group of neglect and non-neglect elderly. Result: With the addition of 27 million from 2001 to 2011, the total elderly population in India is more than 100 million. Elderly females aged 60+ were more widows than their counterpart elderly males. This pattern was observed across selected states and at national level. At national level, more than one tenth (12 percent) of elderly experienced abuse in their lifetime. Incidence of abuse against elderly widows within family was considerably higher than the outside the family. This pattern was observed across the selected place and abuse in the study. In discriminant analysis, the significant difference between neglected and non-neglected elderly on each of the independent variables was examined using group mean and ANOVA. Discussion: The study is the first of its kind to assess the incidence of abuse against elderly widows using large-scale survey data. Another novelty of this study is that it has assessed for those states in India whereby the proportion of elderly is higher than the national average. Place and perpetrators involved in the abuse against elderly widows certainly envisaged the safeness in the present living arrangement of elderly widows. Conclusion: Due to the increasing life expectancy it is expected that the number of elderly will increase much faster than before. As biologically women live longer than men, there will be more women elderly than men. With respect to the living arrangement, after the demise of the spouse, elderly widows are more likely to live with their children who emerged as the main perpetrator of abuse.

Keywords: elderly abuse, emotional abuse physical abuse, material abuse, psychological abuse, quality of life

Procedia PDF Downloads 397
406 Training During Emergency Response to Build Resiliency in Water, Sanitation, and Hygiene

Authors: Lee Boudreau, Ash Kumar Khaitu, Laura A. S. MacDonald

Abstract:

In April 2015, a magnitude 7.8 earthquake struck Nepal, killing, injuring, and displacing thousands of people. The earthquake also damaged water and sanitation service networks, leading to a high risk of diarrheal disease and the associated negative health impacts. In response to the disaster, the Environment and Public Health Organization (ENPHO), a Kathmandu-based non-governmental organization, worked with the Centre for Affordable Water and Sanitation Technology (CAWST), a Canadian education, training and consulting organization, to develop two training programs to educate volunteers on water, sanitation, and hygiene (WASH) needs. The first training program was intended for acute response, with the second focusing on longer term recovery. A key focus was to equip the volunteers with the knowledge and skills to formulate useful WASH advice in the unanticipated circumstances they would encounter when working in affected areas. Within the first two weeks of the disaster, a two-day acute response training was developed, which focused on enabling volunteers to educate those affected by the disaster about local WASH issues, their link to health, and their increased importance immediately following emergency situations. Between March and October 2015, a total of 19 training events took place, with over 470 volunteers trained. The trained volunteers distributed hygiene kits and liquid chlorine for household water treatment. They also facilitated health messaging and WASH awareness activities in affected communities. A three-day recovery phase training was also developed and has been delivered to volunteers in Nepal since October 2015. This training focused on WASH issues during the recovery and reconstruction phases. The interventions and recommendations in the recovery phase training focus on long-term WASH solutions, and so form a link between emergency relief strategies and long-term development goals. ENPHO has trained 226 volunteers during the recovery phase, with training ongoing as of April 2016. In the aftermath of the earthquake, ENPHO found that its existing pool of volunteers were more than willing to help those in their communities who were more in need. By training these and new volunteers, ENPHO was able to reach many more communities in the immediate aftermath of the disaster; together they reached 11 of the 14 earthquake-affected districts. The collaboration between ENPHO and CAWST in developing the training materials was a highly collaborative and iterative process, which enabled the training materials to be developed within a short response time. By training volunteers on basic WASH topics during both the immediate response and the recovery phase, ENPHO and CAWST have been able to link immediate emergency relief to long-term developmental goals. While the recovery phase training continues in Nepal, CAWST is planning to decontextualize the training used in both phases so that it can be applied to other emergency situations in the future. The training materials will become part of the open content materials available on CAWST’s WASH Resources website.

Keywords: water and sanitation, emergency response, education and training, building resilience

Procedia PDF Downloads 292
405 The Study of Mirror Self-Recognition in Wildlife

Authors: Azwan Hamdan, Mohd Qayyum Ab Latip, Hasliza Abu Hassim, Tengku Rinalfi Putra Tengku Azizan, Hafandi Ahmad

Abstract:

Animal cognition provides some evidence for self-recognition, which is described as the ability to recognize oneself as an individual separate from the environment and other individuals. The mirror self-recognition (MSR) or mark test is a behavioral technique to determine whether an animal have the ability of self-recognition or self-awareness in front of the mirror. It also describes the capability for an animal to be aware of and make judgments about its new environment. Thus, the objectives of this study are to measure and to compare the ability of wild and captive wildlife in mirror self-recognition. Wild animals from the Royal Belum Rainforest Malaysia were identified based on the animal trails and salt lick grounds. Acrylic mirrors with wood frame (200 x 250cm) were located near to animal trails. Camera traps (Bushnell, UK) with motion-detection infrared sensor are placed near the animal trails or hiding spot. For captive wildlife, animals such as Malayan sun bear (Helarctos malayanus) and chimpanzee (Pan troglodytes) were selected from Zoo Negara Malaysia. The captive animals were also marked using odorless and non-toxic white paint on its forehead. An acrylic mirror with wood frame (200 x 250cm) and a video camera were placed near the cage. The behavioral data were analyzed using ethogram and classified through four stages of MSR; social responses, physical inspection, repetitive mirror-testing behavior and realization of seeing themselves. Results showed that wild animals such as barking deer (Muntiacus muntjak) and long-tailed macaque (Macaca fascicularis) increased their physical inspection (e.g inspecting the reflected image) and repetitive mirror-testing behavior (e.g rhythmic head and leg movement). This would suggest that the ability to use a mirror is most likely related to learning process and cognitive evolution in wild animals. However, the sun bear’s behaviors were inconsistent and did not clearly undergo four stages of MSR. This result suggests that when keeping Malayan sun bear in captivity, it may promote communication and familiarity between conspecific. Interestingly, chimp has positive social response (e.g manipulating lips) and physical inspection (e.g using hand to inspect part of the face) when they facing a mirror. However, both animals did not show any sign towards the mark due to lost of interest in the mark and realization that the mark is inconsequential. Overall, the results suggest that the capacity for MSR is the beginning of a developmental process of self-awareness and mental state attribution. In addition, our findings show that self-recognition may be based on different complex neurological and level of encephalization in animals. Thus, research on self-recognition in animals will have profound implications in understanding the cognitive ability of an animal as an effort to help animals, such as enhanced management, design of captive individuals’ enclosures and exhibits, and in programs to re-establish populations of endangered or threatened species.

Keywords: mirror self-recognition (MSR), self-recognition, self-awareness, wildlife

Procedia PDF Downloads 251
404 Development of Metal-Organic Frameworks-Type Hybrid Functionalized Materials for Selective Uranium Extraction

Authors: Damien Rinsant, Eugen Andreiadis, Michael Carboni, Daniel Meyer

Abstract:

Different types of materials have been developed for the solid/liquid uranium extraction processes, such as functionalized organic polymers, hybrid silica or inorganic adsorbents. In general, these materials exhibit a moderate affinity for uranyl ions and poor selectivity against impurities like iron, vanadium or molybdenum. Moreover, the structural organization deficiency of these materials generates ion diffusion issues inside the material. Therefore, the aim of our study is to developed efficient and organized materials, stable in the acid media encountered in uranium extraction processes. Metal organic frameworks (MOFs) are hybrid crystalline materials consisting of an inorganic part (cluster or metal ions) and tailored organic linkers connected via coordination bonds. These hierarchical materials have exceptional surface area, thermal stability and a large variety of tunable structures. However, due to the reversibility of constitutive coordination bonds, MOFs have moderate stability in strongly complexing or acidic media. Only few of them are known to be stable in aqueous media and only one example is described in strong acidic media. However, these conditions are very often encountered in the environmental pollution remediation of mine wastewaters. To tackle the challenge of developing MOFs adapted for uranium extraction from acid mine waters, we have investigated the stability of several materials. To ensure a good stability we have synthetized and characterized different materials based on highly coordinated metal clusters, such as LnOFs and Zirconium based materials. Among the latter, the UiO family shows a great stability in sulfuric acid media even in the presence of 1.4 M sodium sulfate at pH 2. However, the stability in phosphoric media is reduced due to the high affinity between zirconium and phosphate ligand. Based on these results, we have developed a tertiary amine functionalized MOF denoted UiO-68-NMe2 particularly adapted for the extraction of anionic uranyl (VI) sulfate complexes mainly present in the acid mine solutions. The adsorption capacity of the material has been determined upon varying total sulfate concentration, contact time and uranium concentration. The extraction tests put in evidence different phenomena due to the complexity of the extraction media and the interaction between the MOF and sulfate anion. Finally, the extraction mechanisms and the interaction between uranyl and the MOF structure have been investigated. The functionalized material UiO-68-NMe2 has been characterized in the presence and absence of uranium by FT-IR, UV and Raman techniques. Moreover, the stability of the protonated amino functionalized MOF has been evaluated. The synthesis, characterization and evaluation of this type of hybrid material, particularly adapted for uranium extraction in sulfuric acid media by an anionic exchange mechanism, paved the way for the development of metal organic frameworks functionalized by different other chelating motifs, such as bifunctional ligands showing an enhanced affinity and selectivity for uranium in acid and complexing media. Work in this direction is currently in progress.

Keywords: extraction, MOF, ligand, uranium

Procedia PDF Downloads 143
403 Rotterdam in Transition: A Design Case for a Low-Carbon Transport Node in Lombardijen

Authors: Halina Veloso e Zarate, Manuela Triggianese

Abstract:

The urban challenges posed by rapid population growth, climate adaptation, and sustainable living have compelled Dutch cities to reimagine their built environment and transportation systems. As a pivotal contributor to CO₂ emissions, the transportation sector in the Netherlands demands innovative solutions for transitioning to low-carbon mobility. This study investigates the potential of transit oriented development (TOD) as a strategy for achieving carbon reduction and sustainable urban transformation. Focusing on the Lombardijen station area in Rotterdam, which is targeted for significant densification, this paper presents a design-oriented exploration of a low-carbon transport node. By employing a research-by-design methodology, this study delves into multifaceted factors and scales, aiming to propose future scenarios for Lombardijen. Drawing from a synthesis of existing literature, applied research, and practical insights, a robust design framework emerges. To inform this framework, governmental data concerning the built environment and material embodied carbon are harnessed. However, the restricted access to crucial datasets, such as property ownership information from the cadastre and embodied carbon data from De Nationale Milieudatabase, underscores the need for improved data accessibility, especially during the concept design phase. The findings of this research contribute fundamental insights not only to the Lombardijen case but also to TOD studies across Rotterdam's 13 nodes and similar global contexts. Spatial data related to property ownership facilitated the identification of potential densification sites, underscoring its importance for informed urban design decisions. Additionally, the paper highlights the disparity between the essential role of embodied carbon data in environmental assessments for building permits and its limited accessibility due to proprietary barriers. Although this study lays the groundwork for sustainable urbanization through TOD-based design, it acknowledges an area of future research worthy of exploration: the socio-economic dimension. Given the complex socio-economic challenges inherent in the Lombardijen area, extending beyond spatial constraints, a comprehensive approach demands integration of mobility infrastructure expansion, land-use diversification, programmatic enhancements, and climate adaptation. While the paper adopts a TOD lens, it refrains from an in-depth examination of issues concerning equity and inclusivity, opening doors for subsequent research to address these aspects crucial for holistic urban development.

Keywords: Rotterdam zuid, transport oriented development, carbon emissions, low-carbon design, cross-scale design, data-supported design

Procedia PDF Downloads 65
402 Applying Innovation in FP Counselling: Results from A360 Amplify Matasan Matan Arewa Implementation of Counseling for Choice to Improve Contraceptive Adoption and Continuation among Married Adolescent Girls (15-19 years) in Northern Nigeria

Authors: Bulama Alhaji Alhassan, Roselyn Odeh, Rakiya Idris Labaran, Dorcas Yemi Danladi, Faith Ochonu

Abstract:

Introduction: Contraceptive use has numerous health benefits such as preventing unplanned pregnancies thereby supporting women to achieve their life goals, maintaining the ideal amount of time between pregnancies, lowering the death rate for both mothers and children and generally enhancing the lives of women and children. Despite the numerous advantages of modern contraception and numerous initiatives by the government and development partners to promote its adoption, Nigeria's use of these methods has remained persistently low. Counseling about contraception is essential to providing high-quality treatment ensuring informed choice, and voluntarism for family planning is the key. The goal of the contraceptive counseling approach known as Counseling for Choice (C4C) is to ensure that people have the agency and voice to choose the contraceptive methods that best suit their requirements by altering the way both clients and providers engage in family planning counseling sessions. Aim: To evaluate the effect of counseling for choice on Modern Contraceptive adoption and continuation among married adolescent girls aged 15-19 years in 61 health facilities, within a 6-month period in Northern Nigeria. Methodology: Data from the NDHIS was obtained from selected facilities Pre & Post commencement of C4C intervention from 36 facilities Kaduna and 25 Nasarawa Matasan Matan Arewa (MMA) core implementation states putting into consideration the specific period of initiation of intervention, six months after deployment of the C4C, data was obtained from these facilities for post analysis. Data was analyzed on SPSS using paired sample t-test. Result: C4C resulted to improved access to FP services via increasing contraceptive adoption and continued used by 15% and 27% respectively (p<0.05) in Nasarawa state. While in Kaduna state we observed 11% and 28% improvement in adoption and continued use respectively as well with statistical significance (p<0.05) depicting that the increase is highly correlated (0.99 Nasarawa and 0.75 Kaduna) with the C4C intervention where the provider uses the NORMAL AND 3Ws Rubric to explain to the client in a simplified manner what to do with chosen method, what to expect with her method of adoption and when to return for a refill. Conclusion: In Northern Nigeria, it was observed that most clients discontinue their methods due to bleeding side effect and that was related to lack of appropriate and comprehensive information during counselling about what to expect with the clients method of adoption but with the intervention of the program, through capacity strengthening of PHC providers on counselling skills using the Counselling for Choice, it has helped to improve modern contraceptive uptake among young married women in northern Nigeria.

Keywords: continuation, counselling, uptake, adolescent, modern & implementation

Procedia PDF Downloads 53
401 Single Cell Rna Sequencing Operating from Benchside to Bedside: An Interesting Entry into Translational Genomics

Authors: Leo Nnamdi Ozurumba-Dwight

Abstract:

Single-cell genomic analytical systems have proved to be a platform to isolate bulk cells into selected single cells for genomic, proteomic, and related metabolomic studies. This is enabling systematic investigations of the level of heterogeneity in a diverse and wide pool of cell populations. Single cell technologies, embracing techniques such as high parameter flow cytometry, single-cell sequencing, and high-resolution images are playing vital roles in these investigations on messenger ribonucleic acid (mRNA) molecules and related gene expressions in tracking the nature and course of disease conditions. This entails targeted molecular investigations on unit cells that help us understand cell behavoiur and expressions, which can be examined for their health implications on the health state of patients. One of the vital good sides of single-cell RNA sequencing (scRNA seq) is its probing capacity to detect deranged or abnormal cell populations present within homogenously perceived pooled cells, which would have evaded cursory screening on the pooled cell populations of biological samples obtained as part of diagnostic procedures. Despite conduction of just single-cell transcriptome analysis, scRNAseq now permits comparison of the transcriptome of the individual cells, which can be evaluated for gene expressional patterns that depict areas of heterogeneity with pharmaceutical drug discovery and clinical treatment applications. It is vital to strictly work through the tools of investigations from wet lab to bioinformatics and computational tooled analyses. In the precise steps for scRNAseq, it is critical to do thorough and effective isolation of viable single cells from the tissues of interest using dependable techniques (such as FACS) before proceeding to lysis, as this enhances the appropriate picking of quality mRNA molecules for subsequent sequencing (such as by the use of Polymerase Chain Reaction machine). Interestingly, scRNAseq can be deployed to analyze various types of biological samples such as embryos, nervous systems, tumour cells, stem cells, lymphocytes, and haematopoietic cells. In haematopoietic cells, it can be used to stratify acute myeloid leukemia patterns in patients, sorting them out into cohorts that enable re-modeling of treatment regimens based on stratified presentations. In immunotherapy, it can furnish specialist clinician-immunologist with tools to re-model treatment for each patient, an attribute of precision medicine. Finally, the good predictive attribute of scRNAseq can help reduce the cost of treatment for patients, thus attracting more patients who would have otherwise been discouraged from seeking quality clinical consultation help due to perceived high cost. This is a positive paradigm shift for patients’ attitudes primed towards seeking treatment.

Keywords: immunotherapy, transcriptome, re-modeling, mRNA, scRNA-seq

Procedia PDF Downloads 160
400 Crosslinked Porous 3-Dimensional Cellulose Nanofibers/Gelatin Based Biocomposite Aerogels for Tissue Engineering Application

Authors: Ali Mirtaghavi, Andy Baldwin, Rajendarn Muthuraj, Jack Luo

Abstract:

Recent advances in biomaterials have led to utilizing biopolymers to develop 3D scaffolds in tissue regeneration. One of the major challenges of designing biomaterials for 3D scaffolds is to mimic the building blocks similar to the extracellular matrix (ECM) of the native tissues. Biopolymer based aerogels obtained by freeze-drying have shown to provide structural similarities to the ECM owing to their 3D format and a highly porous structure with interconnected pores, similar to the ECM. Gelatin (GEL) is known to be a promising biomaterial with inherent regenerative characteristics owing to its chemical similarities to the ECM in native tissue, biocompatibility abundance, cost-effectiveness and accessible functional groups, which makes it facile for chemical modifications with other biomaterials to form biocomposites. Despite such advantages, gelatin offers poor mechanical properties, sensitive enzymatic degradation and high viscosity at room temperature which limits its application and encourages its use to develop biocomposites. Hydrophilic biomass-based cellulose nanofibrous (CNF) has been explored to use as suspension for biocomposite aerogels for the development of 3D porous structures with excellent mechanical properties, biocompatibility and slow enzymatic degradation. In this work, CNF biocomposite aerogels with various ratios of CNF:GEL) (90:10, 70:30 and 50:50) were prepared by freeze-drying technique, and their properties were investigated in terms of physicochemical, mechanical and biological characteristics. Epichlorohydrin (EPH) was used to investigate the effect of chemical crosslinking on the molecular interaction of CNF: GEL, and its effects on physicochemical, mechanical and biological properties of the biocomposite aerogels. Ultimately, chemical crosslinking helped to improve the mechanical resilience of the resulting aerogels. Amongst all the CNF-GEL composites, the crosslinked CNF: GEL (70:30) biocomposite was found to be favourable for cell attachment and viability. It possessed highly porous structure (porosity of ~93%) with pore sizes ranging from 16-110 µm, adequate mechanical properties (compression modulus of ~47 kPa) and optimal biocompatibility both in-vitro and in-vivo, as well as controlled enzymatic biodegradation, high water penetration, which could be considered a suitable option for wound healing application. In-vivo experiments showed improvement on inflammation and foreign giant body cell reaction for the crosslinked CNF: GEL (70:30) compared to the other samples. This could be due to the superior interaction of CNF with gelatin through chemical crosslinking, resulting in more optimal in-vivo improvement. In-vitro cell culture investigation on human dermal fibroblasts showed satisfactory 3D cell attachment over time. Overall, it has been observed that the developed CNF: GEL aerogel can be considered as a potential scaffold for soft tissue regeneration application.

Keywords: 3D scaffolds, aerogels, Biocomposites , tissue engineering

Procedia PDF Downloads 118
399 Empowering Indigenous Epistemologies in Geothermal Development

Authors: Te Kīpa Kēpa B. Morgan, Oliver W. Mcmillan, Dylan N. Taute, Tumanako N. Fa'aui

Abstract:

Epistemologies are ways of knowing. Indigenous Peoples are aware that they do not perceive and experience the world in the same way as others. So it is important when empowering Indigenous epistemologies, such as that of the New Zealand Māori, to also be able to represent a scientific understanding within the same analysis. A geothermal development assessment tool has been developed by adapting the Mauri Model Decision Making Framework. Mauri is a metric that is capable of representing the change in the life-supporting capacity of things and collections of things. The Mauri Model is a method of grouping mauri indicators as dimension averages in order to allow holistic assessment and also to conduct sensitivity analyses for the effect of worldview bias. R-shiny is the coding platform used for this Vision Mātauranga research which has created an expert decision support tool (DST) that combines a stakeholder assessment of worldview bias with an impact assessment of mauri-based indicators to determine the sustainability of proposed geothermal development. The initial intention was to develop guidelines for quantifying mātauranga Māori impacts related to geothermal resources. To do this, three typical scenarios were considered: a resource owner wishing to assess the potential for new geothermal development; another party wishing to assess the environmental and cultural impacts of the proposed development; an assessment that focuses on the holistic sustainability of the resource, including its surface features. Indicator sets and measurement thresholds were developed that are considered necessary considerations for each assessment context and these have been grouped to represent four mauri dimensions that mirror the four well-being criteria used for resource management in Aotearoa, New Zealand. Two case studies have been conducted to test the DST suitability for quantifying mātauranga Māori and other biophysical factors related to a geothermal system. This involved estimating mauri0meter values for physical features such as temperature, flow rate, frequency, colour, and developing indicators to also quantify qualitative observations about the geothermal system made by Māori. A retrospective analysis has then been conducted to verify different understandings of the geothermal system. The case studies found that the expert DST is useful for geothermal development assessment, especially where hapū (indigenous sub-tribal grouping) are conflicted regarding the benefits and disadvantages of their’ and others’ geothermal developments. These results have been supplemented with evaluations for the cumulative impacts of geothermal developments experienced by different parties using integration techniques applied to the time history curve of the expert DST worldview bias weighted plotted against the mauri0meter score. Cumulative impacts represent the change in resilience or potential of geothermal systems, which directly assists with the holistic interpretation of change from an Indigenous Peoples’ perspective.

Keywords: decision support tool, holistic geothermal assessment, indigenous knowledge, mauri model decision-making framework

Procedia PDF Downloads 170
398 Evaluation of the Relations between Childhood Trauma and Dissociative Experiences, Self-Perception, and Early Maladaptive Schemes in Sexual Assault Convicts

Authors: Safak Akdemir

Abstract:

The main purpose of this research is to evaluate the relationships between childhood traumas and dissociative experiences, self-perceptions and early maladaptive schemas in male convicts convicted of sexual assault crimes in prison. In our study, male convicts in prison for the crime of sexual assault constitute the experimental group, and the participants matched with this experimental group in terms of education, age and gender constitute the control group. The experimental group of the research consists of 189 male individuals who are convicted in the Ministry of Justice, General Directorate of Prisons, Istanbul/Maltepe L Type Closed Prison. The control group of this study consists of 147 adult males matched with the experimental group in terms of age, gender and education parameters. A total of 336 adult male individuals are included in the sample of this study. 46% of the experimental group were convicted of only sexual assault, 54% of them were convicted of both sexual assault and murder, injury and drug crimes. Total of five data collection tools, namely the Personal Information Form created by S. A. & E. O., Childhood Trauma Questionnaire (CTQ), the Dissociative Experiences Scale (DES), the Rosenberg Self-Esteem Scale (RSES), and the Young Schema Questionnaire-Short Form (YSQ-SF3), were completed. DES cut-off score of 99 (52.39%) of 189 convicts in the experimental group and 12 (8.17%) of 147 people in the control group was found to be 30 and above, and this result indicates the presence of pathological dissociative experiences. 180 (95.23%) of the sexual assault convicts in the experimental group had at least one childhood trauma, 154 (81.48%) were emotional neglect, 140 (74.07%) were emotional abuse, 121 (64.02%) were physical neglect, 91 (4814%) physical abuse and 70 (37.03%) sexual abuse. 168 (88.88%) of the experimental group reported multiple type of trauma and 12 (6.34%) reported single type of trauma. While the childhood traumas, isolation, abandonment and emotional deprivation schema levels of the convicts with a DES cut-off score of 30 and above are higher than the convicts with a DES cut-off score of 30 and above, their self-esteem is lower than this group. Experimental group while childhood traumas, dissociative experiences and early maladaptive schemas are higher than the control group, their self-esteem levels are lower. Dissociative experiences, abandonment and emotional deprivation early maladaptive schemas are more common in convicts aged between 18-30 years compared to convicts aged 31 and over. In addition, dissociative experiences and early maladaptive schemas of male convicts who reported physical and sexual abuse were higher than those who did not report physical and sexual abuse, while their self-esteem was at a lower level. As a result, in terms of psychotraumatology and clinical forensic psychology, dissociative disorders developed under the influence of chronic childhood traumas, with clinical interviews and psychometric measurements to be made in terms of forensic psychiatry; it is of fundamental importance to evaluate it in terms of neurosis-psychosis distinction, disability retirement, custody, malpractice, criminal and legal capacity criteria.

Keywords: crime, sexual assault, criminology, rape crimes, dissocitative disorders, maladative schemas

Procedia PDF Downloads 53
397 Optimization of Cobalt Oxide Conversion to Co-Based Metal-Organic Frameworks

Authors: Aleksander Ejsmont, Stefan Wuttke, Joanna Goscianska

Abstract:

Gaining control over particle shape, size and crystallinity is an ongoing challenge for many materials. Especially metalorganic frameworks (MOFs) are recently widely studied. Besides their remarkable porosity and interesting topologies, morphology has proven to be a significant feature. It can affect the further material application. Thus seeking new approaches that enable MOF morphology modulation is important. MOFs are reticular structures, where building blocks are made up of organic linkers and metallic nodes. The most common strategy of ensuring metal source is using salts, which usually exhibit high solubility and hinder morphology control. However, there has been a growing interest in using metal oxides as structure-directing agents towards MOFs due to their very low solubility and shape preservation. Metal oxides can be treated as a metal reservoir during MOF synthesis. Up to now, reports in which receiving MOFs from metal oxides mostly present ZnO conversion to ZIF-8. However, there are other oxides, for instance, Co₃O₄, which often is overlooked due to their structural stability and insolubility in aqueous solutions. Cobalt-based materials are famed for catalytic activity. Therefore the development of their efficient synthesis is worth attention. In the presented work, an optimized Co₃O₄transition to Co-MOFviaa solvothermal approach was proposed. The starting point of the research was the synthesis of Co₃O₄ flower petals and needles under hydrothermal conditions using different cobalt salts (e.g., cobalt(II) chloride and cobalt(II) nitrate), in the presence of urea, and hexadecyltrimethylammonium bromide (CTAB) surfactant as a capping agent. After receiving cobalt hydroxide, the calcination process was performed at various temperatures (300–500 °C). Then cobalt oxides as a source of cobalt cations were subjected to reaction with trimesic acid in solvothermal environment and temperature of 120 °C leading to Co-MOF fabrication. The solution maintained in the system was a mixture of water, dimethylformamide, and ethanol, with the addition of strong acids (HF and HNO₃). To establish how solvents affect metal oxide conversion, several different solvent ratios were also applied. The materials received were characterized with analytical techniques, including X-ray powder diffraction, energy dispersive spectroscopy,low-temperature nitrogen adsorption/desorption, scanning, and transmission electron microscopy. It was confirmed that the synthetic routes have led to the formation of Co₃O₄ and Co-based MOF varied in shape and size of particles. The diffractograms showed receiving crystalline phase for Co₃O₄, and also for Co-MOF. The Co₃O₄ obtained from nitrates and with using low-temperature calcination resulted in smaller particles. The study indicated that cobalt oxide particles of different size influence the efficiency of conversion and morphology of Co-MOF. The highest conversion was achieved using metal oxides with small crystallites.

Keywords: Co-MOF, solvothermal synthesis, morphology control, core-shell

Procedia PDF Downloads 143
396 Parametric Study for Obtaining the Structural Response of Segmental Tunnels in Soft Soil by Using No-Linear Numerical Models

Authors: Arturo Galván, Jatziri Y. Moreno-Martínez, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado

Abstract:

In recent years, one of the methods most used for the construction of tunnels in soft soil is the shield-driven tunneling. The advantage of this construction technique is that it allows excavating the tunnel while at the same time a primary lining is placed, which consists of precast segments. There are joints between segments, also called longitudinal joints, and joints between rings (called as circumferential joints). This is the reason because of this type of constructions cannot be considered as a continuous structure. The effect of these joints influences in the rigidity of the segmental lining and therefore in its structural response. A parametric study was performed to take into account the effect of different parameters in the structural response of typical segmental tunnels built in soft soil by using non-linear numerical models based on Finite Element Method by means of the software package ANSYS v. 11.0. In the first part of this study, two types of numerical models were performed. In the first one, the segments were modeled by using beam elements based on Timoshenko beam theory whilst the segment joints were modeled by using inelastic rotational springs considering the constitutive moment-rotation relation proposed by Gladwell. In this way, the mechanical behavior of longitudinal joints was simulated. On the other hand for simulating the mechanical behavior of circumferential joints elastic springs were considered. As well as, the stability given by the soil was modeled by means of elastic-linear springs. In the second type of models, the segments were modeled by means of three-dimensional solid elements and the joints with contact elements. In these models, the zone of the joints is modeled as a discontinuous (increasing the computational effort) therefore a discrete model is obtained. With these contact elements the mechanical behavior of joints is simulated considering that when the joint is closed, there is transmission of compressive and shear stresses but not of tensile stresses and when the joint is opened, there is no transmission of stresses. This type of models can detect changes in the geometry because of the relative movement of the elements that form the joints. A comparison between the numerical results with two types of models was carried out. In this way, the hypothesis considered in the simplified models were validated. In addition, the numerical models were calibrated with (Lab-based) experimental results obtained from the literature of a typical tunnel built in Europe. In the second part of this work, a parametric study was performed by using the simplified models due to less used computational effort compared to complex models. In the parametric study, the effect of material properties, the geometry of the tunnel, the arrangement of the longitudinal joints and the coupling of the rings were studied. Finally, it was concluded that the mechanical behavior of segment and ring joints and the arrangement of the segment joints affect the global behavior of the lining. As well as, the effect of the coupling between rings modifies the structural capacity of the lining.

Keywords: numerical models, parametric study, segmental tunnels, structural response

Procedia PDF Downloads 215
395 Social Factors That Contribute to Promoting and Supporting Resilience in Children and Youth following Environmental Disasters: A Mixed Methods Approach

Authors: Caroline McDonald-Harker, Julie Drolet

Abstract:

Abstract— In the last six years Canada In the last six years Canada has experienced two major and catastrophic environmental disasters– the 2013 Southern Alberta flood and the 2016 Fort McMurray, Alberta wildfire. These two disasters resulted in damages exceeding 12 billion dollars, the costliest disasters in Canadian history. In the aftermath of these disasters, many families faced the loss of homes, places of employment, schools, recreational facilities, and also experienced social, emotional, and psychological difficulties. Children and youth are among the most vulnerable to the devastating effects of disasters due to the physical, cognitive, and social factors related to their developmental life stage. Yet children and youth also have the capacity to be resilient and act as powerful catalyst for change in their own lives and wider communities following disaster. Little is known, particularly from a sociological perspective, about the specific factors that contribute to resilience in children and youth, and effective ways to support their overall health and well-being. This paper focuses on the voices and experiences of children and youth residing in these two disaster-affected communities in Alberta, Canada and specifically examines: 1) How children and youth’s lives are impacted by the tragedy, devastation, and upheaval of disaster; 2) Ways that children and youth demonstrate resilience when directly faced with the adversarial circumstances of disaster; and 3) The cumulative internal and external factors that contribute to bolstering and supporting resilience among children and youth post-disaster. This paper discusses the characteristics associated with high levels of resilience in 183 children and youth ages 5 to 17 based on quantitative and qualitative data obtained through a mix methods approach. Child and youth participants were administered the Children and Youth Resilience Measure (CYRM-28) in order to examine factors that influence resilience processes including: individual, caregiver, and context factors. The CYRM-28 was then supplemented with qualitative interviews with children and youth to contextualize the CYRM-28 resiliency factors and provide further insight into their overall disaster experience. Findings reveal that high levels of resilience among child and youth participants is associated with both individual factors and caregiver factors, specifically positive outlook, effective communication, peer support, and physical and psychological caregiving. Individual and caregiver factors helped mitigate the negative effects of disaster, thus bolstering resilience in children and youth. This paper discusses the implications that these findings have for understanding the specific mechanisms that support the resiliency processes and overall recovery of children and youth following disaster; the importance of bridging the gap between children and youth’s needs and the services and supports provided to them post-disaster; and the need to develop resiliency processes and practices that empower children and youth as active agents of change in their own lives following disaster. These findings contribute to furthering knowledge about pragmatic and representative changes to resources, programs, and policies surrounding disaster response, recovery, and mitigation.

Keywords: children and youth, disaster, environment, resilience

Procedia PDF Downloads 108
394 Influence of Kneading Conditions on the Textural Properties of Alumina Catalysts Supports for Hydrotreating

Authors: Lucie Speyer, Vincent Lecocq, Séverine Humbert, Antoine Hugon

Abstract:

Mesoporous alumina is commonly used as a catalyst support for the hydrotreating of heavy petroleum cuts. The process of fabrication usually involves: the synthesis of the boehmite AlOOH precursor, a kneading-extrusion step, and a calcination in order to obtain the final alumina extrudates. Alumina is described as a complex porous medium, generally agglomerates constituted of aggregated nanocrystallites. Its porous texture directly influences the active phase deposition and mass transfer, and the catalytic properties. Then, it is easy to figure out that each step of the fabrication of the supports has a role on the building of their porous network, and has to be well understood to optimize the process. The synthesis of boehmite by precipitation of aluminum salts was extensively studied in the literature and the effect of various parameters, such as temperature or pH, are known to influence the size and shape of the crystallites and the specific surface area of the support. The calcination step, through the topotactic transition from boehmite to alumina, determines the final properties of the support and can tune the surface area, pore volume and pore diameters from those of boehmite. However, the kneading extrusion step has been subject to a very few studies. It generally consists in two steps: an acid, then a basic kneading, where the boehmite powder is introduced in a mixer and successively added with an acid and a base solution to form an extrudable paste. During the acid kneading, the induced positive charges on the hydroxyl surface groups of boehmite create an electrostatic repulsion which tends to separate the aggregates and even, following the conditions, the crystallites. The basic kneading, by reducing the surface charges, leads to a flocculation phenomenon and can control the reforming of the overall structure. The separation and reassembling of the particles constituting the boehmite paste have a quite obvious influence on the textural properties of the material. In this work, we are focused on the influence of the kneading step on the alumina catalysts supports. Starting from an industrial boehmite, extrudates are prepared using various kneading conditions. The samples are studied by nitrogen physisorption in order to analyze the evolution of the textural properties, and by synchrotron small-angle X-ray scattering (SAXS), a more original method which brings information about agglomeration and aggregation of the samples. The coupling of physisorption and SAXS enables a precise description of the samples, as same as an accurate monitoring of their evolution as a function of the kneading conditions. These ones are found to have a strong influence of the pore volume and pore size distribution of the supports. A mechanism of evolution of the texture during the kneading step is proposed and could be attractive in order to optimize the texture of the supports and then, their catalytic performances.

Keywords: alumina catalyst support, kneading, nitrogen physisorption, small-angle X-ray scattering

Procedia PDF Downloads 237
393 Design Approach to Incorporate Unique Performance Characteristics of Special Concrete

Authors: Devendra Kumar Pandey, Debabrata Chakraborty

Abstract:

The advancement in various concrete ingredients like plasticizers, additives and fibers, etc. has enabled concrete technologists to develop many viable varieties of special concretes in recent decades. Such various varieties of concrete have significant enhancement in green as well as hardened properties of concrete. A prudent selection of appropriate type of concrete can resolve many design and application issues in construction projects. This paper focuses on usage of self-compacting concrete, high early strength concrete, structural lightweight concrete, fiber reinforced concrete, high performance concrete and ultra-high strength concrete in the structures. The modified properties of strength at various ages, flowability, porosity, equilibrium density, flexural strength, elasticity, permeability etc. need to be carefully studied and incorporated into the design of the structures. The paper demonstrates various mixture combinations and the concrete properties that can be leveraged. The selection of such products based on the end use of structures has been proposed in order to efficiently utilize the modified characteristics of these concrete varieties. The study involves mapping the characteristics with benefits and savings for the structure from design perspective. Self-compacting concrete in the structure is characterized by high shuttering loads, better finish, and feasibility of closer reinforcement spacing. The structural design procedures can be modified to specify higher formwork strength, height of vertical members, cover reduction and increased ductility. The transverse reinforcement can be spaced at closer intervals compared to regular structural concrete. It allows structural lightweight concrete structures to be designed for reduced dead load, increased insulation properties. Member dimensions and steel requirement can be reduced proportionate to about 25 to 35 percent reduction in the dead load due to self-weight of concrete. Steel fiber reinforced concrete can be used to design grade slabs without primary reinforcement because of 70 to 100 percent higher tensile strength. The design procedures incorporate reduction in thickness and joint spacing. High performance concrete employs increase in the life of the structures by improvement in paste characteristics and durability by incorporating supplementary cementitious materials. Often, these are also designed for slower heat generation in the initial phase of hydration. The structural designer can incorporate the slow development of strength in the design and specify 56 or 90 days strength requirement. For designing high rise building structures, creep and elasticity properties of such concrete also need to be considered. Lastly, certain structures require a performance under loading conditions much earlier than final maturity of concrete. High early strength concrete has been designed to cater to a variety of usages at various ages as early as 8 to 12 hours. Therefore, an understanding of concrete performance specifications for special concrete is a definite door towards a superior structural design approach.

Keywords: high performance concrete, special concrete, structural design, structural lightweight concrete

Procedia PDF Downloads 294
392 Emotion Regulation and Executive Functioning Scale for Children and Adolescents (REMEX): Scale Development

Authors: Cristina Costescu, Carmen David, Adrian Roșan

Abstract:

Executive functions (EF) and emotion regulation strategies are processes that allow individuals to function in an adaptative way and to be goal-oriented, which is essential for success in daily living activities, at school, or in social contexts. The Emotion Regulation and Executive Functioning Scale for Children and Adolescents (REMEX) represents an empirically based tool (based on the model of EF developed by Diamond) for evaluating significant dimensions of child and adolescent EFs and emotion regulation strategies, mainly in school contexts. The instrument measures the following dimensions: working memory, inhibition, cognitive flexibility, executive attention, planning, emotional control, and emotion regulation strategies. Building the instrument involved not only a top-down process, as we selected the content in accordance with prominent models of FE, but also a bottom-up one, as we were able to identify valid contexts in which FE and ER are put to use. For the construction of the instrument, we implemented three focus groups with teachers and other professionals since the aim was to develop an accurate, objective, and ecological instrument. We used the focus group method in order to address each dimension and to yield a bank of items to be further tested. Each dimension is addressed through a task that the examiner will apply and through several items derived from the main task. For the validation of the instrument, we plan to use item response theory (IRT), also known as the latent response theory, that attempts to explain the relationship between latent traits (unobservable cognitive processes) and their manifestations (i.e., observed outcomes, responses, or performance). REMEX represents an ecological scale that integrates a current scientific understanding of emotion regulation and EF and is directly applicable to school contexts, and it can be very useful for developing intervention protocols. We plan to test his convergent validity with the Childhood Executive Functioning Inventory (CHEXI) and Emotion Dysregulation Inventory (EDI) and divergent validity between a group of typically developing children and children with neurodevelopmental disorders, aged between 6 and 9 years old. In a previous pilot study, we enrolled a sample of 40 children with autism spectrum disorders and attention-deficit/hyperactivity disorder aged 6 to 12 years old, and we applied the above-mentioned scales (CHEXI and EDI). Our results showed that deficits in planning, bebavior regulation, inhibition, and working memory predict high levels of emotional reactivity, leading to emotional and behavioural problems. Considering previous results, we expect our findings to provide support for the validity and reliability of the REMEX version as an ecological instrument for assessing emotion regulation and EF in children and for key features of its uses in intervention protocols.

Keywords: executive functions, emotion regulation, children, item response theory, focus group

Procedia PDF Downloads 85
391 Multisensory Science, Technology, Engineering and Mathematics Learning: Combined Hands-on and Virtual Science for Distance Learners of Food Chemistry

Authors: Paulomi Polly Burey, Mark Lynch

Abstract:

It has been shown that laboratory activities can help cement understanding of theoretical concepts, but it is difficult to deliver such an activity to an online cohort and issues such as occupational health and safety in the students’ learning environment need to be considered. Chemistry, in particular, is one of the sciences where practical experience is beneficial for learning, however typical university experiments may not be suitable for the learning environment of a distance learner. Food provides an ideal medium for demonstrating chemical concepts, and along with a few simple physical and virtual tools provided by educators, analytical chemistry can be experienced by distance learners. Food chemistry experiments were designed to be carried out in a home-based environment that 1) Had sufficient scientific rigour and skill-building to reinforce theoretical concepts; 2) Were safe for use at home by university students and 3) Had the potential to enhance student learning by linking simple hands-on laboratory activities with high-level virtual science. Two main components of the resources were developed, a home laboratory experiment component, and a virtual laboratory component. For the home laboratory component, students were provided with laboratory kits, as well as a list of supplementary inexpensive chemical items that they could purchase from hardware stores and supermarkets. The experiments used were typical proximate analyses of food, as well as experiments focused on techniques such as spectrophotometry and chromatography. Written instructions for each experiment coupled with video laboratory demonstrations were used to train students on appropriate laboratory technique. Data that students collected in their home laboratory environment was collated across the class through shared documents, so that the group could carry out statistical analysis and experience a full laboratory experience from their own home. For the virtual laboratory component, students were able to view a laboratory safety induction and advised on good characteristics of a home laboratory space prior to carrying out their experiments. Following on from this activity, students observed laboratory demonstrations of the experimental series they would carry out in their learning environment. Finally, students were embedded in a virtual laboratory environment to experience complex chemical analyses with equipment that would be too costly and sensitive to be housed in their learning environment. To investigate the impact of the intervention, students were surveyed before and after the laboratory series to evaluate engagement and satisfaction with the course. Students were also assessed on their understanding of theoretical chemical concepts before and after the laboratory series to determine the impact on their learning. At the end of the intervention, focus groups were run to determine which aspects helped and hindered learning. It was found that the physical experiments helped students to understand laboratory technique, as well as methodology interpretation, particularly if they had not been in such a laboratory environment before. The virtual learning environment aided learning as it could be utilized for longer than a typical physical laboratory class, thus allowing further time on understanding techniques.

Keywords: chemistry, food science, future pedagogy, STEM education

Procedia PDF Downloads 150
390 Analytical, Numerical, and Experimental Research Approaches to Influence of Vibrations on Hydroelastic Processes in Centrifugal Pumps

Authors: Dinara F. Gaynutdinova, Vladimir Ya Modorsky, Nikolay A. Shevelev

Abstract:

The problem under research is that of unpredictable modes occurring in two-stage centrifugal hydraulic pump as a result of hydraulic processes caused by vibrations of structural components. Numerical, analytical and experimental approaches are considered. A hypothesis was developed that the problem of unpredictable pressure decrease at the second stage of centrifugal pumps is caused by cavitation effects occurring upon vibration. The problem has been studied experimentally and theoretically as of today. The theoretical study was conducted numerically and analytically. Hydroelastic processes in dynamic “liquid – deformed structure” system were numerically modelled and analysed. Using ANSYS CFX program engineering analysis complex and computing capacity of a supercomputer the cavitation parameters were established to depend on vibration parameters. An influence domain of amplitudes and vibration frequencies on concentration of cavitation bubbles was formulated. The obtained numerical solution was verified using CFM program package developed in PNRPU. The package is based on a differential equation system in hyperbolic and elliptic partial derivatives. The system is solved by using one of finite-difference method options – the particle-in-cell method. The method defines the problem solution algorithm. The obtained numerical solution was verified analytically by model problem calculations with the use of known analytical solutions of in-pipe piston movement and cantilever rod end face impact. An infrastructure consisting of an experimental fast hydro-dynamic processes research installation and a supercomputer connected by a high-speed network, was created to verify the obtained numerical solutions. Physical experiments included measurement, record, processing and analysis of data for fast processes research by using National Instrument signals measurement system and Lab View software. The model chamber end face oscillated during physical experiments and, thus, loaded the hydraulic volume. The loading frequency varied from 0 to 5 kHz. The length of the operating chamber varied from 0.4 to 1.0 m. Additional loads weighed from 2 to 10 kg. The liquid column varied from 0.4 to 1 m high. Liquid pressure history was registered. The experiment showed dependence of forced system oscillation amplitude on loading frequency at various values: operating chamber geometrical dimensions, liquid column height and structure weight. Maximum pressure oscillation (in the basic variant) amplitudes were discovered at loading frequencies of approximately 1,5 kHz. These results match the analytical and numerical solutions in ANSYS and CFM.

Keywords: computing experiment, hydroelasticity, physical experiment, vibration

Procedia PDF Downloads 231
389 Visuospatial Perspective Taking and Theory of Mind in a Clinical Approach: Development of a Task for Adults

Authors: Britt Erni, Aldara Vazquez Fernandez, Roland Maurer

Abstract:

Visuospatial perspective taking (VSPT) is a process that allows to integrate spatial information from different points of view, and to transform the mental images we have of the environment to properly orient our movements and anticipate the location of landmarks during navigation. VSPT is also related to egocentric perspective transformations (imagined rotations or translations of one's point of view) and to infer the visuospatial experiences of another person (e.g. if and how another person sees objects). This process is deeply related to a wide-ranging capacity called the theory of mind (ToM), an essential cognitive function that allows us to regulate our social behaviour by attributing mental representations to individuals in order to make behavioural predictions. VSPT is often considered in the literature as the starting point of the development of the theory of mind. VSPT and ToM include several levels of knowledge that have to be assessed by specific tasks. Unfortunately, the lack of tasks assessing these functions in clinical neuropsychology leads to underestimate, in brain-damaged patients, deficits of these functions which are essential, in everyday life, to regulate our social behaviour (ToM) and to navigate in known and unknown environments (VSPT). Therefore, this study aims to create and standardize a VSPT task in order to explore the cognitive requirements of VSPT and ToM, and to specify their relationship in healthy adults and thereafter in brain-damaged patients. Two versions of a computerized VSPT task were administered to healthy participants (M = 28.18, SD = 4.8 years). In both versions the environment was a 3D representation of 10 different geometric shapes placed on a circular base. Two sets of eight pictures were generated from this: of the environment with an avatar somewhere on its periphery (locations) and of what the avatar sees from that place (views). Two types of questions were asked: a) identify the location from the view, and b) identify the view from the location. Twenty participants completed version 1 of the task and 20 completed the second version, where the views were offset by ±15° (i.e., clockwise or counterclockwise) and participants were asked to choose the closest location or the closest view. The preliminary findings revealed that version 1 is significantly easier than version 2 for accuracy (with ceiling scores for version 1). In version 2, participants responded significantly slower when they had to infer the avatar's view from the latter's location, probably because they spent more time visually exploring the different views (responses). Furthermore, men significantly performed better than women in version 1 but not in version 2. Most importantly, a sensitive task (version 2) has been created for which the participants do not seem to easily and automatically compute what someone is looking at yet which does not involve more heavily other cognitive functions. This study is further completed by including analysis on non-clinical participants with low and high degrees of schizotypy, different socio-educational status, and with a range of older adults to examine age-related and other differences in VSPT processing.

Keywords: mental transformation, spatial cognition, theory of mind, visuospatial perspective taking

Procedia PDF Downloads 181
388 Techno-Economic Assessments of Promising Chemicals from a Sugar Mill Based Biorefinery

Authors: Kathleen Frances Haigh, Mieke Nieder-Heitmann, Somayeh Farzad, Mohsen Ali Mandegari, Johann Ferdinand Gorgens

Abstract:

Lignocellulose can be converted to a range of biochemicals and biofuels. Where this is derived from agricultural waste, issues of competition with food are virtually eliminated. One such source of lignocellulose is the South African sugar industry. Lignocellulose could be accessed by changes to the current farming practices and investments in more efficient boilers. The South African sugar industry is struggling due to falling sugar prices and increasing costs and it is proposed that annexing a biorefinery to a sugar mill will broaden the product range and improve viability. Process simulations of the selected chemicals were generated using Aspen Plus®. It was envisaged that a biorefinery would be annexed to a typical South African sugar mill. Bagasse would be diverted from the existing boilers to the biorefinery and mixed with harvest residues. This biomass would provide the feedstock for the biorefinery and the process energy for the biorefinery and sugar mill. Thus, in all scenarios a portion of the biomass was diverted to a new efficient combined heat and power plant (CHP). The Aspen Plus® simulations provided the mass and energy balance data to carry out an economic assessment of each scenarios. The net present value (NPV), internal rate of return (IRR) and minimum selling price (MSP) was calculated for each scenario. As a starting point scenarios were generated to investigate the production of ethanol, ethanol and lactic acid, ethanol and furfural, butanol, methanol, and Fischer-Tropsch syncrude. The bypass to the CHP plant is a useful indicator of the energy demands of the chemical processes. An iterative approach was used to identify a suitable bypass because increasing this value had the combined effect of increasing the amount of energy available and reducing the capacity of the chemical plant. Bypass values ranged from 30% for syncrude production to 50% for combined ethanol and furfural production. A hurdle rate of 15.7% was selected for the IRR. The butanol, combined ethanol and furfural, or the Fischer-Tropsch syncrude scenarios are unsuitable for investment with IRRs of 4.8%, 7.5% and 11.5% respectively. This provides valuable insights into research opportunities. For example furfural from sugarcane bagasse is an established process although the integration of furfural production with ethanol is less well understood. The IRR for the ethanol scenario was 14.7%, which is below the investment criteria, but given the technological maturity it may still be considered for investment. The scenarios which met the investment criteria were the combined ethanol and lactic acid, and the methanol scenarios with IRRs of 20.5% and 16.7%, respectively. These assessments show that the production of biochemicals from lignocellulose can be commercially viable. In addition, this assessment have provided valuable insights for research to improve the commercial viability of additional chemicals and scenarios. This has led to further assessments of the production of itaconic acid, succinic acid, citric acid, xylitol, polyhydroxybutyrate, polyethylene, glucaric acid and glutamic acid.

Keywords: biorefineries, sugar mill, methanol, ethanol

Procedia PDF Downloads 178
387 Numerical Investigation of Thermal Energy Storage Panel Using Nanoparticle Enhanced Phase Change Material for Micro-Satellites

Authors: Jelvin Tom Sebastian, Vinod Yeldho Baby

Abstract:

In space, electronic devices are constantly attacked with radiation, which causes certain parts to fail or behave in unpredictable ways. To advance the thermal controllability for microsatellites, we need a new approach and thermal control system that is smaller than that on conventional satellites and that demand no electric power. Heat exchange inside the microsatellites is not that easy as conventional satellites due to the smaller size. With slight mass gain and no electric power, accommodating heat using phase change materials (PCMs) is a strong candidate for solving micro satellites' thermal difficulty. In other words, PCMs can absorb or produce heat in the form of latent heat, changing their phase and minimalizing the temperature fluctuation around the phase change point. The main restriction for these systems is thermal conductivity weakness of common PCMs. As PCM is having low thermal conductivity, it increases the melting and solidification time, which is not suitable for specific application like electronic cooling. In order to increase the thermal conductivity nanoparticles are introduced. Adding the nanoparticles in base PCM increases the thermal conductivity. Increase in weight concentration increases the thermal conductivity. This paper numerically investigates the thermal energy storage panel with nanoparticle enhanced phase change material. Silver nanostructure have increased the thermal properties of the base PCM, eicosane. Different weight concentration (1, 2, 3.5, 5, 6.5, 8, 10%) of silver enhanced phase change material was considered. Both steady state and transient analysis was performed to compare the characteristics of nanoparticle enhanced phase material at different heat loads. Results showed that in steady state, the temperature near the front panel reduced and temperature on NePCM panel increased as the weight concentration increased. With the increase in thermal conductivity more heat was absorbed into the NePCM panel. In transient analysis, it was found that the effect of nanoparticle concentration on maximum temperature of the system was reduced as the melting point of the material reduced with increase in weight concentration. But for the heat load of maximum 20W, the model with NePCM did not attain the melting point temperature. Therefore it showed that the model with NePCM is capable of holding more heat load. In order to study the heat load capacity double the load is given, maximum of 40W was given as first half of the cycle and the other is given constant OW. Higher temperature was obtained comparing the other heat load. The panel maintained a constant temperature for a long duration according to the NePCM melting point. In both the analysis, the uniformity of temperature of the TESP was shown. Using Ag-NePCM it allows maintaining a constant peak temperature near the melting point. Therefore, by altering the weight concentration of the Ag-NePCM it is possible to create an optimum operating temperature required for the effective working of the electronics components.

Keywords: carbon-fiber-reinforced polymer, micro/nano-satellite, nanoparticle phase change material, thermal energy storage

Procedia PDF Downloads 192
386 The Development of Modernist Chinese Architecture from the Perspective of Cultural Regionalism in Taiwan: Spatial Practice by the Fieldoffice Architects

Authors: Yilei Yu

Abstract:

Modernism, emerging in the Western world of the 20th century, attempted to create a universal international style, which pulled the architectural and social systems created by classicism back to an initial pure state. However, out of the introspection of the Modernism, Regionalism attempted to restore a humanistic environment and create flexible buildings during the 1950s. Meanwhile, as the first generation of architects came back, the wind of the Regionalism blew to Taiwan. However, with the increasing of political influence and the tightening of free creative space, from the second half of the 1950s to the 1980s, the "real" Regional Architecture, which should have taken roots in Taiwan, becomes the "fake" Regional Architecture filled with the oriental charm. Through the Comparative Method, which includes description, interpretation, juxtaposition, and comparison, this study analyses the difference of the style of the Modernist Chinese Architecture between the period before the 1980s and the after. The paper aims at exploring the development of Regionalism Architecture in Taiwan, which includes three parts. First, the burgeoning period of the "modernist Chinese architecture" in Taiwan was the beginning of the Chinese Nationalist Party's coming to Taiwan to consolidate political power. The architecture of the "Ming and Qing Dynasty Palace Revival Style" dominated the architectural circles in Taiwan. These superficial "regional buildings" have nearly no combination with the local customs of Taiwan, which is difficult to evoke the social identity. Second, in the late 1970s, the second generation of architects headed by Baode Han began focusing on the research and preservation of traditional Taiwanese architecture, and creating buildings combined the terroirs of Taiwan through the imitation of styles. However, some scholars have expressed regret that very few regionalist architectural works that appeared in the 1980s can respond specifically to regional conditions and forms of construction. Instead, most of them are vocabulary-led representations. Third, during the 1990s, by the end of the period of martial law, community building gradually emerged, which made the object of Taiwan's architectural concern gradually extended to the folk and ethnic groups. In the Yilan area, there are many architects who care about the local environment, such as the Field office Architects. Compared with the hollow regionality of the passionate national spirits that emerged during the martial law period, the local practice of the architect team in Yilan can better link the real local environmental life and reflect the true regionality. In conclusion, with the local practice case of the huge construction team in Yilan area, this paper focuses on the Spatial Practice by the Field office Architects to explore the spatial representation of the space and the practical enlightenment in the process of modernist Chinese architecture development in Taiwan.

Keywords: regionalism, modernism, Chinese architecture, political landscape, spatial representation

Procedia PDF Downloads 112
385 Management of Mycotoxin Production and Fungicide Resistance by Targeting Stress Response System in Fungal Pathogens

Authors: Jong H. Kim, Kathleen L. Chan, Luisa W. Cheng

Abstract:

Control of fungal pathogens, such as foodborne mycotoxin producers, is problematic as effective antimycotic agents are often very limited. Mycotoxin contamination significantly interferes with the safe production of foods or crops worldwide. Moreover, expansion of fungal resistance to commercial drugs or fungicides is a global human health concern. Therefore, there is a persistent need to enhance the efficacy of commercial antimycotic agents or to develop new intervention strategies. Disruption of the cellular antioxidant system should be an effective method for pathogen control. Such disruption can be achieved with safe, redox-active compounds. Natural phenolic derivatives are potent redox cyclers that inhibit fungal growth through destabilization of the cellular antioxidant system. The goal of this study is to identify novel, redox-active compounds that disrupt the fungal antioxidant system. The identified compounds could also function as sensitizing agents to conventional antimycotics (i.e., chemosensitization) to improve antifungal efficacy. Various benzo derivatives were tested against fungal pathogens. Gene deletion mutants of the yeast Saccharomyces cerevisiae were used as model systems for identifying molecular targets of benzo analogs. The efficacy of identified compounds as potent antifungal agents or as chemosensitizing agents to commercial drugs or fungicides was examined with methods outlined by the Clinical Laboratory Standards Institute or the European Committee on Antimicrobial Susceptibility Testing. Selected benzo derivatives possessed potent antifungal or antimycotoxigenic activity. Molecular analyses by using S. cerevisiae mutants indicated antifungal activity of benzo derivatives was through disruption of cellular antioxidant or cell wall integrity system. Certain benzo analogs screened overcame tolerance of Aspergillus signaling mutants, namely mitogen-activated protein kinase mutants, to fludioxonil fungicide. Synergistic antifungal chemosensitization greatly lowered minimum inhibitory or fungicidal concentrations of test compounds, including inhibitors of mitochondrial respiration. Of note, salicylaldehyde is a potent antimycotic volatile that has some practical application as a fumigant. Altogether, benzo derivatives targeting cellular antioxidant system of fungi (along with cell wall integrity system) effectively suppress fungal growth. Candidate compounds possess the antifungal, antimycotoxigenic or chemosensitizing capacity to augment the efficacy of commercial antifungals. Therefore, chemogenetic approaches can lead to the development of novel antifungal intervention strategies, which enhance the efficacy of established microbe intervention practices and overcome drug/fungicide resistance. Chemosensitization further reduces costs and alleviates negative side effects associated with current antifungal treatments.

Keywords: antifungals, antioxidant system, benzo derivatives, chemosensitization

Procedia PDF Downloads 240
384 Measuring Organizational Resiliency for Flood Response in Thailand

Authors: Sudha Arlikatti, Laura Siebeneck, Simon A. Andrew

Abstract:

The objective of this research is to measure organizational resiliency through five attributes namely, rapidity, redundancy, resourcefulness, and robustness and to provide recommendations for resiliency building in flood risk communities. The research was conducted in Thailand following the severe floods of 2011 triggered by Tropical Storm Nock-ten. The floods lasted over eight months starting in June 2011 affecting 65 of the country’s 76 provinces and over 12 million people. Funding from a US National Science Foundation grant was used to collect ephemeral data in rural (Ayutthaya), suburban (Pathum Thani), and urban (Bangkok) provinces of Thailand. Semi-structured face-to-face interviews were conducted in Thai with 44 contacts from public, private, and non-profit organizations including universities, schools, automobile companies, vendors, tourist agencies, monks from temples, faith based organizations, and government agencies. Multiple triangulations were used to analyze the data by identifying selective themes from the qualitative data, validated with quantitative data and news media reports. This helped to obtain a more comprehensive view of how organizations in different geographic settings varied in their understanding of what enhanced or hindered their resilience and consequently their speed and capacities to respond. The findings suggest that the urban province of Bangkok scored highest in resourcefulness, rapidity of response, robustness, and ability to rebound. This is not surprising considering that it is the country’s capital and the seat of government, economic, military and tourism sectors. However, contrary to expectations all 44 respondents noted that the rural province of Ayutthaya was the fastest to recover amongst the three. Its organizations scored high on redundancy and rapidity of response due to the strength of social networks, a flood disaster sub-culture due to annual flooding, and the help provided by monks from and faith based organizations. Organizations in the suburban community of Pathum Thani scored lowest on rapidity of response and resourcefulness due to limited and ambiguous warnings, lack of prior flood experience and controversies that government flood protection works like sandbagging favored the capital city of Bangkok over them. Such a micro-level examination of organizational resilience in rural, suburban and urban areas in a country through mixed methods studies has its merits in getting a nuanced understanding of the importance of disaster subcultures and religious norms for resilience. This can help refocus attention on the strengths of social networks and social capital, for flood mitigation.

Keywords: disaster subculture, flood response, organizational resilience, Thailand floods, religious beliefs and response, social capital and disasters

Procedia PDF Downloads 138
383 The Rite of Jihadification in ISIS Modified Video Games: Mass Deception and Dialectic of Religious Regression in Technological Progression

Authors: Venus Torabi

Abstract:

ISIS, the terrorist organization, modified two videogames, ARMA III and Grand Theft Auto 5 (2013) as means of online recruitment and ideological propaganda. The urge to study the mechanism at work, whether it has been successful or not, derives (Digital) Humanities experts to explore how codes of terror, Islamic ideology and recruitment strategies are incorporated into the ludic mechanics of videogames. Another aspect of the significance lies in the fact that this is a latent problem that has not been fully addressed in an interdisciplinary framework prior to this study, to the best of the researcher’s knowledge. Therefore, due to the complexity of the subject, the present paper entangles with game studies, philosophical and religious poles to form the methodology of conducting the research. As a contextualized epistemology of such exploitation of videogames, the core argument is building on the notion of “Culture Industry” proposed by Theodore W. Adorno and Max Horkheimer in Dialectic of Enlightenment (2002). This article posits that the ideological underpinnings of ISIS’s cause corroborated by the action-bound mechanics of the videogames are in line with adhering to the Islamic Eschatology as a furnishing ground and an excuse in exercising terrorism. It is an account of ISIS’s modification of the videogames, a tool of technological progression to practice online radicalization. Dialectically, this practice is packed up in rhetoric for recognizing a religious myth (the advent of a savior), as a hallmark of regression. The study puts forth that ISIS’s wreaking havoc on the world, both in reality and within action videogames, is negotiating the process of self-assertion in the players of such videogames (by assuming one’s self a member of terrorists) that leads to self-annihilation. It tries to unfold how ludic Mod videogames are misused as tools of mass deception towards ethnic cleansing in reality and line with the distorted Eschatological myth. To conclude, this study posits videogames to be a new avenue of mass deception in the framework of the Culture Industry. Yet, this emerges as a two-edged sword of mass deception in ISIS’s modification of videogames. It shows that ISIS is not only trying to hijack the minds through online/ludic recruitment, it potentially deceives the Muslim communities or those prone to radicalization into believing that it's terrorist practices are preparing the world for the advent of a religious savior based on Islamic Eschatology. This is to claim that the harsh actions of the videogames are potentially breeding minds by seeds of terrorist propaganda and numbing them to violence. The real world becomes an extension of that harsh virtual environment in a ludic/actual continuum, the extension that is contributing to the mass deception mechanism of the terrorists, in a clandestine trend.

Keywords: culture industry, dialectic, ISIS, islamic eschatology, mass deception, video games

Procedia PDF Downloads 126
382 Mesenchymal Stem Cells on Fibrin Assemblies with Growth Factors

Authors: Elena Filova, Ondrej Kaplan, Marie Markova, Helena Dragounova, Roman Matejka, Eduard Brynda, Lucie Bacakova

Abstract:

Decellularized vessels have been evaluated as small-diameter vascular prostheses. Reseeding autologous cells onto decellularized tissue prior implantation should prolong prostheses function and make them living tissues. Suitable cell types for reseeding are both endothelial cells and bone marrow-derived stem cells, with a capacity for differentiation into smooth muscle cells upon mechanical loading. Endothelial cells assure antithrombogenicity of the vessels and MSCs produce growth factors and, after their differentiation into smooth muscle cells, they are contractile and produce extracellular matrix proteins as well. Fibrin is a natural scaffold, which allows direct cell adhesion based on integrin receptors. It can be prepared autologous. Fibrin can be modified with bound growth factors, such as basic fibroblast growth factor (FGF-2) and vascular endothelial growth factor (VEGF). These modifications in turn make the scaffold more attractive for cells ingrowth into the biological scaffold. The aim of the study was to prepare thin surface-attached fibrin assemblies with bound FGF-2 and VEGF, and to evaluate growth and differentiation of bone marrow-derived mesenchymal stem cells on the fibrin (Fb) assemblies. Following thin surface-attached fibrin assemblies were prepared: Fb, Fb+VEGF, Fb+FGF2, Fb+heparin, Fb+heparin+VEGF, Fb+heparin+FGF2, Fb+heparin+FGF2+VEGF. Cell culture poly-styrene and glass coverslips were used as controls. Human MSCs (passage 3) were seeded at the density of 8800 cells/1.5 mL alpha-MEM medium with 2.5% FS and 200 U/mL aprotinin per well of a 24-well cell culture. The cells have been cultured on the samples for 6 days. Cell densities on day 1, 3, and 6 were analyzed after staining with LIVE/DEAD cytotoxicity/viability assay kit. The differentiation of MSCs is being analyzed using qPCR. On day 1, the highest density of MSCs was observed on Fb+VEGF and Fb+FGF2. On days 3 and 6, there were similar densities on all samples. On day 1, cell morphology was polygonal and spread on all sample. On day 3 and 6, MSCs growing on Fb assemblies with FGF2 became apparently elongated. The evaluation of expression of genes for von Willebrand factor and CD31 (endothelial cells), for alpha-actin (smooth muscle cells), and for alkaline phosphatase (osteoblasts) is in progress. We prepared fibrin assemblies with bound VEGF and FGF-2 that supported attachment and growth of mesenchymal stem cells. The layers are promising for improving the ingrowth of MSCs into the biological scaffold. Supported by the Technology Agency of the Czech Republic TA04011345, and Ministry of Health NT11270-4/2010, and BIOCEV – Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University” project (CZ.1.05/1.1.00/02.0109), funded by the European Regional Development Fund for their financial supports.

Keywords: fibrin assemblies, FGF-2, mesenchymal stem cells, VEGF

Procedia PDF Downloads 311
381 Assessment of Groundwater Potential Sampled in Hand Dug Wells and Boreholes in Ado-Ekiti, Southwestern Nigeria

Authors: A. J. Olatunji, Adebolu Temitope Johnson

Abstract:

Groundwater samples were collected randomly from hand-dug wells and boreholes in parts of the Ado Ekiti metropolis and were subjected to quality assessment and characterization. Physicochemical analyses, which include the in-situ parameters (pH units, Turbidity, and Electrical Conductivity) and laboratory analysis of selected ionic concentrations, were carried out following standard methods. Hydrochemistry of the present study revealed relative mean concentrations of cations in the order Ca2+ > Na+ > Mg2+ > Cu2+> Fe > Mn2+ and that of anions: Cl- > NO3- > SO42- > F - respectively considering World Health Organisation Standard (WHO) range of values for potable water. The result shows that values of certain parameters (Total Dissolved Solid (TDS), Manganese, Calcium, Magnesium, Fluoride, and Sulphate) were below the Highest Desirable Level of the Standards, while values of some other parameters (pH Units, Electrical Conductivity, Turbidity, Alkalinity, Sodium, Copper, Chloride, and Total Hardness) were within the range of figures between Highest Desirable Level (HDL) and Maximum Permissible Level (MPL) of World Health Organization (WHO) drinking water Standards. The reduction in the mean concentration value of Total Dissolved Solids (TDS) of most borehole samples follows the fact that water had been allowed to settle in the overhead tanks before usage; we discussed and brainstormed in the course of sampling and agreed to take a sample that way because that represents what the people consume, it also shows an indication while there was slightly concentration increase of these soluble ions in hand-dug wells samples than borehole samples only with the exception of borehole sample seven BH7 because BH7 uses the mono-pumping system. These in-situ parameters and ionic concentrations were further displayed and or represented on bar charts along with the WHO standards for better pictorial clarifications. Deductions from field observation indices revealed the imprints of natural weathering, ion-exchange processes, and anthropogenic activities influencing groundwater quality. A strong degree of association was found to exist between sodium and chlorine ions in both hand-dug well and borehole groundwater samples through the use of Pearson’s correlation coefficient; this association can further be supported by the chemistry of the parent bedrock associated with the study area because the chemistry of groundwater is a replica of its host rock. The correlation of those two ions must have begun from the period of mountain building, indicating an identical source from which they were released to the groundwater. Moreover, considering the comparison of ionic species concentrations of all samples with the (WHO) standards, there were no anomalous increases or decreases in the laboratory analysis results; this simply reveals an insignificant state of pollution of the groundwater. The study and its sampling techniques were not set to target the likely area and extent of groundwater pollution but its portability. It could be said that the samples were safe for human consumption.

Keywords: groundwater, physicochemical, parameters ionic, concentrations, WHO standards

Procedia PDF Downloads 19