Search results for: computer application
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10278

Search results for: computer application

2298 Application of Sentinel-2 Data to Evaluate the Role of Mangrove Conservation and Restoration on Aboveground Biomass

Authors: Raheleh Farzanmanesh, Christopher J. Weston

Abstract:

Mangroves are forest ecosystems located in the inter-tidal regions of tropical and subtropical coastlines that provide many valuable economic and ecological benefits for millions of people, such as preventing coastal erosion, providing breeding, and feeding grounds, improving water quality, and supporting the well-being of local communities. In addition, mangroves capture and store high amounts of carbon in biomass and soils that play an important role in combating climate change. The decline in mangrove area has prompted government and private sector interest in mangrove conservation and restoration projects to achieve multiple Sustainable Development Goals, from reducing poverty to improving life on land. Mangrove aboveground biomass plays an essential role in the global carbon cycle, climate change mitigation and adaptation by reducing CO2 emissions. However, little information is available about the effectiveness of mangrove sustainable management on mangrove change area and aboveground biomass (AGB). Here, we proposed a method for mapping, modeling, and assessing mangrove area and AGB in two Global Environment Facility (GEF) blue forests projects based on Sentinel-2 Level 1C imagery during their conservation lifetime. The SVR regression model was used to estimate AGB in Tahiry Honko project in Madagascar and the Abu Dhabi Blue Carbon Demonstration Project (Abu Dhabi Emirates. The results showed that mangrove forests and AGB declined in the Tahiry Honko project, while in the Abu Dhabi project increased after the conservation initiative was established. The results provide important information on the impact of mangrove conservation activities and contribute to the development of remote sensing applications for mapping and assessing mangrove forests in blue carbon initiatives.

Keywords: blue carbon, mangrove forest, REDD+, aboveground biomass, Sentinel-2

Procedia PDF Downloads 75
2297 A New Binder Mineral for Cement Stabilized Road Pavements Soils

Authors: Aydın Kavak, Özkan Coruk, Adnan Aydıner

Abstract:

Long-term performance of pavement structures is significantly impacted by the stability of the underlying soils. In situ subgrades often do not provide enough support required to achieve acceptable performance under traffic loading and environmental demands. NovoCrete® is a powder binder-mineral for cement stabilized road pavements soils. NovoCrete® combined with Portland cement at optimum water content increases the crystallize formations during the hydration process, resulting in higher strengths, neutralizes pH levels, and provides water impermeability. These changes in soil properties may lead to transforming existing unsuitable in-situ materials into suitable fill materials. The main features of NovoCrete® are: They are applicable to all types of soil, reduce premature cracking and improve soil properties, creating base and subbase course layers with high bearing capacity by reducing hazardous materials. It can be used also for stabilization of recyclable aggregates and old asphalt pavement aggregate, etc. There are many applications in Germany, Turkey, India etc. In this paper, a few field application in Turkey will be discussed. In the road construction works, this binder material is used for cement stabilization works. In the applications 120-180 kg cement is used for 1 m3 of soil with a 2 % of binder NovoCrete® material for the stabilization. The results of a plate loading test in a road construction site show 1 mm deformation which is very small under 7 kg/cm2 loading. The modulus of subgrade reaction increase from 611 MN/m3 to 3673 MN/m3.The soaked CBR values for stabilized soils increase from 10-20 % to 150-200 %. According to these data weak subgrade soil can be used as a base or sub base after the modification. The potential reduction in the need for quarried materials will help conserve natural resources. The use of on-site or nearby materials in fills, will significantly reduce transportation costs and provide both economic and environmental benefits.

Keywords: soil, stabilization, cement, binder, Novocrete, additive

Procedia PDF Downloads 225
2296 Transformation of Aluminum Unstable Oxyhydroxides in Ultrafine α-Al2O3 in Presence of Various Seeds

Authors: T. Kuchukhidze, N. Jalagonia, Z. Phachulia, R. Chedia

Abstract:

Ceramic obtained on the base of aluminum oxide has wide application range, because it has unique properties, for example, wear-resistance, dielectric characteristics, exploitation ability at high temperatures and in corrosive atmosphere. Low temperature synthesis of α-Al2O3 is energo-economical process and it is actual for developing technologies of corundum ceramics fabrication. In the present work possibilities of low temperature transformation of oxyhydroxides in α-Al2O3, during a presence of small amount of rare–earth elements compounds (also Th, Re), have been discussed. Aluminium unstable oxyhydroxides have been obtained by hydrolysis of aluminium isopropoxide, nitrates, sulphate, chloride in alkaline environment at 80-90ºC tempertures. β-Al(OH)3 has been received from aluminium powder by ultrasonic development. Drying of oxyhydroxide sol has been conducted with presence of various types seeds, which amount reaches 0,1-0,2% (mas). Neodymium, holmium, thorium, lanthanum, cerium, gadolinium, disprosium nitrates and rhenium carbonyls have been used as seeds and they have been added to the sol specimens in amount of 0.1-0.2% (mas) calculated on metals. Annealing of obtained gels is carried out at 70 – 1100ºC for 2 hrs. The same specimen transforms in α-Al2O3 at 1100ºC. At this temperature in case of presence of lanthanum and gadolinium transformation takes place by 70-85%. In case of presence of thorium stabilization of γ-and θ-phases takes place. It is established, that thorium causes inhibition of α-phase generation at 1100ºC, at the time in all other doped specimens α-phase is generated at lower temperatures (1000-1050ºC). During the work the following devices have been used: X-ray difractometer DRON-3M (Cu-Kα, Ni filter, 2º/min), High temperature vacuum furnace OXY-GON, electronic scanning microscopes Nikon ECLIPSE LV 150, NMM-800TRF, planetary mill Pulverisette 7 premium line, SHIMADZU Dynamic Ultra Micro Hardness Tester, DUH-211S, Analysette 12 Dyna sizer.

Keywords: α-Alumina, combustion, phase transformation, seeding

Procedia PDF Downloads 399
2295 Studies on Structural and Electrical Properties of Lanthanum Doped Sr₂CoMoO₆₋δ System

Authors: Pravin Kumar, Rajendra K. Singh, Prabhakar Singh

Abstract:

A widespread research work on Mo-based double perovskite systems has been reported as a potential application for electrode materials of solid oxide fuel cells. Mo-based double perovskites studied in form of B-site ordered double perovskite materials, with general formula A₂B′B″O₆ structured by alkaline earth element (A = Sr, Ca, Ba) and heterovalent transition metals (B′ = Fe, Co, Ni, Cr, etc. and B″ = Mo, W, etc.), are raising a significant interest as potential mixed ionic-electronic conductors in the temperature range of 500-800 °C. Such systems reveal higher electrical conductivity, particularly those assigned in form of Sr₂CoMoO₆₋δ (M = Mg, Mn, Fe, Co, Ni, Zn etc.) which were studied in different environments (air/H₂/H₂-Ar/CH₄) at an intermediate temperature. Among them, the Sr₂CoMoO₆₋δ system is a potential candidate as an anode material for solid oxide fuel cells (SOFCs) due to its better electrical conductivity. Therefore, Sr₂CoMoO₆₋δ (SCM) system with La-doped on Sr site has been studied to discover the structural and electrical properties. The double perovskite system Sr₂CoMoO₆₋δ (SCM) and doped system Sr₂-ₓLaₓCoMoO₆₋δ (SLCM, x=0.04) were synthesized by the citrate-nitrate combustion synthesis route. Thermal studies were carried out by thermo-gravimetric analysis. Phase justification was confirmed by powder X-ray diffraction (XRD) as a tetragonal structure with space group I4/m. A minor phase of SrMoO₄ (s.g. I41/a) was identified as a secondary phase using JCPDS card no. 85-0586. Micro-structural investigations revealed the formation of uniform grains. The average grain size of undoped (SCM) and doped (SLCM) compositions was calculated by a linear intercept method and found to be ⁓3.8 μm and 2.7 μm, respectively. The electrical conductivity of SLCM is found higher than SCM in the air within the temperature range of 200-600 °C. SLCM system was also measured in reducing atmosphere (pure H₂) in the temperature range 300-600 °C. SLCM has been showed the higher conductivity in the reducing atmosphere (H₂) than in air and therefore it could be a promising anode material for SOFCs.

Keywords: double perovskite, electrical conductivity, SEM, XRD

Procedia PDF Downloads 134
2294 Silver Nanoparticles Synthesized in Plant Extract Against Acute Hepatopancreatic Necrosis of Shrimp: Estimated By Multiple Models

Authors: Luz del Carmen Rubí Félix Peña, Jose Adan Felix-Ortiz, Ely Sara Lopez-Alvarez, Wenceslao Valenzuela-Quiñonez

Abstract:

On a global scale, Mexico is the sixth largest producer of farmed white shrimp (Penaeus vannamei). The activity suffered significant economic losses due to acute hepatopancreatic necrosis (AHPND) caused by a strain of Vibrio parahaemolyticus. For control, the first option is the application of antibiotics in food, causing changes in the environment and bacterial communities, which has produced greater virulence and resistance of pathogenic bacteria. An alternative treatment is silver nanoparticles (AgNPs) generated by green synthesis, which have shown an antibacterial capacity by destroying the cell membrane or denaturing the cell. However, the doses at which these are effective are still unknown. The aim is to calculate the minimum inhibitory concentration (MIC) using the Gompertz, Richard, and Logistic model of biosynthesized AgNPs against a strain of V. parahaemolyticus. Through the testing of different formulations of AgNPs synthesized from Euphorbia prostrate (Ep) extracts against V. parahaemolyticus causing AHPND in white shrimp. Aqueous and ethanol extracts were obtained, and the concentration of phenols and flavonoids was quantified. In the antibiograms, AgNPs were formulated in ethanol extracts of Ep (20 and 30%). The inhibition halo at well dilution test were 18±1.7 and 17.67±2.1 mm against V. parahaemolyticus. A broth microdilution was performed with the inhibitory agents (aqueous and ethanolic extracts and AgNPs) and 20 μL of the inoculum of V. parahaemolyticus. The MIC for AgNPs was 6.2-9.3 μg/mL and for ethanol extract of 49-73 mg/mL. The Akaike index (AIC) was used to choose the Gompertz model for ethanol extracts of Ep as the best data descriptor (AIC=204.8, 10%; 45.5, 20%, and 204.8, 30%). The Richards model was at AgNPs ethanol extract with AIC=-9.3 (10%), -17.5 (20 and 30%). The MIC calculated for EP extracts with the modified Gompertz model were 20 mg/mL (10% and 20% extract) and 40 mg/mL at 30%, while Richard was winner for AgNPs-synthesized it was 5 μg/mL (10% and 20%) and 8 μg/mL (30%). The solver tool Excel was used for the calculations of the models and inhibition curves against V.parahaemolyticus.

Keywords: green synthesis, euphorbia prostata, phenols, flavonoids, bactericide

Procedia PDF Downloads 110
2293 The Integrated Methodological Development of Reliability, Risk and Condition-Based Maintenance in the Improvement of the Thermal Power Plant Availability

Authors: Henry Pariaman, Iwa Garniwa, Isti Surjandari, Bambang Sugiarto

Abstract:

Availability of a complex system of thermal power plant is strongly influenced by the reliability of spare parts and maintenance management policies. A reliability-centered maintenance (RCM) technique is an established method of analysis and is the main reference for maintenance planning. This method considers the consequences of failure in its implementation, but does not deal with further risk of down time that associated with failures, loss of production or high maintenance costs. Risk-based maintenance (RBM) technique provides support strategies to minimize the risks posed by the failure to obtain maintenance task considering cost effectiveness. Meanwhile, condition-based maintenance (CBM) focuses on monitoring the application of the conditions that allow the planning and scheduling of maintenance or other action should be taken to avoid the risk of failure prior to the time-based maintenance. Implementation of RCM, RBM, CBM alone or combined RCM and RBM or RCM and CBM is a maintenance technique used in thermal power plants. Implementation of these three techniques in an integrated maintenance will increase the availability of thermal power plants compared to the use of maintenance techniques individually or in combination of two techniques. This study uses the reliability, risks and conditions-based maintenance in an integrated manner to increase the availability of thermal power plants. The method generates MPI (Priority Maintenance Index) is RPN (Risk Priority Number) are multiplied by RI (Risk Index) and FDT (Failure Defense Task) which can generate the task of monitoring and assessment of conditions other than maintenance tasks. Both MPI and FDT obtained from development of functional tree, failure mode effects analysis, fault-tree analysis, and risk analysis (risk assessment and risk evaluation) were then used to develop and implement a plan and schedule maintenance, monitoring and assessment of the condition and ultimately perform availability analysis. The results of this study indicate that the reliability, risks and conditions-based maintenance methods, in an integrated manner can increase the availability of thermal power plants.

Keywords: integrated maintenance techniques, availability, thermal power plant, MPI, FDT

Procedia PDF Downloads 799
2292 Motor Control Recovery Minigame

Authors: Taha Enes Kon, Vanshika Reddy

Abstract:

This project focuses on developing a gamified mobile application to aid in stroke rehabilitation by enhancing motor skills through interactive activities. The primary goal was to design a companion app for a passive haptic rehab glove, incorporating Google MediaPipe for gesture tracking and vibrotactile feedback. The app simulates farming activities, offering a fun and engaging experience while addressing the monotony of traditional rehabilitation methods. The prototype focuses on a single minigame, Flower Picking, which uses gesture recognition to interact with virtual elements, encouraging users to perform exercises that improve hand dexterity. The development process involved creating accessible and user-centered designs using Figma, integrating gesture recognition algorithms, and implementing unity-based game mechanics. Real-time feedback and progressive difficulty levels ensured a personalized experience, motivating users to adhere to rehabilitation routines. The prototype achieved a gesture detection precision of 90%, effectively recognizing predefined gestures such as the Fist and OK symbols. Quantitative analysis highlighted a 40% increase in average session duration compared to traditional exercises, while qualitative feedback praised the app’s immersive design and ease of use. Despite its success, challenges included rigidity in gesture recognition, requiring precise hand orientations, and limited gesture support. Future improvements include expanding gesture adaptability and incorporating additional minigames to target a broader range of exercises. The project demonstrates the potential of gamification in stroke rehabilitation, offering a scalable and accessible solution that complements clinical treatments, making recovery engaging and effective for users.

Keywords: stroke rehabilitation, haptic feedback, gamification, MediaPipe, motor control

Procedia PDF Downloads 11
2291 Current Status and Future Trends of Mechanized Fruit Thinning Devices and Sensor Technology

Authors: Marco Lopes, Pedro D. Gaspar, Maria P. Simões

Abstract:

This paper reviews the different concepts that have been investigated concerning the mechanization of fruit thinning as well as multiple working principles and solutions that have been developed for feature extraction of horticultural products, both in the field and industrial environments. The research should be committed towards selective methods, which inevitably need to incorporate some kinds of sensor technology. Computer vision often comes out as an obvious solution for unstructured detection problems, although leaves despite the chosen point of view frequently occlude fruits. Further research on non-traditional sensors that are capable of object differentiation is needed. Ultrasonic and Near Infrared (NIR) technologies have been investigated for applications related to horticultural produce and show a potential to satisfy this need while simultaneously providing spatial information as time of flight sensors. Light Detection and Ranging (LIDAR) technology also shows a huge potential but it implies much greater costs and the related equipment is usually much larger, making it less suitable for portable devices, which may serve a purpose on smaller unstructured orchards. Portable devices may serve a purpose on these types of orchards. In what concerns sensor methods, on-tree fruit detection, major challenge is to overcome the problem of fruits’ occlusion by leaves and branches. Hence, nontraditional sensors capable of providing some type of differentiation should be investigated.

Keywords: fruit thinning, horticultural field, portable devices, sensor technologies

Procedia PDF Downloads 143
2290 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 134
2289 Exploring the Design of Prospective Human Immunodeficiency Virus Type 1 Reverse Transcriptase Inhibitors through a Comprehensive Approach of Quantitative Structure Activity Relationship Study, Molecular Docking, and Molecular Dynamics Simulations

Authors: Mouna Baassi, Mohamed Moussaoui, Sanchaita Rajkhowa, Hatim Soufi, Said Belaaouad

Abstract:

The objective of this paper is to address the challenging task of targeting Human Immunodeficiency Virus type 1 Reverse Transcriptase (HIV-1 RT) in the treatment of AIDS. Reverse Transcriptase inhibitors (RTIs) have limitations due to the development of Reverse Transcriptase mutations that lead to treatment resistance. In this study, a combination of statistical analysis and bioinformatics tools was adopted to develop a mathematical model that relates the structure of compounds to their inhibitory activities against HIV-1 Reverse Transcriptase. Our approach was based on a series of compounds recognized for their HIV-1 RT enzymatic inhibitory activities. These compounds were designed via software, with their descriptors computed using multiple tools. The most statistically promising model was chosen, and its domain of application was ascertained. Furthermore, compounds exhibiting comparable biological activity to existing drugs were identified as potential inhibitors of HIV-1 RT. The compounds underwent evaluation based on their chemical absorption, distribution, metabolism, excretion, toxicity properties, and adherence to Lipinski's rule. Molecular docking techniques were employed to examine the interaction between the Reverse Transcriptase (Wild Type and Mutant Type) and the ligands, including a known drug available in the market. Molecular dynamics simulations were also conducted to assess the stability of the RT-ligand complexes. Our results reveal some of the new compounds as promising candidates for effectively inhibiting HIV-1 Reverse Transcriptase, matching the potency of the established drug. This necessitates further experimental validation. This study, beyond its immediate results, provides a methodological foundation for future endeavors aiming to discover and design new inhibitors targeting HIV-1 Reverse Transcriptase.

Keywords: QSAR, ADMET properties, molecular docking, molecular dynamics simulation, reverse transcriptase inhibitors, HIV type 1

Procedia PDF Downloads 96
2288 Developing a Thermo-Sensitive Conductive Stretchable Film to Allow Cell Sheet Harvest after Mechanical and Electrical Treatments

Authors: Wei-Wen Hu, Yong-Zhi Zhong

Abstract:

Depositing conductive polypyrrole (PPy) onto elastic polydimethylsiloxane (PDMS) substrate can obtain a highly stretchable conductive film, which can be used to construct a bioreactor to cyclically stretch and electrically stimulate surface cells. However, how to completely harvest these stimulated muscle tissue to repair damaged muscle is a challenge. To address this concern, N-isopropylacrylamide (NIPAAm), a monomer of temperature-sensitive polymer, was added during the polymerization of pyrrole on PDMS so that the resulting P(Py-co-NIPAAm)/PDMS should own both conductivity and thermo-sensitivity. Therefore, cells after stimulation can be completely harvested as cell sheets by reducing temperature. Mouse skeletal myoblast, C2C12 cells, were applied to examine our hypothesis. In electrical stimulation, C2C12 cells on P(Py-co-NIPAAm)/PDMS demonstrated the best myo-differentiation under the electric field of 1 V/cm. Regarding cyclic stretching, the strain equal to or higher than 9% can highly align C2C12 perpendicular to the stretching direction. The Western blotting experiments demonstrated that the cell sheets harvested by cooling reserved more extracellular matrix (ECM) than cells collected by the traditional trypsin digestion method. Immunostaining of myosin heavy chain protein (MHC) indicated that both mechanical and electrical stimuli effectively increased the number of myotubes and the differentiation ratio, and the myotubes can be aligned by cyclic stretching. Stimulated cell sheets can be harvested by cooling, and the alignment of myotubes was still maintained. These results suggested that the deposition of P(Py-co-NIPAAm) on PDMS can be applied to harvest intact cell sheets after cyclic stretching and electrical stimulation, which increased the feasibility of bioreactor for the application of tissue engineering and regenerative medicine.

Keywords: bioreactor, cell sheet, conductive polymer, cyclic stretching, electrical stimulation, muscle tissue engineering, myogenesis, thermosensitive hydrophobicity

Procedia PDF Downloads 100
2287 Atmospheric Dispersion Modeling for a Hypothetical Accidental Release from the 3 MW TRIGA Research Reactor of Bangladesh

Authors: G. R. Khan, Sadia Mahjabin, A. S. Mollah, M. R. Mawla

Abstract:

Atmospheric dispersion modeling is significant for any nuclear facilities in the country to predict the impact of radiological doses on environment as well as human health. That is why to ensure safety of workers and population at plant site; Atmospheric dispersion modeling and radiation dose calculations were carried out for a hypothetical accidental release of airborne radionuclide from the 3 MW TRIGA research reactor of Savar, Bangladesh. It is designed with reactor core which consists of 100 fuel elements(1.82245 cm in diameter and 38.1 cm in length), arranged in an annular corefor steady-state and square wave power level of 3 MW (thermal) and for pulsing with maximum power level of 860MWth.The fuel is in the form of a uniform mixture of 20% uranium and 80% zirconium hydride. Total effective doses (TEDs) to the public at various downwind distances were evaluated with a health physics computer code “HotSpot” developed by Lawrence Livermore National Laboratory, USA. The doses were estimated at different Pasquill stability classes (categories A-F) with site-specific averaged meteorological conditions. The meteorological data, such as, average wind speed, frequency distribution of wind direction, etc. have also been analyzed based on the data collected near the reactor site. The results of effective doses obtained remain within the recommended maximum effective dose.

Keywords: accidental release, dispersion modeling, total effective dose, TRIGA

Procedia PDF Downloads 138
2286 Screening of Plant Growth Promoting Rhizobacteria in the Rhizo- and Endosphere of Sunflower (Helianthus anus) and Their Role in Enhancing Growth and Yield Attriburing Trairs and Colonization Studies

Authors: A. Majeed, M.K. Abbasi, S. Hameed, A. Imran, T. Naqqash, M. K. Hanif

Abstract:

Plant growth-promoting rhizobacteria (PGPR) are free-living soil bacteria that aggressively colonize the rhizosphere/plant roots, and enhance the growth and yield of plants when applied to seed or crops. Root associated (endophytic and rhizospheric) PGPR were isolated from Sunflower (Helianthus anus) grown in soils collected from 16 different sites of sub division Dhirkot, Poonch, Azad Jammu & Kashmir, Pakistan. A total of 150 bacterial isolates were isolated, purified, screened in vitro for their plant growth promoting (PGP) characteristics. 11 most effective isolates were selected on the basis of biochemical assays (nitrogen fixation, phosphate solubilization, growth hormone production, biocontrol assay, and carbon substrates utilization assay through gas chromatography (GCMS), spectrophotometry, high performance liquid chromatography HPLC, fungal and bacterial dual plate assay and BIOLOG GN2/GP2 microplate assay respectively) and were tested on the crop under controlled and field conditions. From the inoculation assay, the most promising 4 strains (on the basis of increased root/shoot weight, root/shoot length, seed oil content, and seed yield) were than selected for colonization studies through confocal laser scanning and transmission electron microscope. 16Sr RNA gene analysis showed that these bacterial isolates belong to Pseudononas, Enterobacter, Azospirrilum, and Citobacter genera. This study is the clear evident that such isolates have the potential for application as inoculants adapted to poor soils and local crops to minimize the chemical fertilizers harmful for soil and environment

Keywords: PGPR, nitrogen fixation, phosphate solubilization, colonization

Procedia PDF Downloads 344
2285 Petrophysical Interpretation of Unconventional Shale Reservoir Naokelekan in Ajeel Oil-Gas Field

Authors: Abeer Tariq, Mohammed S. Aljawad, Khaldoun S. Alfarisi

Abstract:

This paper aimed to estimate the petrophysical properties (porosity, permeability, and fluid saturation) of the Ajeel well (Aj-1) Shale reservoir. Petrophysical properties of the Naokelekan Formation at Ajeel field are determined from the interpretation of open hole log data of one well which penetrated the source rock reservoir. However, depending on these properties, it is possible to divide the Formation which has a thickness of approximately 28-34 m, into three lithological units: A is the upper unit (thickness about 9 to 13 m) consisting of dolomitized limestones; B is a middle unit (thickness about 13 to 20 m) which is composed of dolomitic limestone, and C is a lower unit (>22 m thick) which consists of shale-rich and dolomitic limestones. The results showed that the average formation water resistivity for the formation (Rw = 0.024), the average resistivity of the mud filtration (Rmf = 0.46), and the Archie parameters were determined by the picket plot method, where (m) value equal to 1.86, (n) value equal to 2 and (a) value equal to 1. Also, this reservoir proved to be economical for future developments to increase the production rate of the field by dealing with challenging reservoirs. In addition, Porosity values and water saturation Sw were calculated along with the depth of the composition using Interactive Petrophysics (IP) V4.5 software. The interpretation of the computer process (CPI) showed that the better porous zone holds the highest amount of hydrocarbons in the second and third zone. From the flow zone indicator FZI method, there are two rock types in the studied reservoir.

Keywords: petrophysical properties, porosity, permeability, ajeel field, Naokelekan formation, Jurassic sequences, carbonate reservoir, source rock

Procedia PDF Downloads 94
2284 Geoelectrical Investigation Around Bomo Area, Kaduna State, Nigeria

Authors: B. S. Jatau, Baba Adama, S. I. Fadele

Abstract:

Electrical resistivity investigation was carried out around Bomo area, Zaria, Kaduna state in order to study the subsurface geologic layer with a view of determining the depth to the bedrock and thickness of the geologic layers. Vertical Electrical Sounding (VES) using Schlumberger array was carried out at fifteen (15) VES stations. ABEM terrameter (SAS 300) was used for the data acquisition. The field data obtained have been analyzed using computer software (IPI2win) which gives an automatic interpretation of the apparent resistivity. The VES results revealed heterogeneous nature of the subsurface geological sequence. The geologic sequence beneath the study area is composed of hard pan top soil (clayey and sandy-lateritic), weathered layer, partly weathered or fractured basement and fresh basement. The resistivity value for the topsoil layer varies from 40Ωm to 450Ωm with thickness ranging from 1.25 to 7.5 m. The weathered basement has resistivity values ranging from 50Ωm to 593Ωm and thickness between 1.37 and 20.1 m. The fractured basement has resistivity values ranging from 218Ωm to 520Ωm and thickness of between 12.9 and 26.3 m. The fresh basement (bedrock) has resistivity values ranging from 1215Ωm to 2150Ωm with infinite depth. However, the depth of the earth’s surface to the bedrock surface varies between 2.63 and 34.99 m. The study further stressed the importance of the findings in civil engineering structures and groundwater prospecting.

Keywords: electrical resistivity, CERT (CT), vertical electrical sounding (VES), top soil (TP), weathered basement (WB), partly weathered basement (PWB), fresh basement (FB)

Procedia PDF Downloads 333
2283 Context Detection in Spreadsheets Based on Automatically Inferred Table Schema

Authors: Alexander Wachtel, Michael T. Franzen, Walter F. Tichy

Abstract:

Programming requires years of training. With natural language and end user development methods, programming could become available to everyone. It enables end users to program their own devices and extend the functionality of the existing system without any knowledge of programming languages. In this paper, we describe an Interactive Spreadsheet Processing Module (ISPM), a natural language interface to spreadsheets that allows users to address ranges within the spreadsheet based on inferred table schema. Using the ISPM, end users are able to search for values in the schema of the table and to address the data in spreadsheets implicitly. Furthermore, it enables them to select and sort the spreadsheet data by using natural language. ISPM uses a machine learning technique to automatically infer areas within a spreadsheet, including different kinds of headers and data ranges. Since ranges can be identified from natural language queries, the end users can query the data using natural language. During the evaluation 12 undergraduate students were asked to perform operations (sum, sort, group and select) using the system and also Excel without ISPM interface, and the time taken for task completion was compared across the two systems. Only for the selection task did users take less time in Excel (since they directly selected the cells using the mouse) than in ISPM, by using natural language for end user software engineering, to overcome the present bottleneck of professional developers.

Keywords: natural language processing, natural language interfaces, human computer interaction, end user development, dialog systems, data recognition, spreadsheet

Procedia PDF Downloads 315
2282 The Low-Cost Design and 3D Printing of Structural Knee Orthotics for Athletic Knee Injury Patients

Authors: Alexander Hendricks, Sean Nevin, Clayton Wikoff, Melissa Dougherty, Jacob Orlita, Rafiqul Noorani

Abstract:

Knee orthotics play an important role in aiding in the recovery of those with knee injuries, especially athletes. However, structural knee orthotics is often very expensive, ranging between $300 and $800. The primary reason for this project was to answer the question: can 3D printed orthotics represent a viable and cost-effective alternative to present structural knee orthotics? The primary objective for this research project was to design a knee orthotic for athletes with knee injuries for a low-cost under $100 and evaluate its effectiveness. The initial design for the orthotic was done in SolidWorks, a computer-aided design (CAD) software available at Loyola Marymount University. After this design was completed, finite element analysis (FEA) was utilized to understand how normal stresses placed upon the knee affected the orthotic. The knee orthotic was then adjusted and redesigned to meet a specified factor-of-safety of 3.25 based on the data gathered during FEA and literature sources. Once the FEA was completed and the orthotic was redesigned based from the data gathered, the next step was to move on to 3D-printing the first design of the knee brace. Subsequently, physical therapy movement trials were used to evaluate physical performance. Using the data from these movement trials, the CAD design of the brace was refined to accommodate the design requirements. The final goal of this research means to explore the possibility of replacing high-cost, outsourced knee orthotics with a readily available low-cost alternative.

Keywords: 3D printing, knee orthotics, finite element analysis, design for additive manufacturing

Procedia PDF Downloads 183
2281 Prioritizing Roads Safety Based on the Quasi-Induced Exposure Method and Utilization of the Analytical Hierarchy Process

Authors: Hamed Nafar, Sajad Rezaei, Hamid Behbahani

Abstract:

Safety analysis of the roads through the accident rates which is one of the widely used tools has been resulted from the direct exposure method which is based on the ratio of the vehicle-kilometers traveled and vehicle-travel time. However, due to some fundamental flaws in its theories and difficulties in gaining access to the data required such as traffic volume, distance and duration of the trip, and various problems in determining the exposure in a specific time, place, and individual categories, there is a need for an algorithm for prioritizing the road safety so that with a new exposure method, the problems of the previous approaches would be resolved. In this way, an efficient application may lead to have more realistic comparisons and the new method would be applicable to a wider range of time, place, and individual categories. Therefore, an algorithm was introduced to prioritize the safety of roads using the quasi-induced exposure method and utilizing the analytical hierarchy process. For this research, 11 provinces of Iran were chosen as case study locations. A rural accidents database was created for these provinces, the validity of quasi-induced exposure method for Iran’s accidents database was explored, and the involvement ratio for different characteristics of the drivers and the vehicles was measured. Results showed that the quasi-induced exposure method was valid in determining the real exposure in the provinces under study. Results also showed a significant difference in the prioritization based on the new and traditional approaches. This difference mostly would stem from the perspective of the quasi-induced exposure method in determining the exposure, opinion of experts, and the quantity of accidents data. Overall, the results for this research showed that prioritization based on the new approach is more comprehensive and reliable compared to the prioritization in the traditional approach which is dependent on various parameters including the driver-vehicle characteristics.

Keywords: road safety, prioritizing, Quasi-induced exposure, Analytical Hierarchy Process

Procedia PDF Downloads 344
2280 A Low-Cost of Foot Plantar Shoes for Gait Analysis

Authors: Zulkifli Ahmad, Mohd Razlan Azizan, Nasrul Hadi Johari

Abstract:

This paper presents a study on development and conducting of a wearable sensor system for gait analysis measurement. For validation, the method of plantar surface measurement by force plate was prepared. In general gait analysis, force plate generally represents a studies about barefoot in whole steps and do not allow analysis of repeating movement step in normal walking and running. The measurements that were usually perform do not represent the whole daily plantar pressures in the shoe insole and only obtain the ground reaction force. The force plate measurement is usually limited a few step and it is done indoor and obtaining coupling information from both feet during walking is not easily obtained. Nowadays, in order to measure pressure for a large number of steps and obtain pressure in each insole part, it could be done by placing sensors within an insole. With this method, it will provide a method for determine the plantar pressures while standing, walking or running of a shoe wearing subject. Inserting pressure sensors in the insole will provide specific information and therefore the point of the sensor placement will result in obtaining the critical part under the insole. In the wearable shoe sensor project, the device consists left and right shoe insole with ten FSR. Arduino Mega was used as a micro-controller that read the analog input from FSR. The analog inputs were transmitted via bluetooth data transmission that gains the force data in real time on smartphone. Blueterm software which is an android application was used as an interface to read the FSR reading on the shoe wearing subject. The subject consist of two healthy men with different age and weight doing test while standing, walking (1.5 m/s), jogging (5 m/s) and running (9 m/s) on treadmill. The data obtain will be saved on the android device and for making an analysis and comparison graph.

Keywords: gait analysis, plantar pressure, force plate, earable sensor

Procedia PDF Downloads 457
2279 Paraplegic Dimensions of Asymmetric Warfare: A Strategic Analysis for Resilience Policy Plan

Authors: Sehrish Qayyum

Abstract:

In this age of constant technology, asymmetrical warfare could not be won. Attuned psychometric study confirms that screaming sometimes is more productive than active retaliation against strong adversaries. Asymmetric warfare is a game of nerves and thoughts with least vigorous participation for large anticipated losses. It creates the condition of paraplegia with partial but permanent immobility, which effects the core warfare operations, being screams rather than active retaliation. When one’s own power is doubted, it gives power to one’s own doubt to ruin all planning either done with superlative cost-benefit analysis. Strategically calculated estimation of asymmetric warfare since the early WWI to WWII, WWII-to Cold War, and then to the current era in three chronological periods exposits that courage makes nations win the battle of warriors to battle of comrades. Asymmetric warfare has been most difficult to fight and survive due to unexpectedness and being lethal despite preparations. Thoughts before action may be the best-assumed strategy to mix Regional Security Complex Theory and OODA loop to develop the Paraplegic Resilience Policy Plan (PRPP) to win asymmetric warfare. PRPP may serve to control and halt the ongoing wave of terrorism, guerilla warfare, and insurgencies, etc. PRPP, along with a strategic work plan, is based on psychometric analysis to deal with any possible war condition and tactic to save millions of innocent lives such that lost in Christchurch New Zealand in 2019, November 2015 Paris attacks, and Berlin market attacks in 2016, etc. Getting tangled into self-imposed epistemic dilemmas results in regret that becomes the only option of performance. It is a descriptive psychometric analysis of war conditions with generic application of probability tests to find the best possible options and conditions to develop PRPP for any adverse condition possible so far. Innovation in technology begets innovation in planning and action-plan to serve as a rheostat approach to deal with asymmetric warfare.

Keywords: asymmetric warfare, psychometric analysis, PRPP, security

Procedia PDF Downloads 138
2278 Applying Multiple Kinect on the Development of a Rapid 3D Mannequin Scan Platform

Authors: Shih-Wen Hsiao, Yi-Cheng Tsao

Abstract:

In the field of reverse engineering and creative industries, applying 3D scanning process to obtain geometric forms of the objects is a mature and common technique. For instance, organic objects such as faces and nonorganic objects such as products could be scanned to acquire the geometric information for further application. However, although the data resolution of 3D scanning device is increasing and there are more and more abundant complementary applications, the penetration rate of 3D scanning for the public is still limited by the relative high price of the devices. On the other hand, Kinect, released by Microsoft, is known for its powerful functions, considerably low price, and complete technology and database support. Therefore, related studies can be done with the applying of Kinect under acceptable cost and data precision. Due to the fact that Kinect utilizes optical mechanism to extracting depth information, limitations are found due to the reason of the straight path of the light. Thus, various angles are required sequentially to obtain the complete 3D information of the object when applying a single Kinect for 3D scanning. The integration process which combines the 3D data from different angles by certain algorithms is also required. This sequential scanning process costs much time and the complex integration process often encounter some technical problems. Therefore, this paper aimed to apply multiple Kinects simultaneously on the field of developing a rapid 3D mannequin scan platform and proposed suggestions on the number and angles of Kinects. In the content, a method of establishing the coordination based on the relation between mannequin and the specifications of Kinect is proposed, and a suggestion of angles and number of Kinects is also described. An experiment of applying multiple Kinect on the scanning of 3D mannequin is constructed by Microsoft API, and the results show that the time required for scanning and technical threshold can be reduced in the industries of fashion and garment design.

Keywords: 3D scan, depth sensor, fashion and garment design, mannequin, multiple Kinect sensor

Procedia PDF Downloads 368
2277 Waste Utilization by Combustion in the Composition of Gel Fuels

Authors: Dmitrii Glushkov, Aleksandr G. Nigay, Olga S. Yashutina

Abstract:

In recent years, due to the intensive development of the Arctic and Antarctic areas, the actual task is to develop technology for the effective utilization of solid and liquid combustible wastes in an environment with low temperatures. Firstly, such technology will help to prevent the dumping of waste into the World Ocean and reduce the risks of causing environmental damage to the Far North areas. Secondly, promising actions will help to prepare fuel compositions from the waste in the places of their production. Such kind of fuels can be used as energy resources. It will reduce waste utilization costs when transporting them to the mainland. In the present study, we suggest a solution to the problem of waste utilization by the preparation of gel fuels based on solid and liquid combustible components with the addition of the thickener. Such kind of fuels is characterized by ease of preparation, storage, transportation and use (as energy resources). The main regularities and characteristics of physical and chemical processes are established with varying parameters of gel fuels and heating sources in wide ranges. The obtained results let us conclude about the prospects of gel fuels practical application for combustible wastes utilization. Appropriate technology will be characterized by positive environmental, operational and economic effects. The composition of the gel fuels can vary in a wide range. The fuels preparation based on one type of a combustible liquid or a several liquids mixture with the finely dispersed components addition makes it possible to obtain compositions with predicted rheological, energy or environmental characteristics. Besides, gel fuels have a lower level of the fire hazard compared to common solid and liquid fuels. This makes them convenient for storage and transportation. In such conditions, it is not necessary to transport combustible wastes from the territory of the Arctic and the Antarctic to the mainland for processing, which is now quite an expensive procedure. The research was funded by the Russian Science Foundation (project No. 18-13-00031).

Keywords: combustible liquid waste, gel fuel, ignition and combustion, utilization

Procedia PDF Downloads 125
2276 Examining the Contemporary Relevance of Mahatma Gandhi’s Thought: A Bulwark against Terrorism

Authors: Jayita Mukhopadhyay

Abstract:

Even though more than six decades has passed since the death of India’s iconic thinker and mass leader Mahatma Gandhi, the world besieged by terrorism may still take a leaf out of his philosophical discourse on non-violence and attempt to turn his theory into praxis to save mankind. The greatest soul world has ever produced, a man of divine fire, an apostle of peace and non-violence, a revolutionary, a visionary, a social reformer and deliverer of the downtrodden, Father of the nation, these and numerous other epithets have been used by eminent personalities and scholars while describing Mahatma Gandhi. Gandhi was a relentless fighter and mass mobiliser who awakened a sleeping giant, the common men and women of India, shook them out of their docile, fatalistic mould, invigorated them with his doctrine of ahimsa and satyagraha (non violence and strict adherence to truth), instilled in them nationalist zeal and patriotic fervour and turned them into determined, steadfast freedom fighters. Under his leadership, the national liberation movement got a new life and ultimately succeeded in ending the era of foreign domination. And he did all these while resisting a natural tendency of his people to respond violently to unspeakable violence and atrocities unleashed by the colonial British administration desperate to keep India in its empire. In this paper, an attempt will be made to unravel Gandhi’s elucidation of the concept of non-violent resistance, along with non-cooperation and civil disobedience and their actual application through political practices which succeeded in capturing the imagination of not only India’s teeming millions but the entire world. The methodology of analytical study will be used as Gandhi’s own writings and those by noted scholars on Gandhi will be examined extensively to establish contemporary relevance of his thought, his invaluable guidelines about how to cope with poverty, inequality, exploitation, repression and marginalization of some sections of society and resultant radicalization of some disturbed members of human race, the very conditions which spawn terrorism in today’s world.

Keywords: India, non cooperation, non violence, terrorism

Procedia PDF Downloads 328
2275 Development of an Experiment for Impedance Measurement of Structured Sandwich Sheet Metals by Using a Full Factorial Multi-Stage Approach

Authors: Florian Vincent Haase, Adrian Dierl, Anna Henke, Ralf Woll, Ennes Sarradj

Abstract:

Structured sheet metals and structured sandwich sheet metals are three-dimensional, lightweight structures with increased stiffness which are used in the automotive industry. The impedance, a figure of resistance of a structure to vibrations, will be determined regarding plain sheets, structured sheets, and structured sandwich sheets. The aim of this paper is generating an experimental design in order to minimize costs and duration of experiments. The design of experiments will be used to reduce the large number of single tests required for the determination of correlation between the impedance and its influencing factors. Full and fractional factorials are applied in order to systematize and plan the experiments. Their major advantages are high quality results given the relatively small number of trials and their ability to determine the most important influencing factors including their specific interactions. The developed full factorial experimental design for the study of plain sheets includes three factor levels. In contrast to the study of plain sheets, the respective impedance analysis used on structured sheets and structured sandwich sheets should be split into three phases. The first phase consists of preliminary tests which identify relevant factor levels. These factor levels are subsequently employed in main tests, which have the objective of identifying complex relationships between the parameters and the reference variable. Possible post-tests can follow up in case additional study of factor levels or other factors are necessary. By using full and fractional factorial experimental designs, the required number of tests is reduced by half. In the context of this paper, the benefits from the application of design for experiments are presented. Furthermore, a multistage approach is shown to take into account unrealizable factor combinations and minimize experiments.

Keywords: structured sheet metals, structured sandwich sheet metals, impedance measurement, design of experiment

Procedia PDF Downloads 376
2274 Seaworthiness and Liability Risks Involving Technology and Cybersecurity in Transport and Logistics

Authors: Eugene Wong, Felix Chan, Linsey Chen, Joey Cheung

Abstract:

The widespread use of technologies and cyber/digital means for complex maritime operations have led to a sharp rise in global cyber-attacks. They have generated an increasing number of liability disputes, insurance claims, and legal proceedings. An array of antiquated case law, regulations, international conventions, and obsolete contractual clauses drafted in the pre-technology era have become grossly inadequate in addressing the contemporary challenges. This paper offers a critique of the ambiguity of cybersecurity liabilities under the obligation of seaworthiness entailed in the Hague-Visby Rules, which apply either by law in a large number of jurisdictions or by express incorporation into the shipping documents. This paper also evaluates the legal and technological criteria for assessing whether a vessel is properly equipped with the latest offshore technologies for navigation and cargo delivery operations. Examples include computer applications, networks and servers, enterprise systems, global positioning systems, and data centers. A critical analysis of the carriers’ obligations to exercise due diligence in preventing or mitigating cyber-attacks is also conducted in this paper. It is hoped that the present study will offer original and crucial insights to policymakers, regulators, carriers, cargo interests, and insurance underwriters closely involved in dispute prevention and resolution arising from cybersecurity liabilities.

Keywords: seaworthiness, cybersecurity, liabilities, risks, maritime, transport

Procedia PDF Downloads 138
2273 Syntax and Words as Evolutionary Characters in Comparative Linguistics

Authors: Nancy Retzlaff, Sarah J. Berkemer, Trudie Strauss

Abstract:

In the last couple of decades, the advent of digitalization of any kind of data was probably one of the major advances in all fields of study. This paves the way for also analysing these data even though they might come from disciplines where there was no initial computational necessity to do so. Especially in linguistics, one can find a rather manual tradition. Still when considering studies that involve the history of language families it is hard to overlook the striking similarities to bioinformatics (phylogenetic) approaches. Alignments of words are such a fairly well studied example of an application of bioinformatics methods to historical linguistics. In this paper we will not only consider alignments of strings, i.e., words in this case, but also alignments of syntax trees of selected Indo-European languages. Based on initial, crude alignments, a sophisticated scoring model is trained on both letters and syntactic features. The aim is to gain a better understanding on which features in two languages are related, i.e., most likely to have the same root. Initially, all words in two languages are pre-aligned with a basic scoring model that primarily selects consonants and adjusts them before fitting in the vowels. Mixture models are subsequently used to filter ‘good’ alignments depending on the alignment length and the number of inserted gaps. Using these selected word alignments it is possible to perform tree alignments of the given syntax trees and consequently find sentences that correspond rather well to each other across languages. The syntax alignments are then filtered for meaningful scores—’good’ scores contain evolutionary information and are therefore used to train the sophisticated scoring model. Further iterations of alignments and training steps are performed until the scoring model saturates, i.e., barely changes anymore. A better evaluation of the trained scoring model and its function in containing evolutionary meaningful information will be given. An assessment of sentence alignment compared to possible phrase structure will also be provided. The method described here may have its flaws because of limited prior information. This, however, may offer a good starting point to study languages where only little prior knowledge is available and a detailed, unbiased study is needed.

Keywords: alignments, bioinformatics, comparative linguistics, historical linguistics, statistical methods

Procedia PDF Downloads 159
2272 Comparison of Inexpensive Cell Disruption Techniques for an Oleaginous Yeast

Authors: Scott Nielsen, Luca Longanesi, Chris Chuck

Abstract:

Palm oil is obtained from the flesh and kernel of the fruit of oil palms and is the most productive and inexpensive oil crop. The global demand for palm oil is approximately 75 million metric tonnes, a 29% increase in global production of palm oil since 2016. This expansion of oil palm cultivation has resulted in mass deforestation, vast biodiversity destruction and increasing net greenhouse gas emissions. One possible alternative is to produce a saturated oil, similar to palm, from microbes such as oleaginous yeast. The yeasts can be cultured on sugars derived from second-generation sources and do not compete with tropical forests for land. One highly promising oleaginous yeast for this application is Metschnikowia pulcherrima. However, recent techno-economic modeling has shown that cell lysis and standard lipid extraction are major contributors to the cost of the oil. Typical cell disruption techniques to extract either single cell oils or proteins have been based around bead-beating, homogenization and acid lysis. However, these can have a detrimental effect on lipid quality and are energy-intensive. In this study, a vortex separator, which produces high sheer with minimal energy input, was investigated as a potential low energy method of lysing cells. This was compared to four more traditional methods (thermal lysis, acid lysis, alkaline lysis, and osmotic lysis). For each method, the yeast loading was also examined at 1 g/L, 10 g/L and 100 g/L. The quality of the cell disruption was measured by optical cell density, cell counting and the particle size distribution profile comparison over a 2-hour period. This study demonstrates that the vortex separator is highly effective at lysing the cells and could potentially be used as a simple apparatus for lipid recovery in an oleaginous yeast process. The further development of this technology could potentially reduce the overall cost of microbial lipids in the future.

Keywords: palm oil substitute, metschnikowia pulcherrima, cell disruption, cell lysis

Procedia PDF Downloads 210
2271 Banking Union: A New Step towards Completing the Economic and Monetary Union

Authors: Marijana Ivanov, Roman Šubić

Abstract:

The single rulebook together with the Single Supervisory Mechanism and the Single Resolution Mechanism - as two main pillars of the banking union, represent important steps towards completing the Economic and Monetary Union. It should provide a consistent application of common rules and administrative standards for supervision, recovery and resolution of banks – with the final aim that a former practice of the bail-out is replaced with the bail-in system through which bank failures will be resolved by their own funds, i.e. with minimal costs for taxpayers and real economy. It has to reduce the financial fragmentation recorded in the years of crisis as the result of divergent behaviors in risk premium, lending activities, and interest rates between the core and the periphery. In addition, it should strengthen the effectiveness of monetary transmission channels, in particular the credit channels and overflows of liquidity on the single interbank money market. However, contrary to all the positive expectations related to the future functioning of the banking union, low and unbalanced economic growth rates remain a challenge for the maintenance of financial stability in the euro area, and this problem cannot be resolved just by a single supervision. In many countries bank assets exceed their GDP by several times, and large banks are still a matter of concern because of their systemic importance for individual countries and the euro zone as a whole. The creation of the SSM and the SRM should increase transparency of the banking system in the euro area and restore confidence that have been disturbed during the depression. It would provide a new opportunity to strengthen economic and financial systems in the peripheral countries. On the other hand, there is a potential threat that future focus of the ECB, resolution mechanism and other relevant institutions will be extremely oriented to the large and significant banks (whereby one half of them operate in the core and most important euro area countries), while it is questionable to what extent the common resolution funds will be used for rescue of less important institutions.

Keywords: banking union, financial integration, single supervision mechanism (SSM)

Procedia PDF Downloads 474
2270 Artificial Intelligence in Melanoma Prognosis: A Narrative Review

Authors: Shohreh Ghasemi

Abstract:

Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods.

Keywords: artificial intelligence, melanoma, accuracy, prognosis prediction, image analysis, personalized medicine

Procedia PDF Downloads 85
2269 The Effect of Multiple Environmental Conditions on Acacia senegal Seedling’s Carbon, Nitrogen, and Hydrogen Contents: An Experimental Investigation

Authors: Abdelmoniem A. Attaelmanan, Ahmed A. H. Siddig

Abstract:

This study was conducted in light of continual global climate changes that projected increasing aridity, changes in soil fertility, and pollution. Plant growth and development largely depend on the combination of availing water and nutrients in the soil. Changes in the climate and atmospheric chemistry can cause serious effects on these growth factors. Plant carbon (C), nitrogen (N), and hydrogen (H) play a fundamental role in the maintenance of ecosystem structure and function. Hashab (Acacia senegal), which produces gum Arabic, supports dryland ecosystems in tropical zones by its potentiality to restore degraded soils; hence it is ecologically and economically important for the dry areas of sub-Saharan Africa. The study aims at investigating the effects of water stress (simulated drought) and poor soil type on Acacia senegal C, N, and H contents. Seven days old seedlings were assigned to the treatments in Split- plot design for four weeks. The main plot is irrigation interval (well-watered and water-stressed), and the subplot is soil types (silt and sand soils). Seedling's C%, N%, and H% were measured using CHNS-O Analyzer and applying Standard Test Method. Irrigation intervals and soil types had no effects on seedlings and leaves C%, N%, and H%, irrigation interval had affected stem C and H%, both irrigation intervals and soil types had affected root N% and interaction effect of water and soil was found on leaves and root's N%. Synthesis application of well-watered irrigation with soil that is rich in N and other nutrients would result in the greatest seedling C, N, and H content which will enhance growth and biomass accumulation and can play a crucial role in ecosystem productivity and services in the dryland regions.

Keywords: Acacia senegal, Africa, climate change, drylands, nutrients biomass, Sub-Saharan, Sudan

Procedia PDF Downloads 120