Search results for: dispersed region growing algorithm (DRGA)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11526

Search results for: dispersed region growing algorithm (DRGA)

3606 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition

Authors: J. K. Adedeji, S. T. Ijatuyi

Abstract:

The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.

Keywords: gravitational resistance, neural network, non-linear, pattern recognition

Procedia PDF Downloads 213
3605 Data Mining Approach: Classification Model Evaluation

Authors: Lubabatu Sada Sodangi

Abstract:

The rapid growth in exchange and accessibility of information via the internet makes many organisations acquire data on their own operation. The aim of data mining is to analyse the different behaviour of a dataset using observation. Although, the subset of the dataset being analysed may not display all the behaviours and relationships of the entire data and, therefore, may not represent other parts that exist in the dataset. There is a range of techniques used in data mining to determine the hidden or unknown information in datasets. In this paper, the performance of two algorithms Chi-Square Automatic Interaction Detection (CHAID) and multilayer perceptron (MLP) would be matched using an Adult dataset to find out the percentage of an/the adults that earn > 50k and those that earn <= 50k per year. The two algorithms were studied and compared using IBM SPSS statistics software. The result for CHAID shows that the most important predictors are relationship and education. The algorithm shows that those are married (husband) and have qualification: Bachelor, Masters, Doctorate or Prof-school whose their age is > 41<57 earn > 50k. Also, multilayer perceptron displays marital status and capital gain as the most important predictors of the income. It also shows that individuals that their capital gain is less than 6,849 and are single, separated or widow, earn <= 50K, whereas individuals with their capital gain is > 6,849, work > 35 hrs/wk, and > 27yrs their income will be > 50k. By comparing the two algorithms, it is observed that both algorithms are reliable but there is strong reliability in CHAID which clearly shows that relation and education contribute to the prediction as displayed in the data visualisation.

Keywords: data mining, CHAID, multi-layer perceptron, SPSS, Adult dataset

Procedia PDF Downloads 378
3604 Comparison of Stationary and Two-Axis Tracking System of 50MW Photovoltaic Power Plant in Al-Kufra, Libya: Landscape Impact and Performance

Authors: Yasser Aldali

Abstract:

The scope of this paper is to evaluate and compare the potential of LS-PV (Large Scale Photovoltaic Power Plant) power generation systems in the southern region of Libya at Al-Kufra for both stationary and tracking systems. A Microsoft Excel-VBA program has been developed to compute slope radiation, dew-point, sky temperature, and then cell temperature, maximum power output and module efficiency of the system for stationary system and for tracking system. The results for energy production show that the total energy output is 114GWh/year for stationary system and 148 GWh/year for tracking system. The average module efficiency for the stationary system is 16.6% and 16.2% for the tracking system. The values of electricity generation capacity factor (CF) and solar capacity factor (SCF) for stationary system were found to be 26% and 62.5% respectively and 34% and 82% for tracking system. The GCR (Ground Cover Ratio) for a stationary system is 0.7, which corresponds to a tilt angle of 24°. The GCR for tracking system was found to be 0.12. The estimated ground area needed to build a 50MW PV plant amounts to approx. 0.55 km2 for a stationary PV field constituted by HIT PV arrays and approx. 91 MW/km2. In case of a tracker PV field, the required ground area amounts approx. 2.4k m2 and approx. 20.5 MW/km2.

Keywords: large scale photovoltaic power plant, two-axis tracking system, stationary system, landscape impact

Procedia PDF Downloads 451
3603 Anthropogenic Impact on Migration Process of River Yamuna in Delhi-NCR Using Geospatial Techniques

Authors: Mohd Asim, K. Nageswara Rao

Abstract:

The present work was carried out on River Yamuna passing through Delhi- National Capital Region (Delhi-NCR) of India for a stretch of about 130 km to assess the anthropogenic impact on the channel migration process for a period of 200 years with the help of satellite data and topographical maps with integration of geographic information system environment. Digital Shoreline Analysis System (DSAS) application was used to quantify river channel migration in ArcGIS environment. The average river channel migration was calculated to be 22.8 m/year for the entire study area. River channel migration was found to be moving in westward and eastward direction. Westward migration is more than 4 km maximum in length and eastward migration is about 4.19 km. The river has migrated a total of 32.26 sq. km of area. The results reveal that the river is being impacted by various human activities. The impact indicators include engineering structures, sand mining, embankments, urbanization, land use/land cover, canal network. The DSAS application was also used to predict the position of river channel in future for 2032 and 2042 by analyzing the past and present rate and direction of movement. The length of channel in 2032 and 2042 will be 132.5 and 141.6 km respectively. The channel will migrate maximum after crossing Okhla Barrage near Faridabad for about 3.84 sq. km from 2022 to 2042 from west to east.

Keywords: river migration, remote sensing, river Yamuna, anthropogenic impacts, DSAS, Delhi-NCR

Procedia PDF Downloads 124
3602 Combustion Characteristics of Wet Woody Biomass in a Grate Furnace: Including Measurements within the Bed

Authors: Narges Razmjoo, Hamid Sefidari, Michael Strand

Abstract:

Biomass combustion is a growing technique for heat and power production due to the increasing stringent regulations with CO2 emissions. Grate-fired systems have been regarded as a common and popular combustion technology for burning woody biomass. However, some grate furnaces are not well optimized and may emit significant amount of unwanted compounds such as dust, NOx, CO, and unburned gaseous components. The combustion characteristics inside the fuel bed are of practical interest, as they are directly related to the release of volatiles and affect the stability and the efficiency of the fuel bed combustion. Although numerous studies have been presented on the grate firing of biomass, to the author’s knowledge, none of them have conducted a detailed experimental study within the fuel bed. It is difficult to conduct measurements of temperature and gas species inside the burning bed of the fuel in full-scale boilers. Results from such inside bed measurements can also be applied by the numerical experts for modeling the fuel bed combustion. The current work presents an experimental investigation into the combustion behavior of wet woody biomass (53 %) in a 4 MW reciprocating grate boiler, by focusing on the gas species distribution along the height of the fuel bed. The local concentrations of gases (CO, CO2, CH4, NO, and O2) inside the fuel bed were measured through a glass port situated on the side wall of the furnace. The measurements were carried out at five different heights of the fuel bed, by means of a bent stainless steel probe containing a type-k thermocouple. The sample gas extracted from the fuel bed, through the probe, was filtered and dried and then was analyzed using two infrared spectrometers. Temperatures of about 200-1100 °C were measured close to the grate, indicating that char combustion is occurring at the bottom of the fuel bed and propagates upward. The CO and CO2 concentration varied in the range of 15-35 vol % and 3-16 vol %, respectively, and NO concentration varied between 10-140 ppm. The profile of the gas concentrations distribution along the bed height provided a good overview of the combustion sub-processes in the fuel bed.

Keywords: experimental, fuel bed, grate firing, wood combustion

Procedia PDF Downloads 326
3601 Nanowire Sensor Based on Novel Impedance Spectroscopy Approach

Authors: Valeriy M. Kondratev, Ekaterina A. Vyacheslavova, Talgat Shugabaev, Alexander S. Gudovskikh, Alexey D. Bolshakov

Abstract:

Modern sensorics imposes strict requirements on the biosensors characteristics, especially technological feasibility, and selectivity. There is a growing interest in the analysis of human health biological markers, which indirectly testifying the pathological processes in the body. Such markers are acids and alkalis produced by the human, in particular - ammonia and hydrochloric acid, which are found in human sweat, blood, and urine, as well as in gastric juice. Biosensors based on modern nanomaterials, especially low dimensional, can be used for this markers detection. Most classical adsorption sensors based on metal and silicon oxides are considered non-selective, because they identically change their electrical resistance (or impedance) under the action of adsorption of different target analytes. This work demonstrates a feasible frequency-resistive method of electrical impedance spectroscopy data analysis. The approach allows to obtain of selectivity in adsorption sensors of a resistive type. The method potential is demonstrated with analyzis of impedance spectra of silicon nanowires in the presence of NH3 and HCl vapors with concentrations of about 125 mmol/L (2 ppm) and water vapor. We demonstrate the possibility of unambiguous distinction of the sensory signal from NH3 and HCl adsorption. Moreover, the method is found applicable for analysis of the composition of ammonia and hydrochloric acid vapors mixture without water cross-sensitivity. Presented silicon sensor can be used to find diseases of the gastrointestinal tract by the qualitative and quantitative detection of ammonia and hydrochloric acid content in biological samples. The method of data analysis can be directly translated to other nanomaterials to analyze their applicability in the field of biosensory.

Keywords: electrical impedance spectroscopy, spectroscopy data analysis, selective adsorption sensor, nanotechnology

Procedia PDF Downloads 114
3600 Eye Contact Seen from Autism: A Descriptive Qualitative Multicenter Study into Visions and Experiences with Regard to Eye Contact, A Comparison between Adults with and without Autism

Authors: Jos Boer, Nynke Boonstra, Bram Sizoo, Sonja Kuipers, Richard Vuijk, Linda Kronenberg

Abstract:

Background: Eye contact in autism is said to be different than in all other populations worldwide. But despite decades of research on the nature of eye contact in autism, no definitive conclusions can be made. This while more understanding of this phenomenon could help overcome social problems that arise from atypical eye contact. One of the reasons for this lack of understanding could be that the visions and experiences of people with autism are barely taken into account. Aim: Aim is to compare visions and experiences related to eye contact in adults with and without autism in the Netherlands. Method: A descriptive qualitative multicenter study with the use of semi-structured interviews and thematic analysis. N=15 adults with autism who are getting treatment at different mental health institutions in the Netherlands (region of Zwolle, Rotterdam and Amsterdam) and N=15 adults without autism living all across the Netherlands. Adults with and without autism were matched based on characteristics: nationality, sex, age, educational degree and living situation. Results: Data analysis is almost complete. Preliminary conclusions that can be drawn are that adults with and without autism indeed have different opinions about what eye contact is and how it should be handled. Adults with and without autism also experience eye contact differently. The article is expected to be published early in 2025, after which the views and experiences of adults with and without autism can be explained in more detail. Implications for practice: Insight into the nature of eye contact in autism provides more guidance on how this can best be dealt with in the future. This makes it easier to work towards fewer problems in social interactions as a result of atypical eye contact in this population.

Keywords: autism, eye contact, experience, non-verbal

Procedia PDF Downloads 14
3599 Biological Feedstocks for Sustainable Aviation Fuel

Authors: Odi Fawwaz Alrebei, Rim Ismail

Abstract:

Sustainable aviation fuel (SAF) has emerged as a critical solution for reducing the aviation sector's carbon footprint. Biological feedstocks, such as lignocellulosic biomass, microalgae, used cooking oil, and municipal solid waste, offer significant potential to replace fossil-based jet fuels with renewable alternatives. This review paper aims to critically examine the current landscape of biological feedstocks for SAF production, focusing on feedstock availability, conversion technologies, and environmental impacts. The paper evaluates the biochemical pathways employed in transforming these feedstocks into SAF, such as hydrothermal liquefaction, Fischer-Tropsch synthesis, and microbial fermentation, highlighting the advancements and challenges in each method. Additionally, the sustainability of biological feedstocks is analyzed with respect to lifecycle emissions, land use, and water consumption, emphasizing the need for region-specific strategies to maximize benefits. Special attention is given to the role of microbial consortia in optimizing feedstock degradation and conversion processes. The review concludes by discussing the scalability and economic viability of biological feedstock-based SAF, with a focus on policy frameworks and technological innovations that can facilitate widespread adoption. This comprehensive review underscores the pivotal role of biological feedstocks in achieving a decarbonized aviation sector and identifies future research directions for improving SAF production efficiency and sustainability.

Keywords: fuel diversity, biological feedstocks, SAF, aviation

Procedia PDF Downloads 14
3598 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks

Authors: T. Sattarpour, D. Nazarpour

Abstract:

This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.

Keywords: active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF)

Procedia PDF Downloads 302
3597 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction

Authors: Qais M. Yousef, Yasmeen A. Alshaer

Abstract:

Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.

Keywords: artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization

Procedia PDF Downloads 175
3596 Factors Influencing Health-related Quality of Life in Thai AMI Survivors

Authors: K. Masingboon, S. Duangpaeng, N. Chaiwong

Abstract:

Acute myocardial infarction (AMI) is the most common cause of death among Thai with coronary heart disease (CHD). Thai AMI survivors are most likely to have impaired health-related quality of life (HRQoL) due to their lifestyle, functional, and psychological problems. Guided by the Individual and Family Self-Management Theory, this study aimed to explore HRQoL and identify its predictors among Thai AMI survivors. 155 Thai AMI survivors were recruited by stratified random sampling from three hospitals located in eastern region of Thailand. HRQol was measured using the Short Form -12 Health Survey (SF-12). The Center for Epidemiologic studies Depression Scale (CES-D) was utilized to assess the presence of depression, and the Family Support questionnaire was administered to examine family support. Results revealed that 92 percent of Thai AMI survivors reported a generally high level of HRQoL and 80 percent of them reported higher level of HRQoL in physical health and mental health dimension. Depression and family support were significantly predicted HRQoL among Thai AMI survivors and accounted for 28.5 percent of variance (p < .001). Interestingly, depression was the most significant predictors of HRQoL (β = -.65, p < .001) In conclusion, depression is a significant predictor of HRQoL in Thai AMI survivors. Increasing awareness of depression among these survivors is important. Depressive symptoms in should be routinely assessed. In addition, intervention to improve HRQoL among Thai AMI survivors should be addressed through depressive symptom management and family collaboration.

Keywords: health-related quality of life, AMI survivors, predictors, collaboration

Procedia PDF Downloads 326
3595 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network

Procedia PDF Downloads 136
3594 Effect of the Concrete Cover on the Bond Strength of the FRP Wrapped and Non-Wrapped Reinforced Concrete Beam with Lap Splice under Uni-Direction Cyclic Loading

Authors: Rayed Alyousef, Tim Topper, Adil Al-Mayah

Abstract:

Many of the reinforced concrete structures subject to cyclic load constructed before the modern bond and fatigue design code. One of the main issue face on exists structure is the bond strength of the longitudinal steel bar and the surrounding concrete. A lap splice is a common connection method to transfer the force between the steel rebar in a reinforced concrete member. Usually, the lap splice is the weak connection on the bond strength. Fatigue flexural loading imposes severe demands on the strength and ductility of the lap splice region in reinforced concrete structures and can lead to a brittle and sudden failure of the member. This paper investigates the effect of different concrete covers on the fatigue bond strength of reinforcing concrete beams containing a lap splice under a fatigue loads. It includes tests of thirty-seven beams divided into three groups. Each group has beams with 30 mm and 50 mm clear side and bottom concrete covers. The variables that were addressed where the concrete cover, the presence or absence of CFRP or GFRP sheet wrapping, the type of loading (monotonic or fatigue) and the fatigue load ranges. The test results showed that an increase in the concrete cover led to an increase in the bond strength under both monotonic and fatigue loading for both the unwrapped and wrapped beams. Also, the FRP sheets increased both the fatigue strength and the ductility for both the 30 mm and the 50 mm concrete covers.

Keywords: bond strength, fatigue, Lap splice, FRp wrapping

Procedia PDF Downloads 489
3593 Proposed Framework based on Classification of Vertical Handover Decision Strategies in Heterogeneous Wireless Networks

Authors: Shidrokh Goudarzi, Wan Haslina Hassan

Abstract:

Heterogeneous wireless networks are converging towards an all-IP network as part of the so-called next-generation network. In this paradigm, different access technologies need to be interconnected; thus, vertical handovers or vertical handoffs are necessary for seamless mobility. In this paper, we conduct a review of existing vertical handover decision-making mechanisms that aim to provide ubiquitous connectivity to mobile users. To offer a systematic comparison, we categorize these vertical handover measurement and decision structures based on their respective methodology and parameters. Subsequently, we analyze several vertical handover approaches in the literature and compare them according to their advantages and weaknesses. The paper compares the algorithms based on the network selection methods, complexity of the technologies used and efficiency in order to introduce our vertical handover decision framework. We find that vertical handovers on heterogeneous wireless networks suffer from the lack of a standard and efficient method to satisfy both user and network quality of service requirements at different levels including architectural, decision-making and protocols. Also, the consolidation of network terminal, cross-layer information, multi packet casting and intelligent network selection algorithm appears to be an optimum solution for achieving seamless service continuity in order to facilitate seamless connectivity.

Keywords: heterogeneous wireless networks, vertical handovers, vertical handover metric, decision-making algorithms

Procedia PDF Downloads 393
3592 The Structural System Concept of Reinforced Concrete Pier Accompanied with Friction Device plus Gap in Numerical Analysis

Authors: Angga S. Fajar, Y. Takahashi, J. Kiyono, S. Sawada

Abstract:

The problem of medium span bridge bearing support in the extreme temperatures fluctuation region is deterioration in case the suppression of superstructure that sustains temperature expansion. The other hand, the behavior and the parameter of RC column accompanied with friction damping mechanism were determined successfully based on the experiment and numerical analysis. This study proposes the structural system of RC pier accompanied with multi sliding friction damping mechanism to substitute the conventional system of pier together with bearing support. In this system, the pier has monolith behavior to the superstructure with flexible small deformation to accommodate thermal expansion of the superstructure. The flexible small deformation behavior is realized by adding the gap mechanism in the multi sliding friction devices form. The important performances of this system are sufficient lateral flexibility in small deformation, sufficient elastic deformation capacity, sufficient lateral force resistance, and sufficient energy dissipation. Numerical analysis performed for this system with fiber element model. It shows that the structural system has good performance not only under small deformation due to thermal expansion of the superstructure but also under seismic load.

Keywords: RC Pier, thermal expansion, multi sliding friction device, flexible small deformation

Procedia PDF Downloads 308
3591 Resistance to the South African Root-Knot Nematode Population Densities in Artemisia annua: An Anti-Malaria Ethnomedicinal Plant

Authors: Kgabo Pofu, Hintsa Araya, Dean Oelofse, Sonja Venter, Christian Du Plooy, Phatu Mashela

Abstract:

Nematode resistance to the tropical root-knot (Meloidogyne species) nematodes is one of the most preferred nematode management strategies in development of smallholder resource-poor farming systems. Due to its pharmacological and ethnomedicinal applications, Artemisia annua is one of the underutilised crops that have attracted attention of policy-makers in rural agrarian development in South Africa. However, the successful introduction of this crop in smallholder resource-poor farming systems could be upset by the widespread aggressive Meloidogyne species, which have limited management options. The objective of this study therefore was to determine the degree of nematode resistance to the South African M. incognita and M. javanica population densities on A. annua seedlings. Uniform three-week-old seedlings in pots containing pasteurised growing medium under greenhouse conditions were inoculated using a series of eggs and second-stage juveniles of two Meloidogyne species in separate trials. At 56 days after inoculation, treatments were highly significant on reproductive factor (RF) for M. incognita and M. javanica on A. annua, contributing 87 and 89% in total treatment variation of the variables, respectively. At all levels of inoculation, RF values for M. incognita (0.17-0.79) and M. javanica (0.02-0.29) were below unity, without any noticeable root galls. Infection of A. annua by both Meloidogyne species had no significant effects on growth variables. In conclusion, A. annua seedlings are resistant to the South African M. incognita and M. javanica population densities and could therefore be explored further for use in smallholder resource-poor farming systems.

Keywords: ethnomedicial plants, medicinal plants, underutilised crops, plant parasitic nematodes

Procedia PDF Downloads 300
3590 A Method for Multimedia User Interface Design for Mobile Learning

Authors: Shimaa Nagro, Russell Campion

Abstract:

Mobile devices are becoming ever more widely available, with growing functionality, and are increasingly used as an enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material user interfaces for mobile devices is beset by many unresolved research issues such as those arising from emphasising the information concepts then mapping this information to appropriate media (modelling information then mapping media effectively). This report describes a multimedia user interface design method for mobile learning. The method covers specification of user requirements and information architecture, media selection to represent the information content, design for directing attention to important information, and interaction design to enhance user engagement based on Human-Computer Interaction design strategies (HCI). The method will be evaluated by three different case studies to prove the method is suitable for application to different areas / applications, these are; an application to teach about major computer networking concepts, an application to deliver a history-based topic; (after these case studies have been completed, the method will be revised to remove deficiencies and then used to develop a third case study), an application to teach mathematical principles. At this point, the method will again be revised into its final format. A usability evaluation will be carried out to measure the usefulness and effectiveness of the method. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the MDMLM method. The researcher has successfully produced the method at this point which is now under validation and testing procedures. From this point forward in the report, the researcher will refer to the method using the MDMLM abbreviation which means Multimedia Design Mobile Learning Method.

Keywords: human-computer interaction, interface design, mobile learning, education

Procedia PDF Downloads 246
3589 Kinetics and Mechanism Study of Photocatalytic Degradation Using Heterojunction Semiconductors

Authors: Ksenija Milošević, Davor Lončarević, Tihana Mudrinić, Jasmina Dostanić

Abstract:

Heterogeneous photocatalytic processes have gained growing interest as an efficient method to generate hydrogen by using clean energy sources and degrading various organic pollutants. The main obstacles that restrict efficient photoactivity are narrow light-response range and high rates of charge carrier recombination. The formation of heterojunction by combining a semiconductor with low VB and a semiconductor with high CB and a suitable band gap was found to be an efficient method to prepare more sensible materials with improved charge separation, appropriate oxidation and reduction ability, and enhanced visible-light harvesting. In our research, various binary heterojunction systems based on the wide-band gap (TiO₂) and narrow bandgap (g-C₃N₄, CuO, and Co₂O₃) photocatalyst were studied. The morphology, optical, and electrochemical properties of the photocatalysts were analyzed by X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), N₂ physisorption, diffuse reflectance measurements (DRS), and Mott-Schottky analysis. The photocatalytic performance of the synthesized catalysts was tested in single and simultaneous systems. The synthesized photocatalysts displayed good adsorption capacity and enhanced visible-light photocatalytic performance. The mutual interactions of pollutants on their adsorption and degradation efficiency were investigated. The interfacial connection between photocatalyst constituents and the mechanism of the transport pathway of photogenerated charge species was discussed. A radical scavenger study revealed the interaction mechanisms of the photocatalyst constituents in single and multiple pollutant systems under solar and visible light irradiation, indicating the type of heterojunction system (Z scheme or type II).

Keywords: bandgap alignment, heterojunction, photocatalysis, reaction mechanism

Procedia PDF Downloads 103
3588 Machine Learning and Metaheuristic Algorithms in Short Femoral Stem Custom Design to Reduce Stress Shielding

Authors: Isabel Moscol, Carlos J. Díaz, Ciro Rodríguez

Abstract:

Hip replacement becomes necessary when a person suffers severe pain or considerable functional limitations and the best option to enhance their quality of life is through the replacement of the damaged joint. One of the main components in femoral prostheses is the stem which distributes the loads from the joint to the proximal femur. To preserve more bone stock and avoid weakening of the diaphysis, a short starting stem was selected, generated from the intramedullary morphology of the patient's femur. It ensures the implantability of the design and leads to geometric delimitation for personalized optimization with machine learning (ML) and metaheuristic algorithms. The present study attempts to design a cementless short stem to make the strain deviation before and after implantation close to zero, promoting its fixation and durability. Regression models developed to estimate the percentage change of maximum principal stresses were used as objective optimization functions by the metaheuristic algorithm. The latter evaluated different geometries of the short stem with the modification of certain parameters in oblique sections from the osteotomy plane. The optimized geometry reached a global stress shielding (SS) of 18.37% with a determination factor (R²) of 0.667. The predicted results favour implantability integration in the short stem optimization to effectively reduce SS in the proximal femur.

Keywords: machine learning techniques, metaheuristic algorithms, short-stem design, stress shielding, hip replacement

Procedia PDF Downloads 196
3587 On Exploring Search Heuristics for improving the efficiency in Web Information Extraction

Authors: Patricia Jiménez, Rafael Corchuelo

Abstract:

Nowadays the World Wide Web is the most popular source of information that relies on billions of on-line documents. Web mining is used to crawl through these documents, collect the information of interest and process it by applying data mining tools in order to use the gathered information in the best interest of a business, what enables companies to promote theirs. Unfortunately, it is not easy to extract the information a web site provides automatically when it lacks an API that allows to transform the user-friendly data provided in web documents into a structured format that is machine-readable. Rule-based information extractors are the tools intended to extract the information of interest automatically and offer it in a structured format that allow mining tools to process it. However, the performance of an information extractor strongly depends on the search heuristic employed since bad choices regarding how to learn a rule may easily result in loss of effectiveness and/or efficiency. Improving search heuristics regarding efficiency is of uttermost importance in the field of Web Information Extraction since typical datasets are very large. In this paper, we employ an information extractor based on a classical top-down algorithm that uses the so-called Information Gain heuristic introduced by Quinlan and Cameron-Jones. Unfortunately, the Information Gain relies on some well-known problems so we analyse an intuitive alternative, Termini, that is clearly more efficient; we also analyse other proposals in the literature and conclude that none of them outperforms the previous alternative.

Keywords: information extraction, search heuristics, semi-structured documents, web mining.

Procedia PDF Downloads 335
3586 Energy Consumption and Economic Growth Nexus: a Sustainability Understanding from the BRICS Economies

Authors: Smart E. Amanfo

Abstract:

Although the exact functional relationship between energy consumption and economic growth and development remains a complex social science, there is a sustained growing of agreement among energy economists and the likes on direct or indirect role of energy use in the development process, and as sustenance for many of societal achieved socio-economic and environmental developments in any economy. According to OECD, the world economy will double by 2050 in which the two members of BRICS (Brazil, Russia, India, China and South Africa) countries: China and India lead. There is a global apprehension that if countries constituting the epicenter of the present and future economic growth follow the same trajectory as during and after Industrial Revolution, involving higher energy throughputs, especially fossil fuels, the already known and models predicted threats of climate change and global warming could be exacerbated, especially in the developing economies. The international community’s challenge is how to address the trilemma of economic growth, social development, poverty eradication and stability of the ecological systems. This paper aims at providing the estimates of economic growth, energy consumption, and carbon dioxide emissions using BRICS members’ panel data from 1980 to 2017. The preliminary results based on fixed effect econometric model show positive significant relationship between energy consumption and economic growth. The paper further identified a strong relationship between economic growth and CO2 emissions which suggests that the global agenda of low-carbon-led growth and development is not a straight forward achievable The study therefore highlights the need for BRICS member states to intensify low-emissions-based production and consumption policies, increase renewables in order to avoid further deterioration of climate change impacts.

Keywords: BRICS, sustainability, sustainable development, energy consumption, economic growth

Procedia PDF Downloads 95
3585 Nanoparticle Induced Neurotoxicity Mediated by Mitochondria

Authors: Nandini Nalika, Suhel Parvez

Abstract:

Nanotechnology has emerged to play a vital role in developing all through the industrial world with an immense production of nanomaterials including nanoparticles (NPs). Many toxicological studies have confirmed that due to unique small size and physico-chemical properties of NPs (1-100nm), they can be potentially hazardous. Metallic NPs of small size have been shown to induce higher levels of cellular oxidative stress and can easily pass through the Blood Brain Barrier (BBB) and significantly accumulate in brain. With the wide applications of titanium dioxide nanoparticles (TNPs) in day-to-day life in form of cosmetics, paints, sterilisation and so on, there is growing concern regarding the deleterious effects of TNPs on central nervous system and mitochondria appear to be important cellular organelles targeted to the pro-oxidative effects of NPs and an important source that contribute significantly for the production of reactive oxygen species after some toxicity or an injury. The aim of our study was to elucidate the effect of TNPs in anatase form with different concentrations (5-50 µg/ml) following with various oxidative stress markers in isolated brain mitochondria as an in vitro model. Oxidative stress was determined by measuring the different oxidative stress markers like lipid peroxidation as well as the protein carbonyl content which was found to be significantly increased. Reduced glutathione content and major glutathione metabolizing enzymes were also modulated signifying the role of glutathione redox cycle in the pathophysiology of TNPs. The study also includes the mitochondrial enzymes (Complex 1, Complex II, complex IV, Complex V ) and the enzymes showed toxicity in a relatively short time due to the effect of TNPs. The study provide a range of concentration that were toxic to the neuronal cells and data pointing to a general toxicity in brain mitochondria by TNPs, therefore, it is in need to consider the proper utilization of NPs in the environment.

Keywords: mitochondria, nanoparticles, brain, in vitro

Procedia PDF Downloads 398
3584 Brain-Computer Interface System for Lower Extremity Rehabilitation of Chronic Stroke Patients

Authors: Marc Sebastián-Romagosa, Woosang Cho, Rupert Ortner, Christy Li, Christoph Guger

Abstract:

Neurorehabilitation based on Brain-Computer Interfaces (BCIs) shows important rehabilitation effects for patients after stroke. Previous studies have shown improvements for patients that are in a chronic stage and/or have severe hemiparesis and are particularly challenging for conventional rehabilitation techniques. For this publication, seven stroke patients in the chronic phase with hemiparesis in the lower extremity were recruited. All of them participated in 25 BCI sessions about 3 times a week. The BCI system was based on the Motor Imagery (MI) of the paretic ankle dorsiflexion and healthy wrist dorsiflexion with Functional Electrical Stimulation (FES) and avatar feedback. Assessments were conducted to assess the changes in motor improvement before, after and during the rehabilitation training. Our primary measures used for the assessment were the 10-meters walking test (10MWT), Range of Motion (ROM) of the ankle dorsiflexion and Timed Up and Go (TUG). Results show a significant increase in the gait speed in the primary measure 10MWT fast velocity of 0.18 m/s IQR = [0.12 to 0.2], P = 0.016. The speed in the TUG was also significantly increased by 0.1 m/s IQR = [0.09 to 0.11], P = 0.031. The active ROM assessment increased 4.65º, and IQR = [ 1.67 - 7.4], after rehabilitation training, P = 0.029. These functional improvements persisted at least one month after the end of the therapy. These outcomes show the feasibility of this BCI approach for chronic stroke patients and further support the growing consensus that these types of tools might develop into a new paradigm for rehabilitation tools for stroke patients. However, the results are from only seven chronic stroke patients, so the authors believe that this approach should be further validated in broader randomized controlled studies involving more patients. MI and FES-based non-invasive BCIs are showing improvement in the gait rehabilitation of patients in the chronic stage after stroke. This could have an impact on the rehabilitation techniques used for these patients, especially when they are severely impaired and their mobility is limited.

Keywords: neuroscience, brain computer interfaces, rehabilitat, stroke

Procedia PDF Downloads 92
3583 Influence of Esports Marketing Strategies on Consumer Behavior: A Case Study of Valorant

Authors: Alex Arghya Adhikari

Abstract:

Gaming and esports industry is one of the biggest and fastest growing industries in the world. Globally people have started investing more in this industry since now people believe just like traditional sports, esports can also sustain their future. Last year in the month of December, the Indian government also recognised esports as an official sport but there has not been any positive initiative by the government in encouraging people to enter esports. This is a problem which cannot be overlooked since we are already in the digital age and gaming and esports is the future industry. There is a need for multiple effective marketing strategies by the game publishers to stabilize the esports in the country. Purpose: To observe the marketing-communication strategies that are implemented by Riot Games’ Valorant and how those strategies influence the consumer behavior and the esports of the game. Methodology: Activities over the internet related to the game like livestreams, discord chats, Instagram posts and YouTube videos over a period of two months have been collected through the Digital Ethnography. To support and validate the observations of the data collected, in-depth online interviews have been conducted which includes streamers, journalists, LAN experienced players and casual players. Findings: The game publisher through its Dynamic Competitive Gaming Experience and Community-Engaged Ecosystem succeeded in making the game a Recreational activity and a Community which goes beyond the In-game experiences which helped in understanding the impact of audience engagement on esports and the loopholes and setbacks of Indian esports. Conclusion: The study provides a comprehensive analysis of how Valorant's successful marketing and community engagement strategies have contributed to its global popularity and competitive esports environment. It highlights the various strategies employed by Riot Games to keep players engaged and connected, and also the challenges in the Indian esports landscape which differentiates it from the global competition.

Keywords: esports, valorant, marketing, consumer behaviour

Procedia PDF Downloads 70
3582 Study of the Quality of Surface Water in the Upper Cheliff Basin

Authors: Touhari Fadhila, Mehaiguene Madjid, Meddi Mohamed

Abstract:

This work aims to assess the quality of water dams based on the monitoring of physical-chemical parameters by the National Agency of Water Resources (ANRH) for a period of 10 years (1999-2008). Quality sheets of surface water for the four dams in the region of upper Cheliff (Ghrib, Deurdeur, Harreza, and Ouled Mellouk) show a degradation of the quality (organic pollution expressed in COD and OM) over time. Indeed, the registered amount of COD often exceeds 50 mg/ l, and the OM exceeds 15 mg/l. This pollution is caused by discharges of wastewater and eutrophication. The waters of dams show a very high salinity (TDS = 2574 mg/l in 2008 for the waters of the dam Ghrib, standard = 1500 mg/l). The concentration of nitrogenous substances (NH4+, NO2-) in water is high in 2008 at Ouled Melloukdam. This pollution is caused by the oxidation of nitrogenous organic matter. On the other hand, we studied the relationship between the evolution of quality parameters and filling dams. We observed a decrease in the salinity and COD following an improvement of the filling state of dams, this resides in the dilution water through the contribution of rainwater. While increased levels of nitrates and phosphorus in the waters of four dams studied during the rainy season is compared to the dry period, this increase may be due to leaching from fertilizers used in agricultural soils situated in watersheds.

Keywords: surface water quality, pollution, physical-chemical parameters, upper Cheliff basin.

Procedia PDF Downloads 233
3581 Optimal Hybrid Linear and Nonlinear Control for a Quadcopter Drone

Authors: Xinhuang Wu, Yousef Sardahi

Abstract:

A hybrid and optimal multi-loop control structure combining linear and nonlinear control algorithms are introduced in this paper to regulate the position of a quadcopter unmanned aerial vehicle (UAV) driven by four brushless DC motors. To this end, a nonlinear mathematical model of the UAV is derived and then linearized around one of its operating points. Using the nonlinear version of the model, a sliding mode control is used to derive the control laws of the motor thrust forces required to drive the UAV to a certain position. The linear model is used to design two controllers, XG-controller and YG-controller, responsible for calculating the required roll and pitch to maneuver the vehicle to the desired X and Y position. Three attitude controllers are designed to calculate the desired angular rates of rotors, assuming that the Euler angles are minimal. After that, a many-objective optimization problem involving 20 design parameters and ten objective functions is formulated and solved by HypE (Hypervolume estimation algorithm), one of the widely used many-objective optimization algorithms approaches. Both stability and performance constraints are imposed on the optimization problem. The optimization results in terms of Pareto sets and fronts are obtained and show that some of the design objectives are competing. That is, when one objective goes down, the other goes up. Also, Numerical simulations conducted on the nonlinear UAV model show that the proposed optimization method is quite effective.

Keywords: optimal control, many-objective optimization, sliding mode control, linear control, cascade controllers, UAV, drones

Procedia PDF Downloads 73
3580 A Hybrid Traffic Model for Smoothing Traffic Near Merges

Authors: Shiri Elisheva Decktor, Sharon Hornstein

Abstract:

Highway merges and unmarked junctions are key components in any urban road network, which can act as bottlenecks and create traffic disruption. Inefficient highway merges may trigger traffic instabilities such as stop-and-go waves, pose safety conditions and lead to longer journey times. These phenomena occur spontaneously if the average vehicle density exceeds a certain critical value. This study focuses on modeling the traffic using a microscopic traffic flow model. A hybrid traffic model, which combines human-driven and controlled vehicles is assumed. The controlled vehicles obey different driving policies when approaching the merge, or in the vicinity of other vehicles. We developed a co-simulation model in SUMO (Simulation of Urban Mobility), in which the human-driven cars are modeled using the IDM model, and the controlled cars are modeled using a dedicated controller. The scenario chosen for this study is a closed track with one merge and one exit, which could be later implemented using a scaled infrastructure on our lab setup. This will enable us to benchmark the results of this study obtained in simulation, to comparable results in similar conditions in the lab. The metrics chosen for the comparison of the performance of our algorithm on the overall traffic conditions include the average speed, wait time near the merge, and throughput after the merge, measured under different travel demand conditions (low, medium, and heavy traffic).

Keywords: highway merges, traffic modeling, SUMO, driving policy

Procedia PDF Downloads 106
3579 Integrated Electric Resistivity Tomography and Magnetic Techniques in a Mineralization Zone, Erkowit, Red Sea State, Sudan

Authors: Khalid M. Kheiralla, Georgios Boutsis, Mohammed Y. Abdelgalil, Mohammed A. Ali, Nuha E. Mohamed

Abstract:

The present study focus on integrated geoelectrical surveys carried out in the mineralization zone in Erkowit region, Eastern Sudan to determine the extensions of the potential ore deposits on the topographically high hilly area and under the cover of alluvium along the nearby wadi and to locate other occurrences if any. The magnetic method (MAG) and the electrical resistivity tomography (ERT) were employed for the survey. Eleven traverses were aligned approximately at right angles to the general strike of the rock formations. The disseminated sulfides are located on the alteration shear zone which is composed of granitic and dioritic highly ferruginated rock occupying the southwestern and central parts of the area, this was confirmed using thin and polished sections mineralogical analysis. The magnetic data indicates low magnetic values for wadi sedimentary deposits in its southern part of the area, and high anomalies which are suspected as gossans due to magnetite formed during wall rock alteration consequent to mineralization. The significant ERT images define low resistivity zone as traced as sheared zones which may associated with the main loci of ore deposition. By itself, no geophysical anomaly can simply be correlated with lithology, instead, magnetic and ERT anomalies raised due to variations in some specific physical properties of rocks which were extremely useful in mineral exploration.

Keywords: ERT, magnetic, mineralization, Red Sea, Sudan

Procedia PDF Downloads 429
3578 Assessment of Wastewater Reuse Potential for an Enamel Coating Industry

Authors: Guclu Insel, Efe Gumuslu, Gulten Yuksek, Nilay Sayi Ucar, Emine Ubay Cokgor, Tugba Olmez Hanci, Didem Okutman Tas, Fatos Germirli Babuna, Derya Firat Ertem, Okmen Yildirim, Ozge Erturan, Betul Kirci

Abstract:

In order to eliminate water scarcity problems, effective precautions must be taken. Growing competition for water is increasingly forcing facilities to tackle their own water scarcity problems. At this point, application of wastewater reclamation and reuse results in considerable economic advantageous. In this study, an enamel coating facility, which is one of the high water consumed facilities, is evaluated in terms of its wastewater reuse potential. Wastewater reclamation and reuse can be defined as one of the best available techniques for this sector. Hence, process and pollution profiles together with detailed characterization of segregated wastewater sources are appraised in a way to find out the recoverable effluent streams arising from enamel coating operations. Daily, 170 m3 of process water is required and 160 m3 of wastewater is generated. The segregated streams generated by two enamel coating processes are characterized in terms of conventional parameters. Relatively clean segregated wastewater streams (reusable wastewaters) are separately collected and experimental treatability studies are conducted on it. The results reflected that the reusable wastewater fraction has an approximate amount of 110 m3/day that accounts for 68% of the total wastewaters. The need for treatment applicable on reusable wastewaters is determined by considering water quality requirements of various operations and characterization of reusable wastewater streams. Ultra-filtration (UF), Nano-filtration (NF) and Reverse Osmosis (RO) membranes are subsequently applied on reusable effluent fraction. Adequate organic matter removal is not obtained with the mentioned treatment sequence.

Keywords: enamel coating, membrane, reuse, wastewater reclamation

Procedia PDF Downloads 328
3577 Dynamic Fault Diagnosis for Semi-Batch Reactor Under Closed-Loop Control via Independent RBFNN

Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm

Abstract:

In this paper, a new robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics and using the weighted sum-squared prediction error as the residual. The recursive orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. The several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.

Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control

Procedia PDF Downloads 498