Search results for: oxygen evaluation reaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9710

Search results for: oxygen evaluation reaction

1760 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds

Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi

Abstract:

Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.

Keywords: electrochemical, endocrine disruptors, microscopy, nanoparticles, sensors

Procedia PDF Downloads 262
1759 Performance Evaluation and Plugging Characteristics of Controllable Self-Aggregating Colloidal Particle Profile Control Agent

Authors: Zhiguo Yang, Xiangan Yue, Minglu Shao, Yue Yang, Rongjie Yan

Abstract:

It is difficult to realize deep profile control because of the small pore-throats and easy water channeling in low-permeability heterogeneous reservoir, and the traditional polymer microspheres have the contradiction between injection and plugging. In order to solve this contradiction, the controllable self-aggregating colloidal particles (CSA) containing amide groups on the surface of microspheres was prepared based on emulsion polymerization of styrene and acrylamide. The dispersed solution of CSA colloidal particles, whose particle size is much smaller than the diameter of pore-throats, was injected into the reservoir. When the microspheres migrated to the deep part of reservoir, , these CSA colloidal particles could automatically self-aggregate into large particle clusters under the action of the shielding agent and the control agent, so as to realize the plugging of the water channels. In this paper, the morphology, temperature resistance and self-aggregation properties of CSA microspheres were studied by transmission electron microscopy (TEM) and bottle test. The results showed that CSA microspheres exhibited heterogeneous core-shell structure, good dispersion, and outstanding thermal stability. The microspheres remain regular and uniform spheres at 100℃ after aging for 35 days. With the increase of the concentration of the cations, the self-aggregation time of CSA was gradually shortened, and the influence of bivalent cations was greater than that of monovalent cations. Core flooding experiments showed that CSA polymer microspheres have good injection properties, CSA particle clusters can effective plug the water channels and migrate to the deep part of the reservoir for profile control.

Keywords: heterogeneous reservoir, deep profile control, emulsion polymerization, colloidal particles, plugging characteristic

Procedia PDF Downloads 213
1758 Evaluation and Analysis of ZigBee-Based Wireless Sensor Network: Home Monitoring as Case Study

Authors: Omojokun G. Aju, Adedayo O. Sule

Abstract:

ZigBee wireless sensor and control network is one of the most popularly deployed wireless technologies in recent years. This is because ZigBee is an open standard lightweight, low-cost, low-speed, low-power protocol that allows true operability between systems. It is built on existing IEEE 802.15.4 protocol and therefore combines the IEEE 802.15.4 features and newly added features to meet required functionalities thereby finding applications in wide variety of wireless networked systems. ZigBee‘s current focus is on embedded applications of general-purpose, inexpensive, self-organising networks which requires low to medium data rates, high number of nodes and very low power consumption such as home/industrial automation, embedded sensing, medical data collection, smart lighting, safety and security sensor networks, and monitoring systems. Although the ZigBee design specification includes security features to protect data communication confidentiality and integrity, however, when simplicity and low-cost are the goals, security is normally traded-off. A lot of researches have been carried out on ZigBee technology in which emphasis has mainly been placed on ZigBee network performance characteristics such as energy efficiency, throughput, robustness, packet delay and delivery ratio in different scenarios and applications. This paper investigate and analyse the data accuracy, network implementation difficulties and security challenges of ZigBee network applications in star-based and mesh-based topologies with emphases on its home monitoring application using the ZigBee ProBee ZE-10 development boards for the network setup. The paper also expose some factors that need to be considered when designing ZigBee network applications and suggest ways in which ZigBee network can be designed to provide more resilient to network attacks.

Keywords: home monitoring, IEEE 802.14.5, topology, wireless security, wireless sensor network (WSN), ZigBee

Procedia PDF Downloads 363
1757 A Damage Level Assessment Model for Extra High Voltage Transmission Towers

Authors: Huan-Chieh Chiu, Hung-Shuo Wu, Chien-Hao Wang, Yu-Cheng Yang, Ching-Ya Tseng, Joe-Air Jiang

Abstract:

Power failure resulting from tower collapse due to violent seismic events might bring enormous and inestimable losses. The Chi-Chi earthquake, for example, strongly struck Taiwan and caused huge damage to the power system on September 21, 1999. Nearly 10% of extra high voltage (EHV) transmission towers were damaged in the earthquake. Therefore, seismic hazards of EHV transmission towers should be monitored and evaluated. The ultimate goal of this study is to establish a damage level assessment model for EHV transmission towers. The data of earthquakes provided by Taiwan Central Weather Bureau serve as a reference and then lay the foundation for earthquake simulations and analyses afterward. Some parameters related to the damage level of each point of an EHV tower are simulated and analyzed by the data from monitoring stations once an earthquake occurs. Through the Fourier transform, the seismic wave is then analyzed and transformed into different wave frequencies, and the data would be shown through a response spectrum. With this method, the seismic frequency which damages EHV towers the most is clearly identified. An estimation model is built to determine the damage level caused by a future seismic event. Finally, instead of relying on visual observation done by inspectors, the proposed model can provide a power company with the damage information of a transmission tower. Using the model, manpower required by visual observation can be reduced, and the accuracy of the damage level estimation can be substantially improved. Such a model is greatly useful for health and construction monitoring because of the advantages of long-term evaluation of structural characteristics and long-term damage detection.

Keywords: damage level monitoring, drift ratio, fragility curve, smart grid, transmission tower

Procedia PDF Downloads 288
1756 Impact of Heat Moisture Treatment on the Yield of Resistant Starch and Evaluation of Functional Properties of Modified Mung Bean (Vigna radiate) Starch

Authors: Sreejani Barua, P. P. Srivastav

Abstract:

Formulation of new functional food products for diabetes patients and obsessed people is a challenge for food industries till date. Starch is a certainly happening, ecological, reasonable and profusely obtainable polysaccharide in plant material. In the present scenario, there is a great interest in modifying starch functional properties without destroying its granular structure using different modification techniques. Resistant starch (RS) contains almost zero calories and can control blood glucose level to prevent diabetes. The current study focused on modification of mung bean starch which is a good source of legumes carbohydrate for the production of functional food. Heat moisture treatment (HMT) of mung starch was conducted at moisture content of 10-30%, temperature of 80-120 °C and time of 8-24 h.The content of resistant starch after modification was significantly increased from native starches containing RS 7.6%. The design combinations of HMT had been completed through Central Composite Rotatable Design (CCRD). The effects of HMT process variables on the yield of resistant starch was studied through Rapid Surface Methodology (RSM). The highest increase of resistant starch was found up to 34.39% when treated the native starch with 30% m.c at 120 °C temperature for 24 h.The functional properties of both native and modified mung bean starches showed that there was a reduction in the swelling power and swelling volume of HMT starches. However, the solubility of the HMT starches was higher than that of untreated native starch and also observed change in structural (scanning electron microscopy), X-Ray diffraction (XRD) pattern, blue value and thermal (differential scanning calorimetry) properties. Therefore, replacing native mung bean starch with heat-moisture treated mung bean starch leads to the development of new products with higher resistant starch levels and functional properties.

Keywords: Mung bean starch, heat moisture treatment, functional properties, resistant starch

Procedia PDF Downloads 190
1755 Transient Simulation Using SPACE for ATLAS Facility to Investigate the Effect of Heat Loss on Major Parameters

Authors: Suhib A. Abu-Seini, Kyung-Doo Kim

Abstract:

A heat loss model for ATLAS facility was introduced using SPACE code predefined correlations and various dialing factors. As all previous simulations were carried out using a heat loss free input; the facility was considered to be completely insulated and the core power was reduced by the experimentally measured values of heat loss to compensate to the account for the loss of heat, this study will consider heat loss throughout the simulation. The new heat loss model will be affecting SPACE code simulation as heat being leaked out of the system throughout a transient will alter many parameters corresponding to temperature and temperature difference. For that, a Station Blackout followed by a multiple Steam Generator Tube Rupture accident will be simulated using both the insulated system approach and the newly introduced heat loss input of the steady state. Major parameters such as system temperatures, pressure values, and flow rates to be put into comparison and various analysis will be suggested upon it as the experimental values will not be the reference to validate the expected outcome. This study will not only show the significance of heat loss consideration in the processes of prevention and mitigation of various incidents, design basis and beyond accidents as it will give a detailed behavior of ATLAS facility during both processes of steady state and major transient, but will also present a verification of how credible the data acquired of ATLAS are; since heat loss values for steady state were already mismatched between SPACE simulation results and ATLAS data acquiring system. Acknowledgement- This work was supported by the Korean institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea.

Keywords: ATLAS, heat loss, simulation, SPACE, station blackout, steam generator tube rupture, verification

Procedia PDF Downloads 212
1754 A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander

Authors: Johns Paul, Santhosh J. Nalluveettil, P. Purushothaman, M. Premdas

Abstract:

Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation.

Keywords: honeycomb, landing leg tripod, lunar lander, primary link, secondary link

Procedia PDF Downloads 331
1753 Clients’ Priorities in Delivery of Green Projects: South African Perspective

Authors: C. Mothobiso, D. Root

Abstract:

Purpose: This study attempts to identify the clients’ main priorities when delivering green projects. The aim is to compare if the clients have the same interest that are similar in delivery of convectional buildings as compared to green buildings. The main purpose is to find why other clients are investing in green buildings while others are reluctant and adopting green building at a slow pace. Design/methodology/approach: A sample of construction professional accredited by the Green Building Council of South Africa (GBCSA) was sent a questionnaire to participate in the research. Since GBSCSA accredited professionals have knowledge and experience about the green buildings, they are chosen as the sample. The research is qualitative because it evaluates the perceptions and knowledge around the subject matter. Research limitations: The research focuses only on the South African construction clients. Findings: Findings reveal that private clients invest more on green buildings as compared to government and parastatal entities. Private clients prioritise on maximising returns on investments and they mainly invest on buildings that save energies and have low life cycle costs. Private clients are perceived to be more knowledgeable about the benefits of green building project as compared to government and Parastatals clients. Shortage of expertise and managerial skill leads to low adaptation of green buildings in the government and parastatal projects. Other factors, which seem to disintegrate the adoption of green buildings, are the readiness of supply chain within the industry and inappropriate procurements strategies adopted by clients. The evaluation of the clients’ priorities will enable the design team to come up with innovative ways to approach the design process so that clients’ priorities and needs are identified and met. Practical implications: The findings are indicating that clients’ needs and priorities have a huge impact on the delivery of the project in terms of time, quality and cost of the project.

Keywords: construction clients, design team, green construction and project deliver

Procedia PDF Downloads 261
1752 Improving Digital Data Security Awareness among Teacher Candidates with Digital Storytelling Technique

Authors: Veysel Çelik, Aynur Aker, Ebru Güç

Abstract:

Developments in information and communication technologies have increased both the speed of producing information and the speed of accessing new information. Accordingly, the daily lives of individuals have started to change. New concepts such as e-mail, e-government, e-school, e-signature have emerged. For this reason, prospective teachers who will be future teachers or school administrators are expected to have a high awareness of digital data security. The aim of this study is to reveal the effect of the digital storytelling technique on the data security awareness of pre-service teachers of computer and instructional technology education departments. For this purpose, participants were selected based on the principle of volunteering among third-grade students studying at the Computer and Instructional Technologies Department of the Faculty of Education at Siirt University. In the research, the pretest/posttest half experimental research model, one of the experimental research models, was used. In this framework, a 6-week lesson plan on digital data security awareness was prepared in accordance with the digital narration technique. Students in the experimental group formed groups of 3-6 people among themselves. The groups were asked to prepare short videos or animations for digital data security awareness. The completed videos were watched and evaluated together with prospective teachers during the evaluation process, which lasted approximately 2 hours. In the research, both quantitative and qualitative data collection tools were used by using the digital data security awareness scale and the semi-structured interview form consisting of open-ended questions developed by the researchers. According to the data obtained, it was seen that the digital storytelling technique was effective in creating data security awareness and creating permanent behavior changes for computer and instructional technology students.

Keywords: digital storytelling, self-regulation, digital data security, teacher candidates, self-efficacy

Procedia PDF Downloads 112
1751 Supercritical Water Gasification of Organic Wastes for Hydrogen Production and Waste Valorization

Authors: Laura Alvarez-Alonso, Francisco Garcia-Carro, Jorge Loredo

Abstract:

Population growth and industrial development imply an increase in the energy demands and the problems caused by emissions of greenhouse effect gases, which has inspired the search for clean sources of energy. Hydrogen (H₂) is expected to play a key role in the world’s energy future by replacing fossil fuels. The properties of H₂ make it a green fuel that does not generate pollutants and supplies sufficient energy for power generation, transportation, and other applications. Supercritical Water Gasification (SCWG) represents an attractive alternative for the recovery of energy from wastes. SCWG allows conversion of a wide range of raw materials into a fuel gas with a high content of hydrogen and light hydrocarbons through their treatment at conditions higher than those that define the critical point of water (temperature of 374°C and pressure of 221 bar). Methane used as a transport fuel is another important gasification product. The number of different uses of gas and energy forms that can be produced depending on the kind of material gasified and type of technology used to process it, shows the flexibility of SCWG. This feature allows it to be integrated with several industrial processes, as well as power generation systems or waste-to-energy production systems. The final aim of this work is to study which conditions and equipment are the most efficient and advantageous to explore the possibilities to obtain streams rich in H₂ from oily wastes, which represent a major problem both for the environment and human health throughout the world. In this paper, the relative complexity of technology needed for feasible gasification process cycles is discussed with particular reference to the different feedstocks that can be used as raw material, different reactors, and energy recovery systems. For this purpose, a review of the current status of SCWG technologies has been carried out, by means of different classifications based on key features as the feed treated or the type of reactor and other apparatus. This analysis allows to improve the technology efficiency through the study of model calculations and its comparison with experimental data, the establishment of kinetics for chemical reactions, the analysis of how the main reaction parameters affect the yield and composition of products, or the determination of the most common problems and risks that can occur. The results of this work show that SCWG is a promising method for the production of both hydrogen and methane. The most significant choices of design are the reactor type and process cycle, which can be conveniently adopted according to waste characteristics. Regarding the future of the technology, the design of SCWG plants is still to be optimized to include energy recovery systems in order to reduce costs of equipment and operation derived from the high temperature and pressure conditions that are necessary to convert water to the SC state, as well as to find solutions to remove corrosion and clogging of components of the reactor.

Keywords: hydrogen production, organic wastes, supercritical water gasification, system integration, waste-to-energy

Procedia PDF Downloads 133
1750 Family Treatment Drug Court Cost Analysis: An In-depth Look At The Cost And Savings Of A Southeastern Family Treatment Drug Court

Authors: Ashley R. Logsdon, Becky F. Antle, Cynthia M. Kamer

Abstract:

This study examines the cost and benefits of a family treatment drug court in an urban county in a southeastern state. Additionally, this cost analysis will provide a detailed description of the type and cost of activities to produce the services provided to child welfare families. This study utilized return-on-investment analysis, which uses child welfare practices, disaggregates them into separate activities and estimates costs for these activities including child-level placement data for total cost of care for the child. Direct and indirect costs were considered as well as saving calculations what costs would be associated with child welfare outcomes both short and long term. The costs included were general program costs (salaries, drug screens, transportation, childcare, parent education, program evaluation, visitation, incentives) or personnel costs for other team members (judges, court administrators, child welfare workers, child welfare supervisors, and community mental health provider). The savings that were used in the study were length of time in out of home care, Medicaid costs, substance exposed births, emergency room utilization and jail/probation costs. This study documents an overall savings of between $168,993.30 and $837,993.30. The total savings per family divided by the 40 families who have participated in the program was between $4,224.83 to $20,949.83 per family. The results of this cost benefit analysis are consistent with prior research documenting savings associated with out of home care and jail/probation; however, there are also unique contributions of this study to the literature on cost effectiveness of family treatment drug courts. We will present recommendations for further utilization of family treatment drug courts and how to expand the current model.

Keywords: child welfare, cost analysis, family drug court, family treatment drug court

Procedia PDF Downloads 159
1749 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing

Authors: Yehjune Heo

Abstract:

As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.

Keywords: anti-spoofing, CNN, fingerprint recognition, loss function, optimizer

Procedia PDF Downloads 120
1748 A Reflection on the Professional Development Journey of Science Educators

Authors: M. Shaheed Hartley

Abstract:

Science and mathematics are regarded as gateway subjects in South Africa as they are the perceived route to careers in science, engineering, technology and mathematics (STEM). One of the biggest challenges that the country faces is the poor achievement of learners in these two learning areas in the external high school exit examination. To compound the problem many national and international benchmark tests paint a bleak picture of the state of science and mathematics in the country. In an attempt to address this challenge, the education department of the Eastern Cape Province invited the Science Learning Centre of the University of the Western Cape to provide training to their science teachers in the form of a structured course conducted on a part-time basis in 2010 and 2011. The course was directed at improving teachers’ content knowledge, pedagogical strategies and practical and experimental skills. A total of 41 of the original 50 science teachers completed the course and received their certificates in 2012. As part of their continuous professional development, 31 science teachers enrolled for BEd Hons in science education in 2013 and 28 of them completed the course in 2014. These students graduated in 2015. Of the 28 BEd Hons students who completed the course 23 registered in 2015 for Masters in Science Education and were joined by an additional 3 students. This paper provides a reflection by science educators on the training, supervision and mentorship provided to them as students of science education. The growth and development of students through their own reflection and understanding as well as through the eyes of the lecturers and supervisors that took part in the training provide the evaluation of the professional development process over the past few years. This study attempts to identify the merits, challenges and limitations of this project and the lessons to be learnt on such projects. It also documents some of the useful performance indicators with a view to developing a framework for good practice for such programmes.

Keywords: reflection, science education, professional development, rural schools

Procedia PDF Downloads 179
1747 Quantitative Evaluation of Supported Catalysts Key Properties from Electron Tomography Studies: Assessing Accuracy Using Material-Realistic 3D-Models

Authors: Ainouna Bouziane

Abstract:

The ability of Electron Tomography to recover the 3D structure of catalysts, with spatial resolution in the subnanometer scale, has been widely explored and reviewed in the last decades. A variety of experimental techniques, based either on Transmission Electron Microscopy (TEM) or Scanning Transmission Electron Microscopy (STEM) have been used to reveal different features of nanostructured catalysts in 3D, but High Angle Annular Dark Field imaging in STEM mode (HAADF-STEM) stands out as the most frequently used, given its chemical sensitivity and avoidance of imaging artifacts related to diffraction phenomena when dealing with crystalline materials. In this regard, our group has developed a methodology that combines image denoising by undecimated wavelet transforms (UWT) with automated, advanced segmentation procedures and parameter selection methods using CS-TVM (Compressed Sensing-total variation minimization) algorithms to reveal more reliable quantitative information out of the 3D characterization studies. However, evaluating the accuracy of the magnitudes estimated from the segmented volumes is also an important issue that has not been properly addressed yet, because a perfectly known reference is needed. The problem particularly complicates in the case of multicomponent material systems. To tackle this key question, we have developed a methodology that incorporates volume reconstruction/segmentation methods. In particular, we have established an approach to evaluate, in quantitative terms, the accuracy of TVM reconstructions, which considers the influence of relevant experimental parameters like the range of tilt angles, image noise level or object orientation. The approach is based on the analysis of material-realistic, 3D phantoms, which include the most relevant features of the system under analysis.

Keywords: electron tomography, supported catalysts, nanometrology, error assessment

Procedia PDF Downloads 65
1746 Impedimetric Phage-Based Sensor for the Rapid Detection of Staphylococcus aureus from Nasal Swab

Authors: Z. Yousefniayejahr, S. Bolognini, A. Bonini, C. Campobasso, N. Poma, F. Vivaldi, M. Di Luca, A. Tavanti, F. Di Francesco

Abstract:

Pathogenic bacteria represent a threat to healthcare systems and the food industry because their rapid detection remains challenging. Electrochemical biosensors are gaining prominence as a novel technology for the detection of pathogens due to intrinsic features such as low cost, rapid response time, and portability, which make them a valuable alternative to traditional methodologies. These sensors use biorecognition elements that are crucial for the identification of specific bacteria. In this context, bacteriophages are promising tools for their inherent high selectivity towards bacterial hosts, which is of fundamental importance when detecting bacterial pathogens in complex biological samples. In this study, we present the development of a low-cost and portable sensor based on the Zeno phage for the rapid detection of Staphylococcus aureus. Screen-printed gold electrodes functionalized with the Zeno phage were used, and electrochemical impedance spectroscopy was applied to evaluate the change of the charge transfer resistance (Rct) as a result of the interaction with S. aureus MRSA ATCC 43300. The phage-based biosensor showed a linear range from 101 to 104 CFU/mL with a 20-minute response time and a limit of detection (LOD) of 1.2 CFU/mL under physiological conditions. The biosensor’s ability to recognize various strains of staphylococci was also successfully demonstrated in the presence of clinical isolates collected from different geographic areas. Assays using S. epidermidis were also carried out to verify the species-specificity of the phage sensor. We only observed a remarkable change of the Rct in the presence of the target S. aureus bacteria, while no substantial binding to S. epidermidis occurred. This confirmed that the Zeno phage sensor only targets S. aureus species within the genus Staphylococcus. In addition, the biosensor's specificity with respect to other bacterial species, including gram-positive bacteria like Enterococcus faecium and the gram-negative bacterium Pseudomonas aeruginosa, was evaluated, and a non-significant impedimetric signal was observed. Notably, the biosensor successfully identified S. aureus bacterial cells in a complex matrix such as a nasal swab, opening the possibility of its use in a real-case scenario. We diluted different concentrations of S. aureus from 108 to 100 CFU/mL with a ratio of 1:10 in the nasal swap matrices collected from healthy donors. Three different sensors were applied to measure various concentrations of bacteria. Our sensor indicated high selectivity to detect S. aureus in biological matrices compared to time-consuming traditional methods, such as enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and radioimmunoassay (RIA), etc. With the aim to study the possibility to use this biosensor to address the challenge associated to pathogen detection, ongoing research is focused on the assessment of the biosensor’s analytical performances in different biological samples and the discovery of new phage bioreceptors.

Keywords: electrochemical impedance spectroscopy, bacteriophage, biosensor, Staphylococcus aureus

Procedia PDF Downloads 53
1745 Public Perception and Willingness to Undergo Cosmetic Procedures during COVID-19 Pandemic: A Questionnaire-Based Study Applied to Asymptomatic Individuals

Authors: Ibrahim Alreshidi, Aseel Albrekeit, Ruaa Alharthi

Abstract:

Background: As a result of the spread of COVID-19 at the beginning of 2020, many governments, including Saudi Arabia, have suspended operations in many agencies. Most dermatologists have restricted their practice, including cosmetic procedures, to ensure social distancing. On the 7th of May 2020, Saudi authorities reduced the restriction of COVID-19 virus preventative measures, allowing clinics to start accepting patients following the ministry of health protocols. Objectives: Evaluation of the public's perception and willingness to undergo cosmetic procedures during COVID-19 outbreaks in Saudi Arabia. Materials and methods: A descriptive, cross-sectional, questionnaire-based study was carried out among the individuals who lack typical symptoms of COVID-19 infection in Saudi Arabia. A self-designed web-based questionnaire was developed; content face validity and a pilot study were done. The questionnaire was distributed electronically from the 8th of May until the 31st of May 2020. Results: A total of 656 individuals who lack typical symptoms of COVID-19 infection were included in this analysis. Only 10.5% of participants expressed their will to do cosmetic procedures during the COVID-19 pandemic. More than 90% of the participants believed that the COVID-19 pandemic was either somewhat serious (52.9%) or very serious (38.7%). The willingness to do cosmetic procedures during the COVID-19 pandemic remained unaltered when the price was discounted (p<0.001) and when infection control measures were ensured (p<0.001). Conclusion: The COVID-19 pandemic had a negative impact on the practice of cosmetic dermatology. Fear of transferring the infection to a beloved home member is the main reason to avoid these procedures. Generating well-structured safety guidelines to decrease the risk of this unusual virus transmission in dermatology practice and creating financial incentives may help increase the public willingness to do these cosmetic procedures during this pandemic.

Keywords: COVID-19 pandemic, cosmetic procedures, questionnaire, dermatology

Procedia PDF Downloads 166
1744 Comparative Analysis of Teachers’ Performance in Private and Public Primary Schools in Oyo State

Authors: Babajide Solomon Faloore

Abstract:

This study on the comparative analysis of the performance of teachers in private and public schools was carried out in Ibadan North West Local Government Area of Oyo State. This study examined the justification for the claim that there is a difference in the performance of teachers in private and public primary schools and at the same time identified factors responsible for the difference in the performance of these teachers. A descriptive survey research design was used for the study. Data generated were analyzed using t-test and regression analysis. The findings of the study revealed that there is significance difference in the performance of teachers in private and private primary schools in Ibadan North West Local Government Area of Oyo State( t=64.09; df=459; p,.05). The findings also revealed that the method of teaching in private primary schools is significantly different from the method of teaching in public primary schools in Ibadan North West Local Government Area of Oyo State (t=73.08; df=459; p,.05). Findings revealed that school leadership and management have a significant contribution on the performance of private and public primary school teachers in Ibadan North West Local Area of Oyo State. Based on the finding, the following recommendations were made: Primary school teachers need to be motivated and rewarded for excellent performance. Primary schools should be properly equipped with teaching–aid facilities, laboratories, and libraries. The government should use the findings of this study to improve on teaching materials provided to the primary school teachers in Nigeria. Public primary schools should be designed by education planners, administrators, and government. Headmasters, proprietors, and teachers of primary schools should look inward and give a performance appraisal and evaluation of themselves from time to time based on the subject they taught. Finally, school administrators should be conscious of the way they manage the teachers in schools not only in informal situations but also in formal settings.

Keywords: private education, public education, school leadership, school management, teachers performance

Procedia PDF Downloads 367
1743 Evaluation of Elements Impurities in Drugs According to Pharmacopoeia by use FESEM-EDS Technique

Authors: Rafid Doulab

Abstract:

Elemental Impurities in the Pharmaceuticals industryis are indispensable to ensure pharmaceuticalssafety for 24 elements. Although atomic absorption and inductively coupled plasma are used in the U.S Pharmacopeia and the European Pharmacopoeia, FESEM with energy dispersive spectrometers can be applied as an alternative analysis method for quantitative and qualitative results for a variety of elements without chemical pretreatment, unlike other techniques. This technique characterizes by shortest time, with more less contamination, no reagent consumption, and generation of minimal residue or waste, as well as sample preparations time limiting, with minimal analysis error. Simple dilution for powder or direct analysis for liquid, we analyzed the usefulness of EDS method in testing with field emission scanning electron microscopy (FESEM, SUPRA 55 Carl Zeiss Germany) with an X-ray energy dispersion (XFlash6l10 Bruker Germany). The samples analyzed directly without coating by applied 5µ of known concentrated diluted sample on carbon stub with accelerated voltage according to sample thickness, the result for this spot was in atomic percentage, and by Avogadro converted factor, the final result will be in microgram. Conclusion and recommendation: The conclusion of this study is application of FESEM-EDS in US pharmacopeia and ICH /Q3D guideline to reach a high-precision and accurate method in element impurities analysis of drugs or bulk materials to determine the permitted daily exposure PDE in liquid or solid specimens, and to obtain better results than other techniques, by the way it does not require complex methods or chemicals for digestion, which interfere with the final results with the possibility of to keep the sample at any time for re analysis. The recommendation is to use this technique in pharmacopeia as standard methods like inductively coupled plasma both ICP-AES, ICP-OES, and ICP-MS.

Keywords: pharmacopoeia, FESEM-EDS, element impurities, atomic concentration

Procedia PDF Downloads 97
1742 Evaluation of Automated Analyzers of Polycyclic Aromatic Hydrocarbons and Black Carbon in a Coke Oven Plant by Comparison with Analytical Methods

Authors: L. Angiuli, L. Trizio, R. Giua, A. Digilio, M. Tutino, P. Dambruoso, F. Mazzone, C. M. Placentino

Abstract:

In the winter of 2014 a series of measurements were performed to evaluate the behavior of real-time PAHs and black carbon analyzers in a coke oven plant located in Taranto, a city of Southern Italy. Data were collected both insides than outside the plant, at air quality monitoring sites. Contemporary measures of PM2.5 and PM1 were performed. Particle-bound PAHs were measured by two methods: (1) aerosol photoionization using an Ecochem PAS 2000 analyzer, (2) PM2.5 and PM1 quartz filter collection and analysis by gas chromatography/mass spectrometry (GC/MS). Black carbon was determined both in real-time by Magee Aethalometer AE22 analyzer than by semi-continuous Sunset Lab EC/OC instrument. Detected PM2.5 and PM1 levels were higher inside than outside the plant while PAHs real-time values were higher outside than inside. As regards PAHs, inside the plant Ecochem PAS 2000 revealed concentrations not significantly different from those determined on the filter during low polluted days, but at increasing concentrations the automated instrument underestimated PAHs levels. At the external site, Ecochem PAS 2000 real-time concentrations were steadily higher than those on the filter. In the same way, real-time black carbon values were constantly lower than EC concentrations obtained by Sunset EC/OC in the inner site, while outside the plant real-time values were comparable to Sunset EC values. Results showed that in a coke plant real-time analyzers of PAHs and black carbon in the factory configuration provide qualitative information, with no accuracy and leading to the underestimation of the concentration. A site specific calibration is needed for these instruments before their installation in high polluted sites.

Keywords: black carbon, coke oven plant, PAH, PAS, aethalometer

Procedia PDF Downloads 333
1741 Rheological Properties of Dough and Sensory Quality of Crackers with Dietary Fibers

Authors: Ljubica Dokić, Ivana Nikolić, Dragana Šoronja–Simović, Zita Šereš, Biljana Pajin, Nils Juul, Nikola Maravić

Abstract:

The possibility of application the dietary fibers in production of crackers was observed in this work, as well as their influence on rheological and textural properties on the dough for crackers and influence on sensory properties of obtained crackers. Three different dietary fibers, oat, potato and pea fibers, replaced 10% of wheat flour. Long fermentation process and baking test method were used for crackers production. The changes of dough for crackers were observed by rheological methods of determination the viscoelastic dough properties and by textural measurements. Sensory quality of obtained crackers was described using quantity descriptive method (QDA) by trained members of descriptive panel. Additional analysis of crackers surface was performed by videometer. Based on rheological determination, viscoelastic properties of dough for crackers were reduced by application of dietary fibers. Manipulation of dough with 10% of potato fiber was disabled, thus the recipe modification included increase in water content at 35%. Dough compliance to constant stress for samples with dietary fibers decreased, due to more rigid and stiffer dough consistency compared to control sample. Also, hardness of dough for these samples increased and dough extensibility decreased. Sensory properties of final products, crackers, were reduced compared to control sample. Application of dietary fibers affected mostly hardness, structure and crispness of the crackers. Observed crackers were low marked for flavor and taste, due to influence of fibers specific aroma. The sample with 10% of potato fibers and increased water content was the most adaptable to applied stresses and to production process. Also this sample was close to control sample without dietary fibers by evaluation of sensory properties and by results of videometer method.

Keywords: crackers, dietary fibers, rheology, sensory properties

Procedia PDF Downloads 311
1740 Development of Hybrid Materials Combining Biomass as Fique Fibers with Metal-Organic Frameworks, and Their Potential as Mercury Adsorbents

Authors: Karen G. Bastidas Gomez, Hugo R. Zea Ramirez, Manuel F. Ribeiro Pereira, Cesar A. Sierra Avila, Juan A. Clavijo Morales

Abstract:

The contamination of water sources with heavy metals such as mercury has been an environmental problem; it has generated a high impact on the environment and human health. In countries such as Colombia, mercury contamination due to mining has reached levels much higher than the world average. This work proposes the use of fique fibers as adsorbent in mercury removal. The evaluation of the material was carried out under five different conditions (raw, pretreated by organosolv, functionalized by TEMPO oxidation, fiber functionalized plus MOF-199 and fiber functionalized plus MOF-199-SH). All the materials were characterized using FTIR, SEM, EDX, XRD, and TGA. Regarding the mercury removal, it was done under room pressure and temperature, also pH = 7 for all materials presentations, followed by Atomic Absorption Spectroscopy. The high cellulose content in fique is the main particularity of this lignocellulosic biomass since the degree of oxidation depends on the number of hydroxyl groups on the surface capable of oxidizing into carboxylic acids, a functional group capable of increasing ion exchange with mercury in solution. It was also expected that the impregnation of the MOF would increase the mercury removal; however, it was found that the functionalized fique achieved a greater percentage of removal, resulting in 81.33% of removal, 44% for the fique with the MOF-199 and 72% for the MOF-199-SH with. The pretreated fiber and raw also showed 74% and 56%, respectively, which indicates that fique does not require considerable modifications in its structure to achieve good performances. Even so, the functionalized fiber increases the percentage of removal considerably compared to the pretreated fique, which suggests that the functionalization process is a feasible procedure to apply with the purpose of improving the removal percentage. In addition, this is a procedure that follows a green approach since the reagents involved have low environmental impact, and the contribution to the remediation of natural resources is high.

Keywords: biomass, nanotechnology, science materials, wastewater treatment

Procedia PDF Downloads 104
1739 Strategic Business Solutions for an Ageing SME

Authors: N. G. Teik Hiang, Fathyah Hashim

Abstract:

This is a case of how strategic management techniques can be used to help resolving problems faced by an ageing Small and Medium Enterprise (SME). Strategic way of resolving problems had been proven to be possible in this case despite general thought that strategic management is useful mostly for large corporations. Small and Medium Enterprises (SMEs) can also use strategic management in managing their business and determining their future cause of action and strategies in order to survive in this ever competent world. Strategic orientation is the key to survival and development of small and medium enterprises. In order to adapt to the fierce market competition, ageing SMEs should improve competitiveness and operational efficiency. They must therefore establish a sense of strategic management to improve the strategic management skills, combined with its own unique characteristics, and work out practical strategies to develop core competitiveness of enterprises in the fierce market competition in order to be sustainable. In this case, internal strengths and weaknesses of an SME had been identified. Strategic internal factors and external factors had been classified and further utilized to formulate potential strategies to encounter various problems faced by the SME. These strategies had been further match to take advantages of the opportunities and to overcome the weaknesses and minimize the threats it is facing. Tan, a consultant who was given the opportunity to formulate a plan for the business started with the environmental scanning (internal and external environmental analysis), assessing strengths and weaknesses for the company, strategies generation, analysis and evaluation. He had numerous discussions with the owner of the business and the senior management in order to match the key internal and external factors to formulate alternative strategies for solving the problems that the company facing. Some of the recommendations or solutions are generated from the inspiration of the owner of the business who is a very enterprising and experience businessman.

Keywords: strategic orientation, strategic management, SME, core competitiveness, sustainable

Procedia PDF Downloads 399
1738 Silver-Doped Magnetite Titanium Oxide Nanoparticles for Photocatalytic Degradation of Organic Pollutants

Authors: Hanna Abbo, Siyasanga Noganta, Salam Titinchi

Abstract:

The global lack of clean water for human sanitation and other purposes has become an emerging dilemma for human beings. The presence of organic pollutants in wastewater produced by textile industries, leather manufacturing and chemical industries is an alarming matter for a safe environment and human health. For the last decades, conventional methods have been applied for the purification of water but due to industrialization these methods fall short. Advanced oxidation processes and their reliable application in degradation of many contaminants have been reported as a potential method to reduce and/or alleviate this problem. Lately it has been assumed that incorporation of some metal nanoparticles such as magnetite nanoparticles as photocatalyst for Fenton reaction which could improve the degradation efficiency of contaminants. Core/shell nanoparticles, are extensively studied because of their wide applications in the biomedical, drug delivery, electronics fields and water treatment. The current study is centred on the synthesis of silver-doped Fe3O4/SiO2/TiO2 photocatalyst. Magnetically separable Fe3O4@SiO2@TiO2 composite with core–shell structure were synthesized by the deposition of uniform anatase TiO2 NPs on Fe3O4@SiO2 by using titanium butoxide (TBOT) as titanium source. Then, the silver is doped on SiO2 layer by hydrothermal method. Integration of magnetic nanoparticles was suggested to avoid the post separation difficulties associated with the powder form of the TiO2 catalyst, increase of the surface area and adsorption properties. The morphology, structure, composition, and magnetism of the resulting composites were characterized and their photocatalytic activities were also evaluated. The results demonstrate that TiO2 NPs were uniformly deposited on the Fe3O4@SiO2 surface. The silver nanoparticles were also uniformly distributed on the surface of TiO2 nanoparticles. The aim of this work is to study the suitability of photocatalysis for the treatment of aqueous streams containing organic pollutants such as methylene blue which is selected as a model compound to represent one of the pollutants existing in wastewaters. Various factors such as initial pollutant concentration, photocatalyst dose and wastewater matrix were studied for their effect on the photocatalytic degradation of the organic model pollutants using the as synthesized catalysts and compared with the commercial titanium dioxide (Aeroxide P25). Photocatalysis was found to be a potential purification method for the studied pollutant also in an industrial wastewater matrix with the removal percentages of over 81 % within 15 minutes. Methylene blue was removed most efficiently and its removal consumed the least of energy in terms of the specific applied energy. The magnetic Ag/SiO2/TiO2 composites show high photocatalytic performance and can be recycled three times by magnetic separation without major loss of activity, which meant that they can be used as efficient and conveniently renewable photocatalyst.

Keywords: Magnetite nanoparticles, Titanium, Photocatalyst, Organic pollutant, Water treatment

Procedia PDF Downloads 251
1737 Relationship among the Air Pollution and Atopic Dermatitis Using Meta-Analysis

Authors: Chaebong Kim, Yongmin Cho, Minkyung Han, Mooyoung Kim, KooSang Kim

Abstract:

Background: Air pollution from global warming has a considerable influence on respiratory disease and atopic dermatitis (AD). Present studies base on a hypothesis about correlation between air pollutant and AD, and the results are analyzed from various points of view. Objectives: This study aimed to integrate the relevant researches for air pollutant and AD, and to perform the systematic literature review and meta-analysis to provide the basis of air pollutant control. Methods: Research materials were collected from original articles published in English academic journals including medicine, nursing and health science from August 1 to 31, 2016. We collected the materials from Pubmed, Medline, Embase, Cochrane Central database with Prisma (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) based on the Cochrane Systematic Review Manual, and performed the evaluation and analysis for selected materials. We got the research results for risk of bias using Rev-Man ver. 5.2, and meta analyses using STATA. Results: The prevalence of infantile atopic dermatitis were 1.05 times higher than other groups who were exposed to air pollution, and exposure to NO2 (1.08, 95% CI: 1.02 – 1.14), O3 (1.09, 95% CI: 1.04 – 1.15), SO2 (1.07, 95% CI: 1.02 – 1.12) in subgroup air pollutant was considerably associated with infantile atopic dermatitis. The prevalence of infantile atopic dermatitis was 1.03 times higher than other groups who were exposed to PM2.5, but the results were not statistically similar. Conclusion: Health effect from environmental pollution risen people’s interest in environmental diseases. Air pollutant was associated with AD in this study, but selected literature was based on non-RCT (Randomized Controlled Trial) study. Therefore, there was a limit in study method including control, matching, and correction of confounding variables. For clear conclusion, it is necessary to develop the appropriate tool for object of study and clear standard to measure of air pollutant.

Keywords: air pollution, atopic dermatitis, children, meta-analysis

Procedia PDF Downloads 242
1736 Evaluation of the Gamma-H2AX Expression as a Biomarker of DNA Damage after X-Ray Radiation in Angiography Patients

Authors: Reza Fardid, Aliyeh Alipour

Abstract:

Introduction: Coronary heart disease (CHD) is the most common and deadliest diseases. A coronary angiography is an important tool for the diagnosis and treatment of this disease. Because angiography is performed by exposure to ionizing radiation, it can lead to harmful effects. Ionizing radiation induces double-stranded breaks in DNA, which is a potentially life-threatening injury. The purpose of the present study is an investigation of the phosphorylation of histone H2AX in the location of the double-stranded break in Peripheral blood lymphocytes as an indication of Biological effects of radiation on angiography patients. Materials and Methods: This method is based on measurement of the phosphorylation of histone (gamma-H2AX, gH2AX) level on serine 139 after formation of DNA double-strand break. 5 cc of blood from 24 patients with angiography were sampled before and after irradiation. Blood lymphocytes were removed, fixed and were stained with specific ϒH2AX antibodies. Finally, ϒH2AX signal as an indicator of the double-strand break was measured with Flow Cytometry Technique. Results and discussion: In all patients, an increase was observed in the number of breaks in double-stranded DNA after irradiation (20.15 ± 14.18) compared to before exposure (1.52 ± 0.34). Also, the mean of DNA double-strand break was showed a linear correlation with DAP. However, although induction of DNA double-strand breaks associated with radiation dose in patients, the effect of individual factors such as radiosensitivity and regenerative capacity should not be ignored. If in future we can measure DNA damage response in every patient angiography and it will be used as a biomarker patient dose, will look very impressive on the public health level. Conclusion: Using flow cytometry readings which are done automatically, it is possible to detect ϒH2AX in the number of blood cells. Therefore, the use of this technique could play a significant role in monitoring patients.

Keywords: coronary angiography, DSB of DNA, ϒH2AX, ionizing radiation

Procedia PDF Downloads 167
1735 Performance Comparison and Visualization of COMSOL Multiphysics, Matlab, and Fortran for Predicting the Reservoir Pressure on Oil Production in a Multiple Leases Reservoir with Boundary Element Method

Authors: N. Alias, W. Z. W. Muhammad, M. N. M. Ibrahim, M. Mohamed, H. F. S. Saipol, U. N. Z. Ariffin, N. A. Zakaria, M. S. Z. Suardi

Abstract:

This paper presents the performance comparison of some computation software for solving the boundary element method (BEM). BEM formulation is the numerical technique and high potential for solving the advance mathematical modeling to predict the production of oil well in arbitrarily shaped based on multiple leases reservoir. The limitation of data validation for ensuring that a program meets the accuracy of the mathematical modeling is considered as the research motivation of this paper. Thus, based on this limitation, there are three steps involved to validate the accuracy of the oil production simulation process. In the first step, identify the mathematical modeling based on partial differential equation (PDE) with Poisson-elliptic type to perform the BEM discretization. In the second step, implement the simulation of the 2D BEM discretization using COMSOL Multiphysic and MATLAB programming languages. In the last step, analyze the numerical performance indicators for both programming languages by using the validation of Fortran programming. The performance comparisons of numerical analysis are investigated in terms of percentage error, comparison graph and 2D visualization of pressure on oil production of multiple leases reservoir. According to the performance comparison, the structured programming in Fortran programming is the alternative software for implementing the accurate numerical simulation of BEM. As a conclusion, high-level language for numerical computation and numerical performance evaluation are satisfied to prove that Fortran is well suited for capturing the visualization of the production of oil well in arbitrarily shaped.

Keywords: performance comparison, 2D visualization, COMSOL multiphysic, MATLAB, Fortran, modelling and simulation, boundary element method, reservoir pressure

Procedia PDF Downloads 476
1734 Redefining Urban Sports Facilities Through Vertical Growth: An Analytical Study And Possible Solutions For Gulshan, Dhaka

Authors: Rakibul Islam Sagor, Sadia Ibnat Raisa

Abstract:

Many nations across the globe, including Dhaka, are facing challenges in meeting the needs for a satisfactory quality of life due to the combination of a growing population and limited land resources. As a result, maximum spaces in modern cities are engulfed by concrete infrastructure, and there are hardly any open spaces in the urban neighborhoods. Although vertical movement has predominantly been employed for residential and commercial applications, the notion of vertical recreational and sports facilities remains unsettled. The primary objective of this study is to explore the feasibility of implementing vertical adaptations in urban recreational spaces, drawing upon the principles of high-rise theory. This article presents an analysis of the open spaces in Gulshan, Dhaka, focusing on the evaluation of the demand for open recreational and sports facilities that adequately cater to the existing population of the region. Initially, the study tried to identify and examine all potential open spaces within the designated area. Following that, an acceptable place is selected utilizing space syntax analysis, which takes into account the most conveniently accessible space for social interactions in the neighborhood. In addition, socioeconomic conditions of the area have been studied in order to determine the feasibility of the area. Finally, the study presented viable options for vertical urban sports facilities in the context of Dhaka, Bangladesh. Additionally, it seeks to develop strategies for maximizing the use of vertical expansions, thereby promoting a healthier and more active lifestyle among the city's residents. This approach aims to effectively handle the issue of limited land availability and enhance the efficiency of recreational areas around the globe.

Keywords: vertical sports, urban open spaces, social interaction, recreational activities

Procedia PDF Downloads 52
1733 The Impact of Co-Administration of Phosphodiesterase-5 Inhibitor and Sodium Selenite on Ischemia/Reperfusion Injury in a Rat Ovary Model: Biochemical and Histopathologic Evaluation

Authors: Waleed Aly Sayed Ahmed, Eman Kishk, Tahani Shams

Abstract:

Aim: To study the effects of co-administration of phosphodiesterase-5 inhibitor (PDE-5) and sodium selenite against the damage induced by ovarian ischemia-reperfusion in rats. Materials and Methods: A total of forty-two sexually mature, virgin, female rats were divided randomly into six groups of seven each: sham group (C), ischemia group (I), ischemia/reperfusion group (I/R), ischemia/reperfusion plus 1.4mg/kg sildenafil (I/R+S) group, ischemia/reperfusion plus 0.2mg/kg selenium (I/R+Se) group and ischemia/reperfusion plus combination of sildenafil and selenium (I/R+S+Se) group. In ischemia group (I), rats were exposed to ischemia for 3 hours (h). In ischemia/reperfusion group (I/R), rats were exposed to ischemia for 3 h followed by 6 h of reperfusion. Treated groups received 1.4mg/kg sildenafil or 0.2 mg/kg selenium or both 30 min before reperfusion. Both ovaries were surgically removed carefully. One ovary was examined for histopathological changes and the other was subject to biochemical analysis including malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase (GPx). Results: Assessment of ovarian tissue damage using a scoring system showed marked vascular congestion, interstitial edema, leukocyte infiltration, hemorrhage, and follicular degeneration in ischemia and ischemia/reperfusion groups. Tissue damage score for I, IR and all treated groups were significantly higher than those of the sham group (p<0.001), while tissue damage score decreased significantly in I/R+S and I/R+Se groups compared to I/R group (p<0.05), and notably, the difference was highly significant in I/R+S+Se group (p<0.001). There was significant increase in MDA levels and reduction in activities of CAT and GPx in I/R group compared to the sham group (p < 0.05). In I/R+S and I/R+Se groups, MDA was significantly decreased compared to the I/R group (p<0.05) and the difference was highly significant with co-administration of sildenafil and selenium (p<0.001). CAT and GPx were higher in all treated groups compared to I/R group (p<0.05). Conclusion: The co-administration of sildenafil citrate and selenium are highly protective against damage induced by ovarian ischemia/reperfusion in rats.

Keywords: phosphodiesterase-5 inhibitor, sildenafil, antioxidant, selenium, ovarian ischemia

Procedia PDF Downloads 299
1732 Screening and Evaluation of Plant Growth Promoting Rhizobacteria of Wheat/Faba Bean for Increasing Productivity and Yield

Authors: Yasir Arafat, Asma Shah, Hua Shao

Abstract:

Background and Aims: Legume/cereal intercropping is used worldwide for enhancement in biomass and yield of cereal crops. However, because of intercropping, the belowground biological and chemical interactions and their effect on physiological parameters and yield of crops are limited. Methods: Wheat faba bean (WF) intercropping was designed to understand the underlying changes in the soil's chemical environment, soil microbial communities, and effect on growth and yield parameters. Experimental plots were established as having no root partition (NRP), semi-root partition (SRP), complete root partition (CRP), and their sole cropping (CK). Low molecular weight organic acids (LMWOAs) were determined by GC-MS, and high throughput sequencing of the 16S rRNA gene was carried out to screen microbial structure and composition in different root partitions of the WF intercropping system. Results: We show that intercropping induced a shift in the relative abundance of some genera of plant growth promoting rhizobacteria (PGPR) such as Allorhizobium, Neorhizobium, Pararhizobium, and Rhizobium species and resulted in better growth and yield performance of wheat. Moreover, as the plant's distance of wheat from faba beans decreased, the diversity of microbes increased, and a positive effect was observed on physiological traits and crop yield. Furthermore, an abundance and positive correlations of palmitic acid, arachidic acid, stearic acid, and 9-Octadecenoic with PGPR were recorded in the root zone of WF intercropping, which can play an important role in this facilitative mechanism of enhancing growth and yield of cereals. Conclusion: The two treatments clearly affected soil microbial and chemical composition, which can be reflected in growth and yield enhancement.

Keywords: intercropping, microbial community, LMWOAs, PGPR, soil chemical environment

Procedia PDF Downloads 69
1731 A Method for Multimedia User Interface Design for Mobile Learning

Authors: Shimaa Nagro, Russell Campion

Abstract:

Mobile devices are becoming ever more widely available, with growing functionality, and are increasingly used as an enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material user interfaces for mobile devices is beset by many unresolved research issues such as those arising from emphasising the information concepts then mapping this information to appropriate media (modelling information then mapping media effectively). This report describes a multimedia user interface design method for mobile learning. The method covers specification of user requirements and information architecture, media selection to represent the information content, design for directing attention to important information, and interaction design to enhance user engagement based on Human-Computer Interaction design strategies (HCI). The method will be evaluated by three different case studies to prove the method is suitable for application to different areas / applications, these are; an application to teach about major computer networking concepts, an application to deliver a history-based topic; (after these case studies have been completed, the method will be revised to remove deficiencies and then used to develop a third case study), an application to teach mathematical principles. At this point, the method will again be revised into its final format. A usability evaluation will be carried out to measure the usefulness and effectiveness of the method. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the MDMLM method. The researcher has successfully produced the method at this point which is now under validation and testing procedures. From this point forward in the report, the researcher will refer to the method using the MDMLM abbreviation which means Multimedia Design Mobile Learning Method.

Keywords: human-computer interaction, interface design, mobile learning, education

Procedia PDF Downloads 229