Search results for: earthquake resistant structural design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16669

Search results for: earthquake resistant structural design

8809 Design and Analysis of Hybrid Morphing Smart Wing for Unmanned Aerial Vehicles

Authors: Chetan Gupta, Ramesh Gupta

Abstract:

Unmanned aerial vehicles, of all sizes, are prime targets of the wing morphing concept as their lightweight structures demand high aerodynamic stability while traversing unsteady atmospheric conditions. In this research study, a hybrid morphing technology is developed to aid the trailing edge of the aircraft wing to alter its camber as a monolithic element rather than functioning as conventional appendages like flaps. Kinematic tailoring, actuation techniques involving shape memory alloys (SMA), piezoelectrics – individually fall short of providing a simplistic solution to the conundrum of morphing aircraft wings. On the other hand, the feature of negligible hysteresis while actuating using compliant mechanisms has shown higher levels of applicability and deliverability in morphing wings of even large aircrafts. This research paper delves into designing a wing section model with a periodic, multi-stable compliant structure requiring lower orders of topological optimization. The design is sub-divided into three smaller domains with external hyperelastic connections to achieve deflections ranging from -15° to +15° at the trailing edge of the wing. To facilitate this functioning, a hybrid actuation system by combining the larger bandwidth feature of piezoelectric macro-fibre composites and relatively higher work densities of shape memory alloy wires are used. Finite element analysis is applied to optimize piezoelectric actuation of the internal compliant structure. A coupled fluid-surface interaction analysis is conducted on the wing section during morphing to study the development of the velocity boundary layer at low Reynold’s numbers of airflow.

Keywords: compliant mechanism, hybrid morphing, piezoelectrics, shape memory alloys

Procedia PDF Downloads 296
8808 Development of Mg-Containing Hydroxyapatite-Based Bioceramics From Phosphate Rock for Bone Applications

Authors: Sara Mercedes Barroso Pinzón, Álvaro Jesús Caicedo Castro, Antonio Javer Sánchez Herencia

Abstract:

In recent years there has been increased academic and industrial research into the development of orthopaedic implants with structural properties and functionality similar to mechanical strength, osseointegration, thermal stability and antibacterial capacity similar to bone structure. Hydroxyapatite has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure confers very low mechanical and biological properties. Under this scenario, the objective of the research is the synthesis of hydroxyapatite with Mg from the francolite mineral present in phosphate rock from the central-eastern region of Colombia, taking advantage of the extraction of mineral species as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); the optimum conditions were established using the acid leaching mechanism in the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on morphometric parameters, mechanical and biological properties in the formed materials is evaluated.

Keywords: phosphate rock, hydroxyapatite, magnesium, biomaterials

Procedia PDF Downloads 37
8807 GraphNPP: A Graphormer-Based Architecture for Network Performance Prediction in Software-Defined Networking

Authors: Hanlin Liu, Hua Li, Yintan AI

Abstract:

Network performance prediction (NPP) is essential for the management and optimization of software-defined networking (SDN) and contributes to improving the quality of service (QoS) in SDN to meet the requirements of users. Although current deep learning-based methods can achieve high effectiveness, they still suffer from some problems, such as difficulty in capturing global information of the network, inefficiency in modeling end-to-end network performance, and inadequate graph feature extraction. To cope with these issues, our proposed Graphormer-based architecture for NPP leverages the powerful graph representation ability of Graphormer to effectively model the graph structure data, and a node-edge transformation algorithm is designed to transfer the feature extraction object from nodes to edges, thereby effectively extracting the end-to-end performance characteristics of the network. Moreover, routing oriented centrality measure coefficient for nodes and edges is proposed respectively to assess their importance and influence within the graph. Based on this coefficient, an enhanced feature extraction method and an advanced centrality encoding strategy are derived to fully extract the structural information of the graph. Experimental results on three public datasets demonstrate that the proposed GraphNPP architecture can achieve state-of-the-art results compared to current NPP methods.

Keywords: software-defined networking, network performance prediction, Graphormer, graph neural network

Procedia PDF Downloads 27
8806 Analysis of the Reasons behind the Deteriorated Standing of Engineering Companies during the Financial Crisis

Authors: Levan Sabauri

Abstract:

In this paper, we discuss the deteriorated standing of engineering companies, some of the reasons behind it and the problems facing engineering enterprises during the financial crisis. We show the part that financial analysis plays in the detection of the main factors affecting the standing of a company, classify internal problems and the reasons influencing efficiency thereof. The publication contains the analysis of municipal engineering companies in post-Soviet transitional economies. In the wake of the 2008 world financial crisis the issue became even more poignant. It should be said though that even before the problem had been no less acute for some post-Soviet states caught up in a lengthy transitional period. The paper highlights shortcomings in the management of transportation companies, with new, more appropriate methods suggested. In analyzing the financial stability of a company, three elements need to be considered: current assets, investment policy and structural management of the funding sources leveraging the stability, should be focused on. Inappropriate management of the three may create certain financial problems, with timely and accurate detection thereof being an issue in terms of improved standing of an enterprise. In this connection, the publication contains a diagram reflecting the reasons behind the deteriorated financial standing of a company, as well as a flow chart thereof. The main reasons behind low profitability are also discussed.

Keywords: efficiency, financial management, financial analysis funding structure, financial sustainability, investment policy, profitability, solvency, working capital

Procedia PDF Downloads 291
8805 Optimal Design of a PV/Diesel Hybrid System for Decentralized Areas through Economic Criteria

Authors: David B. Tsuanyo, Didier Aussel, Yao Azoumah, Pierre Neveu

Abstract:

An innovative concept called “Flexy-Energy”is developing at 2iE. This concept aims to produce electricity at lower cost by smartly mix different available energies sources in accordance to the load profile of the region. With a higher solar irradiation and due to the fact that Diesel generator are massively used in sub-Saharan rural areas, PV/Diesel hybrid systems could be a good application of this concept and a good solution to electrify this region, provided they are reliable, cost effective and economically attractive to investors. Presentation of the developed approach is the aims of this paper. The PV/Diesel hybrid system designed consists to produce electricity and/or heat from a coupling between Diesel gensets and PV panels without batteries storage, while ensuring the substitution of gasoil by bio-fuels available in the area where the system will be installed. The optimal design of this system is based on his technical performances; the Life Cycle Cost (LCC) and Levelized Cost of Energy are developed and use as economic criteria. The Net Present Value (NPV), the internal rate of return (IRR) and the discounted payback (DPB) are also evaluated according to dual electricity pricing (in sunny and unsunny hours). The PV/Diesel hybrid system obtained is compared to the standalone Diesel gensets. The approach carried out in this paper has been applied to Siby village in Mali (Latitude 12 ° 23'N 8 ° 20'W) with 295 kWh as daily demand. This approach provides optimal physical characteristics (size of the components, number of component) and dynamical characteristics in real time (number of Diesel generator on, their load rate, fuel specific consumptions, and PV penetration rate) of the system. The system obtained is slightly cost effective; but could be improved with optimized tariffing strategies.

Keywords: investments criteria, optimization, PV hybrid, sizing, rural electrification

Procedia PDF Downloads 426
8804 One Pot Synthesis of Cu–Ni–S/Ni Foam for the Simultaneous Removal and Detection of Norfloxacin

Authors: Xincheng Jiang, Yanyan An, Yaoyao Huang, Wei Ding, Manli Sun, Hong Li, Huaili Zheng

Abstract:

The residual antibiotics in the environment will pose a threat to the environment and human health. Thus, efficient removal and rapid detection of norfloxacin (NOR) in wastewater is very important. The main sources of NOR pollution are the agricultural, pharmaceutical industry and hospital wastewater. The total consumption of NOR in China can reach 5440 tons per year. It is found that neither animals nor humans can totally absorb and metabolize NOR, resulting in the excretion of NOR into the environment. Therefore, residual NOR has been detected in water bodies. The hazards of NOR in wastewater lie in three aspects: (1) the removal capacity of the wastewater treatment plant for NOR is limited (it is reported that the average removal efficiency of NOR in the wastewater treatment plant is only 68%); (2) NOR entering the environment will lead to the emergence of drug-resistant strains; (3) NOR is toxic to many aquatic species. At present, the removal and detection technologies of NOR are applied separately, which leads to a cumbersome operation process. The development of simultaneous adsorption-flocculation removal and FTIR detection of pollutants has three advantages: (1) Adsorption-flocculation technology promotes the detection technology (the enrichment effect on the material surface improves the detection ability); (2) The integration of adsorption-flocculation technology and detection technology reduces the material cost and makes the operation easier; (3) FTIR detection technology endows the water treatment agent with the ability of molecular recognition and semi-quantitative detection for pollutants. Thus, it is of great significance to develop a smart water treatment material with high removal capacity and detection ability for pollutants. This study explored the feasibility of combining NOR removal method with the semi-quantitative detection method. A magnetic Cu-Ni-S/Ni foam was synthesized by in-situ loading Cu-Ni-S nanostructures on the surface of Ni foam. The novelty of this material is the combination of adsorption-flocculation technology and semi-quantitative detection technology. Batch experiments showed that Cu-Ni-S/Ni foam has a high removal rate of NOR (96.92%), wide pH adaptability (pH=4.0-10.0) and strong ion interference resistance (0.1-100 mmol/L). According to the Langmuir fitting model, the removal capacity can reach 417.4 mg/g at 25 °C, which is much higher than that of other water treatment agents reported in most studies. Characterization analysis indicated that the main removal mechanisms are surface complexation, cation bridging, electrostatic attraction, precipitation and flocculation. Transmission FTIR detection experiments showed that NOR on Cu-Ni-S/Ni foam has easily recognizable FTIR fingerprints; the intensity of characteristic peaks roughly reflects the concentration information to some extent. This semi-quantitative detection method has a wide linear range (5-100 mg/L) and a low limit of detection (4.6 mg/L). These results show that Cu-Ni-S/Ni foam has excellent removal performance and semi-quantitative detection ability of NOR molecules. This paper provides a new idea for designing and preparing multi-functional water treatment materials to achieve simultaneous removal and semi-quantitative detection of organic pollutants in water.

Keywords: adsorption-flocculation, antibiotics detection, Cu-Ni-S/Ni foam, norfloxacin

Procedia PDF Downloads 64
8803 Numerical Homogenization of Nacre

Authors: M. Arunachalam, M. Pandey

Abstract:

Nacre, a biological material that forms the inner-layer of sea shells can achieve high toughness and strength by way of staggered arrangement of strong tablets with soft and weak organic interface. Under applied loads the tablets slide over the adjacent tablets, thus generating inelastic deformation and toughness on macroscopic scale. A two dimensional finite element based homogenization methodology is adopted for obtaining the effective material properties of Nacre using a representative volume element (RVE) at finite deformations. In this work, the material behaviour for tablet and interface are assumed to be Isotropic elastic and Isotropic elastic-perfectly plastic with strain softening respectively. Numerical experiments such as uniaxial tension test along X, Y directions and simple shear test are performed on the RVE with uniform displacement and periodic constraints applied at the RVE boundaries to obtain the anisotropic homogenized response and maximum local stresses within each constituents of Nacre. Homogenized material model is then tested for macroscopic structure under three point bending condition and the results obtained are comparable with the results obtained for detailed microstructure based structure, thus homogenization provides a bridge between macroscopic scale and microscopic scale and homogenized material properties obtained from microstructural (RVE) analysis could be used in large scale structural analysis.

Keywords: finite element, homogenization, inelastic deformation, staggered arrangement

Procedia PDF Downloads 307
8802 Cereal Bioproducts Conversion to Higher Value Feed by Using Pediococcus Strains Isolated from Spontaneous Fermented Cereal, and Its Influence on Milk Production of Dairy Cattle

Authors: Vita Krungleviciute, Rasa Zelvyte, Ingrida Monkeviciene, Jone Kantautaite, Rolandas Stankevicius, Modestas Ruzauskas, Elena Bartkiene

Abstract:

The environmental impact of agricultural bioproducts from the processing of food crops is an increasing concern worldwide. Currently, cereal bran has been used as a low-value ingredient for both human consumption and animal feed. The most popular bioprocessing technologies for cereal bran nutritional and technological functionality increasing are enzymatic processing and fermentation, and the most popular starters in fermented feed production are lactic acid bacteria (LAB) including pediococci. However, the ruminant digestive system is unique, there are billions of microorganisms which help the cow to digest and utilize nutrients in the feed. To achieve efficient feed utilization and high milk yield, the microorganisms must have optimal conditions, and the disbalance of this system is highly undesirable. Pediococcus strains Pediococcus acidilactici BaltBio01 and Pediococcus pentosaceus BaltBio02 from spontaneous fermented rye were isolated (by rep – PCR method), identified, and characterized by their growth (by Thermo Bioscreen C automatic turbidometer), acidification rate (2 hours in 2.5 pH), gas production (Durham method), and carbohydrate metabolism (by API 50 CH test ). Antimicrobial activities of isolated pediococcus against variety of pathogenic and opportunistic bacterial strains previously isolated from diseased cattle, and their resistance to antibiotics were evaluated (EFSA-FEEDAP method). The isolated pediococcus strains were cultivated in barley/wheat bran (90 / 10, m / m) substrate, and developed supplements, with high content of valuable pediococcus, were used for Lithuanian black and white dairy cows feeding. In addition, the influence of supplements on milk production and composition was determined. Milk composition was evaluated by the LactoScope FTIR” FT1.0. 2001 (Delta Instruments, Holland). P. acidilactici BaltBio01 and P. pentosaceus BaltBio02 demonstrated versatile carbohydrate metabolism, grown at 30°C and 37°C temperatures, and acidic tolerance. Isolated pediococcus strains showed to be non resistant to antibiotics, and having antimicrobial activity against undesirable microorganisms. By barley/wheat bran utilisation using fermentation with selected pediococcus strains, it is possible to produce safer (reduced Enterobacteriaceae, total aerobic bacteria, yeast and mold count) feed stock with high content of pediococcus. Significantly higher milk yield (after 33 days) by using pediococcus supplements mix for dairy cows feeding could be obtained, while similar effect by using separate strains after 66 days of feeding could be achieved. It can be stated that barley/wheat bran could be used for higher value feed production in order to increase milk production. Therefore, further research is needed to identify what is the main mechanism of the positive action.

Keywords: barley/wheat bran, dairy cattle, fermented feed, milk, pediococcus

Procedia PDF Downloads 298
8801 Antibacterial Bioactive Glasses in Orthopedic Surgery and Traumatology

Authors: V. Schmidt, L. Janovák, N. Wiegand, B. Patczai, K. Turzó

Abstract:

Large bone defects are not able to heal spontaneously. Bioactive glasses seem to be appropriate (bio)materials for bone reconstruction. Bioactive glasses are osteoconductive and osteoinductive, therefore, play a useful role in bony regeneration and repair. Because of their not optimal mechanical properties (e.g., brittleness, low bending strength, and fracture toughness), their applications are limited. Bioactive glass can be used as a coating material applied on metal surfaces. In this way -when using them as implants- the excellent mechanical properties of metals and the biocompatibility and bioactivity of glasses will be utilized. Furthermore, ion release effects of bioactive glasses regarding osteogenic and angiogenic responses have been shown. Silicate bioactive glasses (45S5 Bioglass) induce the release and exchange of soluble Si, Ca, P, and Na ions on the material surface. This will lead to special cellular responses inducing bone formation, which is favorable in the biointegration of the orthopedic prosthesis. The incorporation of other additional elements in the silicate network such as fluorine, magnesium, iron, silver, potassium, or zinc has been shown, as the local delivery of these ions is able to enhance specific cell functions. Although hip and knee prostheses present a high success rate, bacterial infections -mainly implant associated- are serious and frequent complications. Infection can also develop after implantation of hip prostheses, the elimination of which means more surgeries for the patient and additional costs for the clinic. Prosthesis-related infection is a severe complication of orthopedic surgery, which often causes prolonged illness, pain, and functional loss. While international efforts are made to reduce the risk of these infections, orthopedic surgical infections (SSIs) continue to occur in high numbers. It is currently estimated that up to 2.5% of primary hip and knee surgeries and up to 20% of revision arthroplasties are complicated by periprosthetic joint infection (PJIs). According to some authors, these numbers are underestimated, and they are also increasing. Staphylococcus aureus is the leading cause of both SSIs and PJIs, and the prevalence of methicillin-resistant S. aureus (MRSA) is on the rise, particularly in the United States. These deep infections lead to implant removal and consequently increase morbidity and mortality. The study targets this clinical problem using our experience so far with the Ag-doped polymer coatings on Titanium implants. Non-modified or modified (e.g., doped with antibacterial agents, like Ag) bioactive glasses could play a role in the prevention of infections or the therapy of infected tissues. Bioactive glasses have excellent biocompatibility, proved by in vitro cell culture studies of human osteoblast-like MG-63 cells. Ag-doped bioactive glass-scaffold has a good antibacterial ability against Escherichia coli and other bacteria. It may be concluded that these scaffolds have great potential in the prevention and therapy of implant-associated bone infection.

Keywords: antibacterial agents, bioactive glass, hip and knee prosthesis, medical implants

Procedia PDF Downloads 168
8800 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 108
8799 The Significance of Intellectual Capital and Strategic Orientations on Innovation Capability in Malaysian ICTSMEs

Authors: Juliana Osman, David Gilbert, Caroline Tan

Abstract:

Innovation capability is recognized as a critical factor that contributes to promoting firm growth and wealth creation. While studies on innovation are in abundance, few empirical studies have been undertaken to examine the relationships of intellectual capital with innovation capability, and research investigating the combinations of strategic orientation dimensions is limited and virtually nothing in regard to the Malaysian context. This research investigates the impact of intellectual capital and three strategic orientations on the innovation capability and firm performance of Malaysian ICT SMEs. Data was collected from 213 firms relating to intellectual capital and the three strategic orientations; market orientation, learning orientation and technology orientation. Using partial least squares structural equation modelling (PLS-SEM) to analyse the data, results indicate that while market orientation has a direct negative relationship to firm performance, it is positively related to performance through the mediating effect of innovation capability. Learning orientation and technology orientation are mediated by innovation capability, while intellectual capital was found to be partially mediated by innovation capability. Findings indicate that firm performance is positively and significantly related to innovation capability and that market orientation, learning orientation, technology orientation and intellectual capital are all significant and positively related to innovation capability. The developed model indicates that Malaysian ICT SMEs would perform better with greater emphasis on developing innovation capability through enhancement of intellectual capital and the strategic orientations measured in this study.

Keywords: innovation capability, intellectual capital, strategic orientations, PLS-SEM

Procedia PDF Downloads 454
8798 Development of National Education Policy-2020 Aligned Student-Centric-Outcome-Based-Curriculum of Engineering Programmes of Polytechnics in India: Faculty Preparedness and Challenges Ahead

Authors: Jagannath P. Tegar

Abstract:

The new National Education Policy (NEP) 2020 of Govt. of India has envisaged a major overhaul of the education system of India, in particular, the revamping of the Curriculum of Higher Education. In this process, the faculty members of the Indian universities and institutions have a challenging role in developing the curriculum, which is a shift from the traditional (content-based) curriculum to a student-centric- outcome-based Curriculum (SC-OBC) to be implemented in all of the Universities and institutions. The efforts and initiatives on the design and implementation of SC-OBC are remarkable in the engineering and technical education landscape of the country, but it is still in its early stages and many more steps are needed for the successful adaptation in every level of Higher Education. The premier institute of Govt. of India (NITTTR, Bhopal) has trained and developed the capacity and capability among the teachers of Polytechnics on the design and development of Student Centric - Outcome Based Curriculum and also providing academic consultancy for reforming curriculum in line of NEP- 2020 envisions for the states such as Chhattisgarh, Bihar and Maharashtra to make them responsibly ready for such a new shift in Higher Education. This research-based paper is on three main aspects: 1) the level of acceptance and preparedness of teachers /faculty towards NEP-2020 and student-centred outcome-based learning. 2) the extent of implementing NEP-2020 and student-centered outcome-based learning at Indian institutions/ universities and 3) the challenges of implementing NEP-2020 and student-centered outcome-based learning outcome-based education in the Indian context. The paper content will inspire curriculum designers and developers to prepare SC-OBC that meets the specific needs of industry and society at large, which is intended in the NEP-2020 of Govt. of India

Keywords: outcome based curriculum, student centric learning, national education policy -2020, implementation of nep-2020. outcome based learning, higher education curriculum

Procedia PDF Downloads 59
8797 A Sociological Investigation on the Population and Public Spaces of Nguyen Cong Tru, a Soviet-Style Collective Housing Complex in Hanoi in Regards to Its New Community-Focused Architectural Design

Authors: Duy Nguyen Do, Bart Julien Dewancker

Abstract:

Many Soviet-style collective housing complexes (also known as KTT) were built since the 1960s in Hanoi to support the post-war population growth. Those low-rise buildings have created well-knitted, robust communities, so much to the point that in most complexes, all families in one housing block would know each other, occasionally interact and provide supports in need. To understand how the community of collective housing complexes have developed and maintained in order to adapt their advantages into modern housing designs, the study is executed on the site of Nguyen Cong Tru KTT. This is one of the oldest KTT in Hanoi, completed in 1954. The complex also has an unique characteristic that is closely related to its community: the symbiotic relationship with Hom – a flea market that has been co-developing with Nguyen Cong Tru KTT since its beginning. The research consists of three phases: the first phase is a sociological investigation with Nguyen Cong Tru KTT’s current residents and a site survey on the complex’s economic and architectural characteristics. In the second phase, the collected data is analyzed to find out people’s opinions with the KTT’s concerning their satisfaction with the current housing status, floor plan organization, community, the relationship between the KTT’s dedicated public spaces with the flea market and their usage. Simultaneously, the master plan and gathered information regarding current architectural characteristics of the complex are also inspected. On the third phase, the analyses’ results will provide information regarding the issues, positive trends and significant historical features of the complex’s architecture in order to generate suitable proposals for the redesigning project of Nguyen Cong Tru KTT, a design focused on vitalizing modern apartments’ communities.

Keywords: collective house community, collective house public space, community-focused, redesigning Nguyen Cong Tru KTT, sociological investigation

Procedia PDF Downloads 343
8796 Influence of Stress Relaxation and Hysteresis Effect for Pressure Garment Design

Authors: Chia-Wen Yeh, Ting-Sheng Lin, Chih-Han Chang

Abstract:

Pressure garment has been used to prevent and treat the hypertrophic scars following serious burns since 1970s. The use of pressure garment is believed to hasten the maturation process and decrease the highness of scars. Pressure garment is custom made by reducing circumferential measurement of the patient by 10%~20%, called Reduction Factor. However the exact reducing value used depends on the subjective judgment of the therapist and the feeling of patients throughout the try and error process. The Laplace Law can be applied to calculate the pressure from the dimension of the pressure garment by the circumferential measurements of the patients and the tension profile of the fabrics. The tension profile currently obtained neglects the stress relaxation and hysteresis effect within most elastic fabrics. The purpose of this study was to investigate the influence of the tension attenuation, from stress relaxation and hysteresis effect of the fabrics. Samples of pressure garment were obtained from Sunshine Foundation Organization, a nonprofit organization for burn patients in Taiwan. The wall tension profile of pressure garments were measured on a material testing system. Specimens were extended to 10% of the original length, held for 1 hour for the influence of the stress relaxation effect to take place. Then, specimens were extended to 15% of the original length for 10 seconds, then reduced to 10% to simulate donning movement for the influence of the hysteresis effect to take place. The load history was recorded. The stress relaxation effect is obvious from the load curves. The wall tension is decreased by 8.5%~10% after 60mins of holding. The hysteresis effect is obvious from the load curves. The wall tension is increased slightly, then decreased by 1.5%~2.5% and lower than stress relaxation results after 60mins of holding. The wall tension attenuation of the fabric exists due to stress relaxation and hysteresis effect. The influence of hysteresis is more than stress relaxation. These effect should be considered in order to design and evaluate the pressure of pressure garment more accurately.

Keywords: hypertrophic scars, hysteresis, pressure garment, stress relaxation

Procedia PDF Downloads 497
8795 Elucidation of Dynamics of Murine Double Minute 2 Shed Light on the Anti-cancer Drug Development

Authors: Nigar Kantarci Carsibasi

Abstract:

Coarse-grained elastic network models, namely Gaussian network model (GNM) and Anisotropic network model (ANM), are utilized in order to investigate the fluctuation dynamics of Murine Double Minute 2 (MDM2), which is the native inhibitor of p53. Conformational dynamics of MDM2 are elucidated in unbound, p53 bound, and non-peptide small molecule inhibitor bound forms. With this, it is aimed to gain insights about the alterations brought to global dynamics of MDM2 by native peptide inhibitor p53, and two small molecule inhibitors (HDM201 and NVP-CGM097) that are undergoing clinical stages in cancer studies. MDM2 undergoes significant conformational changes upon inhibitor binding, carrying pieces of evidence of induced-fit mechanism. Small molecule inhibitors examined in this work exhibit similar fluctuation dynamics and characteristic mode shapes with p53 when complexed with MDM2, which would shed light on the design of novel small molecule inhibitors for cancer therapy. The results showed that residues Phe 19, Trp 23, Leu 26 reside in the minima of slowest modes of p53, pointing to the accepted three-finger binding model. Pro 27 displays the most significant hinge present in p53 and comes out to be another functionally important residue. Three distinct regions are identified in MDM2, for which significant conformational changes are observed upon binding. Regions I (residues 50-77) and III (residues 90-105) correspond to the binding interface of MDM2, including (α2, L2, and α4), which are stabilized during complex formation. Region II (residues 77-90) exhibits a large amplitude motion, being highly flexible, both in the absence and presence of p53 or other inhibitors. MDM2 exhibits a scattered profile in the fastest modes of motion, while binding of p53 and inhibitors puts restraints on MDM2 domains, clearly distinguishing the kinetically hot regions. Mode shape analysis revealed that the α4 domain controls the size of the cleft by keeping the cleft narrow in unbound MDM2; and open in the bound states for proper penetration and binding of p53 and inhibitors, which points to the induced-fit mechanism of p53 binding. P53 interacts with α2 and α4 in a synchronized manner. Collective modes are shifted upon inhibitor binding, i.e., second mode characteristic motion in MDM2-p53 complex is observed in the first mode of apo MDM2; however, apo and bound MDM2 exhibits similar features in the softest modes pointing to pre-existing modes facilitating the ligand binding. Although much higher amplitude motions are attained in the presence of non-peptide small molecule inhibitor molecules as compared to p53, they demonstrate close similarity. Hence, NVP-CGM097 and HDM201 succeed in mimicking the p53 behavior well. Elucidating how drug candidates alter the MDM2 global and conformational dynamics would shed light on the rational design of novel anticancer drugs.

Keywords: cancer, drug design, elastic network model, MDM2

Procedia PDF Downloads 116
8794 The Phenomena of Virtual World Adoption: Antecedents and Consequences of Virtual World Experience

Authors: Norita Ahmad, Reza Barkhi, Xiaobo Xu

Abstract:

We design an experimental study to learn about the cognitive implications of the use of avatars in a Virtual World (VW) (i.e., Second Life). The results support our proposed model, where a positive flow experience with VW influences the attitude towards VW, in turn influencing intention to use VW. Furthermore, VW flow experience can itself be impacted by perceived peer influence, familiarity with VW, and personality of the individuals behind the avatars in VW.

Keywords: avatar, flow experience, personality type, second life, virtual world

Procedia PDF Downloads 582
8793 Does Innovation Impact on Performance of Organizations? An Empirical Discovery

Authors: Zachary Bolo Awino

Abstract:

The need to gain and sustain a competitive advantage is overwhelming for businesses, especially now with cut throat competition. Innovation has been suggested as one way of gaining the advantage sustainably. But innovation can only happen within certain enabling environment and cultures. This study had one hypothesis: that there is no relationship between innovation and performance. This research was a cross sectional survey in which variables of interest are not controlled or manipulated. The cross sectional survey design is also appropriate for this study as it improves accuracy in generalizing findings, since it involves detailed study of a unit. Also known as one shot study, this design enhances uniform data collection and comparison across respondents. The population of the study was the 55 publicly quoted corporations in the Nairobi Securities Exchange (NSE) as at October 2013.The number was initially envisaged to be 60 but 5 firms were delisted or suspended during the year, hence leaving 55 firms as the population of study. The rationale for the choice for these firms is because they cut across the key economic sectors in Kenyan economy which include agriculture, commercial and services, manufacturing, finance and investment. This was a census survey and targeted all the firms listed at the Nairobi Securities Exchange as of October 2013. The primary data for the study was collected through the use of a structured questionnaire. A five point type Likert scale ranging from 1 - denoting to a less event to 5 - denoting to a greater extent was used. Respondents were from senior management of NSE. From the analyses, the study established that there was a strong positive relationship between innovation and performance, and organization innovation significantly contributes to employee engagement. Also there was a moderate positive relationship between innovation and performance. The study drew expressions of interrelations between various variables, offered generalization of understanding and meaning of these relationships, thus expanding the frontiers of knowledge both theoretical and practical with respect to innovation and firm performance. Major conclusion in this study was that there is a positive strong relationship between innovation and major measures of firm performance.

Keywords: emperical, innovation, NSE, organizations, performance

Procedia PDF Downloads 270
8792 Impact of Chess Intervention on Cognitive Functioning of Children

Authors: Ebenezer Joseph

Abstract:

Chess is a useful tool to enhance general and specific cognitive functioning in children. The present study aims to assess the impact of chess on cognitive in children and to measure the differential impact of socio-demographic factors like age and gender of the child on the effectiveness of the chess intervention.This research study used an experimental design to study the impact of the Training in Chess on the intelligence of children. The Pre-test Post-test Control Group Design was utilized. The research design involved two groups of children: an experimental group and a control group. The experimental group consisted of children who participated in the one-year Chess Training Intervention, while the control group participated in extra-curricular activities in school. The main independent variable was training in chess. Other independent variables were gender and age of the child. The dependent variable was the cognitive functioning of the child (as measured by IQ, working memory index, processing speed index, perceptual reasoning index, verbal comprehension index, numerical reasoning, verbal reasoning, non-verbal reasoning, social intelligence, language, conceptual thinking, memory, visual motor and creativity). The sample consisted of 200 children studying in Government and Private schools. Random sampling was utilized. The sample included both boys and girls falling in the age range 6 to 16 years. The experimental group consisted of 100 children (50 from Government schools and 50 from Private schools) with an equal representation of boys and girls. The control group similarly consisted of 100 children. The dependent variables were assessed using Binet-Kamat Test of Intelligence, Wechsler Intelligence Scale for Children - IV (India) and Wallach Kogan Creativity Test. The training methodology comprised Winning Moves Chess Learning Program - Episodes 1–22, lectures with the demonstration board, on-the-board playing and training, chess exercise through workbooks (Chess school 1A, Chess school 2, and tactics) and working with chess software. Further students games were mapped using chess software and the brain patterns of the child were understood. They were taught the ideas behind chess openings and exposure to classical games were also given. The children participated in mock as well as regular tournaments. Preliminary analysis carried out using independent t tests with 50 children indicates that chess training has led to significant increases in the intelligent quotient. Children in the experimental group have shown significant increases in composite scores like working memory and perceptual reasoning. Chess training has significantly enhanced the total creativity scores, line drawing and pattern meaning subscale scores. Systematically learning chess as part of school activities appears to have a broad spectrum of positive outcomes.

Keywords: chess, intelligence, creativity, children

Procedia PDF Downloads 243
8791 A New Family of Integration Methods for Nonlinear Dynamic Analysis

Authors: Shuenn-Yih Chang, Chiu-LI Huang, Ngoc-Cuong Tran

Abstract:

A new family of structure-dependent integration methods, whose coefficients of the difference equation for displacement increment are functions of the initial structural properties and the step size for time integration, is proposed in this work. This family method can simultaneously integrate the controllable numerical dissipation, explicit formulation and unconditional stability together. In general, its numerical dissipation can be continuously controlled by a parameter and it is possible to achieve zero damping. In addition, it can have high-frequency damping to suppress or even remove the spurious oscillations high frequency modes. Whereas, the low frequency modes can be very accurately integrated due to the almost zero damping for these low frequency modes. It is shown herein that the proposed family method can have exactly the same numerical properties as those of HHT-α method for linear elastic systems. In addition, it still preserves the most important property of a structure-dependent integration method, which is an explicit formulation for each time step. Consequently, it can save a huge computational efforts in solving inertial problems when compared to the HHT-α method. In fact, it is revealed by numerical experiments that the CPU time consumed by the proposed family method is only about 1.6% of that consumed by the HHT-α method for the 125-DOF system while it reduces to be 0.16% for the 1000-DOF system. Apparently, the saving of computational efforts is very significant.

Keywords: structure-dependent integration method, nonlinear dynamic analysis, unconditional stability, numerical dissipation, accuracy

Procedia PDF Downloads 626
8790 Exploring Labor Market Participation of Highly Skilled Immigrant Women in the United States: Barriers and Strategies

Authors: Yurdum Cokadar

Abstract:

The United States is the country where the majority of highly skilled immigrants are hosted. Two-thirds of foreign-born migrants from Turkey - an underrepresented and understudied immigrant group in the United States - are highly skilled. Generated by the aim of filling this gap in the literature, the motivation of this research is to understand highly skilled Turkish immigrant women’s integration into the U.S. labor market, including barriers that they face and strategies they develop to rebuild their career after relocation. The in-depth interviews of 20 highly skilled Turkish women residing in the U.S. revealed that the majority of women participants are either not integrated into the labor market, occupy positions below their skill, or cannot reach the same upper segments of the labor market in the host country, arising from a range of structural and personal barriers interplaying in their career trajectories. Furthermore, many of them cannot transfer their social and cultural capital gained in their home country into the United States. The labor market participation process of these women is analyzed in the light of Bourdieu’s theory of capital and the intersectional approach of gender, class and ethnicity in order to understand the positions of highly skilled immigrant women in the host country labor market.

Keywords: deskilling, gender, class and ethnicity, highly skilled women immigrants, integration into the U.S. the labor market, labor market participation, skilled migration, theory of capital

Procedia PDF Downloads 172
8789 Fabrication and Characterization of Al2O3 Based Electrical Insulation Coatings Around SiC Fibers

Authors: S. Palaniyappan, P. K. Chennam, M. Trautmann, H. Ahmad, T. Mehner, T. Lampke, G. Wagner

Abstract:

In structural-health monitoring of fiber reinforced plastics (FRPs), every single inorganic fiber sensor that are integrated into the bulk material requires an electrical insulation around itself, when the surrounding reinforcing fibers are electrically conductive. This results in a more accurate data acquisition only from the sensor fiber without any electrical interventions. For this purpose, thin nano-films of aluminium oxide (Al2O3)-based electrical-insulation coatings have been fabricated around the Silicon Carbide (SiC) single fiber sensors through reactive DC magnetron sputtering technique. The sputtered coatings were amorphous in nature and the thickness of the coatings increased with an increase in the sputter time. Microstructural characterization of the coated fibers performed using scanning electron microscopy (SEM) confirmed a homogeneous circumferential coating with no detectable defects or cracks on the surface. X-ray diffraction (XRD) analyses of the as-sputtered and 2 hours annealed coatings (825 & 1125 ˚C) revealed the amorphous and crystalline phases of Al2O3 respectively. Raman spectroscopic analyses produced no characteristic bands of Al2O3, as the thickness of the films was in the nanometer (nm) range, which is too small to overcome the actual penetration depth of the laser used. In addition, the influence of the insulation coatings on the mechanical properties of the SiC sensor fibers has been analyzed.

Keywords: Al₂O₃ thin film, electrical insulation coating, PVD process, SiC fibre, single fibre tensile test

Procedia PDF Downloads 107
8788 Graphene Reinforced Magnesium Metal Matrix Composites for Biomedical Applications

Authors: Khurram Munir, Cuie Wen, Yuncang Li

Abstract:

Magnesium (Mg) metal matrix composites (MMCs) reinforced with graphene nanoplatelets (GNPs) have been developed by powder metallurgy (PM). In this study, GNPs with different concentrations (0.1-0.3 wt.%) were dispersed into Mg powders by high-energy ball-milling processes. The microstructure and resultant mechanical properties of the fabricated nanocomposites were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy (RS), compression and nano-wear tests. The corrosion resistance of the fabricated composites was evaluated by electrochemical tests and hydrogen evolution measurements. Finally, the biological response of Mg-GNPs composites was assessed using osteoblast-like SaOS2 cells. The results indicate that GNPs are excellent candidates as reinforcements in Mg matrices for the manufacture of biodegradable Mg-based composite implants. GNP addition improved the mechanical properties of Mg via synergetic strengthening modes. Moreover, retaining the structural integrity of GNPs during PM processing improved the ductility, compressive strength, and corrosion resistance of the Mg-GNP composites as compared to monolithic Mg. Cytotoxicity assessments did not reveal any significant toxicity with the addition of GNPs to Mg matrices. This study demonstrates that Mg-xGNPs with x < 0.3 wt.%, may constitute novel biodegradable implant materials for load-bearing applications.

Keywords: magnesium-graphene composites, strengthening mechanisms, In vitro cytotoxicity, biocorrosion

Procedia PDF Downloads 146
8787 Climate Change Impact on Slope Stability: A Study of Slope Drainage Design and Operation

Authors: Elena Mugarza, Stephanie Glendinning, Ross Stirling, Colin Davies

Abstract:

The effects of climate change and increased rainfall events on UK-based infrastructure are observable, with an increasing number being reported on in the national press. The fatal derailment at Stonehaven in 2020 prompted a wider review of Network Rail-owned earthworks assets. The event was indicated by the Rail Accident Investigation Branch (RAIB) to be caused by mis-installed drainage on the adjacent cutting. The slope failure on Snake Pass (public highway A57) was reportedly caused by significant water ingress following numerous storm events and resulted in the road’s closure for several months. This problem is only projected to continue with greater intensity and more prolonged rainfall events forecasted in the future. Subsequently, this project is designed to evaluate effective drainage trench design within infrastructure embankments, considering the capillary barrier phenomenon that may govern their deterioration and resultant failure. Theoretically, the differential between grain sizes of the embankment clays and gravels, customarily used in drainage trenches, would have a limiting effect on infiltration. As such, it is anticipated that the inclusion of an additional material with an intermediate grain size should improve the hydraulic conductivity across the drainage boundary. Multiple drainage designs will be studied using instrumentation within the drain and surrounding clays. Data from the real-world installation at the BIONICS embankment will be collected and compared with laboratory and Finite Element (FE) simulations. This research aims to reduce the risk of infrastructure slope failures by improving the resilience of earthwork drainage and lessening the consequential impact on transportation networks.

Keywords: earthworks, slope drainage, transportation slopes, deterioration, capillary barriers, field study

Procedia PDF Downloads 39
8786 Tourist Cultural Literacy: Scale Development and Validation

Authors: Yun-Ru Tsai, Jo-Hui Lin

Abstract:

The cultural interactions between tourists and destination communities have received increased attention. Tourists play an important role in constructing a rewarding intercultural experience and cultural understanding. Cultural literacy is the ability for tourists to negotiate different cultures, this research aimed to develop a measurement of Tourist Cultural Literacy (TCL), the result provides a theoretical framework to assess how tourists interact with different cultural destinations. A pilot qualitative research was conducted in order to generate the initial items. In this study, the procedure of developing the TCL scale was divided into two parts. First, an exploratory factor analysis was conducted, a 25-item TCL scale was developed and six factors were identified: cultural sensitivity, appreciation of the culture, respect for the culture, knowledge of the culture, participate in the culture, and empathy for the culture. Second, confirmatory factor analyses and structural equation modeling were employed, the six-factor model was verified, and was proven to have good fit, reliability, convergent validity, discriminant validity, and criterion-related validity. The study provides managerial implications for tourist management and education, the popularization of TCL might increase the respect and understanding between tourists and local societies as well as decrease the cultural shocks and negative social-cultural impacts derived from tourism activities, thereby reducing the maintenance cost of management and allowing tourists to obtain a better cultural experience. Future research suggestions are also provided.

Keywords: cultural literacy, cultural tourism, scale development, tourism contact

Procedia PDF Downloads 337
8785 Design and Simulation of All Optical Fiber to the Home Network

Authors: Rahul Malhotra

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 537
8784 Improving Swelling Performance Using Industrial Waste Products

Authors: Mohieldin Elmashad, Salwa Yassin

Abstract:

Expansive soils regarded as one of the most problematic unsaturated formations in the Egyptian arid zones and present a great challenge in civil engineering, in general, and geotechnical engineering, in particular. Severe geotechnical complications and consequent structural damages have been arising due to an excessive and differential volumetric change upon wetting and change in water content. Different studies have been carried out concerning the swelling performance of the expansive soils using different additives including phospho-gypsum as an industrial waste product. However, this paper describes the results of a comprehensive testing programme that was carried out to investigate the effect of phospho-gypsum (PG) and sodium chloride (NaCl), as an additive mixture, on the swelling performance of constituent samples of swelling soils. The constituent samples comprise commercial bentonite collected from a natural site, mixed with different percentages of PG-NaCl mixture. The testing programme had been scoped to cover the physical and chemical properties of the constituent samples. In addition, a mineralogical study using x-ray diffraction (XRD) was performed on the collected bentonite and the mixed bentonite with PG-NaCl mixture samples. The obtained results of this study showed significant improvement in the swelling performance of the tested samples with the increase of the proposed PG-NaCl mixture content.

Keywords: expansive soils, industrial waste, mineralogical study, swelling performance, X-ray diffraction

Procedia PDF Downloads 258
8783 Surveying Apps in Dam Excavation

Authors: Ali Mohammadi

Abstract:

Whenever there is a need to dig the ground, the presence of a surveyor is required to control the map. In projects such as dams and tunnels, these controls are more important because any mistakes can increase the cost. Also, time is great importance in These projects have and one of the ways to reduce the drilling time is to use techniques that can reduce the mapping time in these projects. Nowadays, with the existence of mobile phones, we can design apps that perform calculations and drawing for us on the mobile phone. Also, if we have a device that requires a computer to access its information, by designing an app, we can transfer its information to the mobile phone and use it, so we will not need to go to the office.

Keywords: app, tunnel, excavation, dam

Procedia PDF Downloads 39
8782 A Pragma-Rhetorical Study of Christian Religious Pentecostal Sermons in Nigeria

Authors: Samuel Alaba Akinwotu

Abstract:

Effectiveness in communication requires the deployment of pragmatic and rhetorical strategies in religious sermons. In spite of high volume of works in religious discourse, scholars have not adequately accounted for the persuasive and argumentation strategies employed in Christian religious Pentecostal sermons. This study examines communicative intentions and the pragma-rhetorical strategies deployed to maintain balance and effectiveness in selected sermons of Pastor E. A. Adeboye, Bishop D. Oyedepo and Pastor W. F. Kumuyi. Fifteen sermons, delivered orally and transcribed into the written mode, were selected and analysed using Jacob Mey’s theory of pragmeme, Aristotle’s rhetoric and the theory of argumentation by van Eemeren and Grootendorst. Speakers pract stating, encouraging, assuring, warning, condemning, directing, praising, thanking, etc. through rhetorical question, repetition, direct address, direct command and structural parallelism. They assume divine role by speaking authoritatively and they tactically and logically select words to legitimise their ideology. They also categorise and portray individuals and/or issues either as good or bad, sinner/sin or righteous/righteousness, etc. The study provides clearer insight into the pragmatic import and the communicative effectiveness of Christian Pentecostal sermons. Further research can juxtapose the pragma-rhetorical and argumentation strategies of preachers of two clearly differentiated movements within the Christian religion.

Keywords: argumentation, communicative intentions, pentecostal sermons, pragmeme, rhetoric

Procedia PDF Downloads 183
8781 Professional Learning, Professional Development and Academic Identity of Sessional Teachers: Underpinning Theoretical Frameworks

Authors: Aparna Datey

Abstract:

This paper explores the theoretical frameworks underpinning professional learning, professional development, and academic identity. The focus is on sessional teachers (also called tutors or adjuncts) in architectural design studios, who may be practitioners, masters or doctoral students and academics hired ‘as needed’. Drawing from Schön’s work on reflective practice, learning and developmental theories of Vygotsky (social constructionism and zones of proximal development), informal and workplace learning, this research proposes that sessional teachers not only develop their teaching skills but also shape their identities through their 'everyday' work. Continuing academic staff develop their teaching through a combination of active teaching, self-reflection on teaching, as well as learning to teach from others via formalised programs and informally in the workplace. They are provided professional development and recognised for their teaching efforts through promotion, student citations, and awards for teaching excellence. The teaching experiences of sessional staff, by comparison, may be discontinuous and they generally have fewer opportunities and incentives for teaching development. In the absence of access to formalised programs, sessional teachers develop their teaching informally in workplace settings that may be supportive or unhelpful. Their learning as teachers is embedded in everyday practice applying problem-solving skills in ambiguous and uncertain settings. Depending on their level of expertise, they understand how to teach a subject such that students are stimulated to learn. Adult learning theories posit that adults have different motivations for learning and fall into a matrix of readiness, that an adult’s ability to make sense of their learning is shaped by their values, expectations, beliefs, feelings, attitudes, and judgements, and they are self-directed. The level of expertise of sessional teachers depends on their individual attributes and motivations, as well as on their work environment, the good practices they acquire and enhance through their practice, career training and development, the clarity of their role in the delivery of teaching, and other factors. The architectural design studio is ideal for study due to the historical persistence of the vocational learning or apprenticeship model (learning under the guidance of experts) and a pedagogical format using two key approaches: project-based problem solving and collaborative learning. Hence, investigating the theoretical frameworks underlying academic roles and informal professional learning in the workplace would deepen understanding of their professional development and how they shape their academic identities. This qualitative research is ongoing at a major university in Australia, but the growing trend towards hiring sessional staff to teach core courses in many disciplines is a global one. This research will contribute to including transient sessional teachers in the discourse on institutional quality, effectiveness, and student learning.

Keywords: academic identity, architectural design learning, pedagogy, teaching and learning, sessional teachers

Procedia PDF Downloads 114
8780 In vitro Cytotoxicity Study on Silver Powders Synthesized via Different Routes

Authors: Otilia Ruxandra Vasile, Ecaterina Andronescu, Cristina Daniela Ghitulica, Bogdan Stefan Vasile, Roxana Trusca, Eugeniu Vasile, Alina Maria Holban, Carmen Mariana Chifiriuc, Florin Iordache, Horia Maniu

Abstract:

Engineered powders offer great promise in several applications, but little information is known about cytotoxicity effects. The aim of the current study was the synthesis and cytotoxicity examination of silver powders using pyrosol method at temperatures of 600°C, 650°C and 700°C, respectively sol-gel method and calcinations at 500°C, 600°C, 700°C and 800°C. We have chosen to synthesize and examine silver particles cytotoxicity due to its use in biological applications. The synthesized Ag powders were characterized from the structural, compositional and morphological point of view by using XRD, SEM, and TEM with SAED. In order to determine the influence of the synthesis route on Ag particles cytotoxicity, different sizes of micro and nanosilver synthesized powders were evaluated for their potential toxicity. For the study of their cytotoxicity, cell cycle and apoptosis have been done analysis through flow cytometry on human colon carcinoma cells and mesenchymal stem cells and through the MTT assay, while the viability and the morphological changes of the cells have been evaluated by using cloning studies. The results showed that the synthesized silver nanoparticles have displayed significant cytotoxicity effects on cell cultures. Our synthesized silver powders were found to present toxicity in a synthesis route and time-dependent manners for pyrosol synthesized nanoparticles; whereas a lower cytotoxicity has been measured after cells were treated with silver nanoparticles synthesized through sol-gel method.

Keywords: Ag, cytotoxicity, pyrosol method, sol-gel method

Procedia PDF Downloads 578