Search results for: structural and magnetic properties
5272 Functionalization of Nanomaterials for Bio-Sensing Applications: Current Progress and Future Prospective
Authors: Temesgen Geremew Tefery
Abstract:
Nanomaterials, due to their unique properties, have revolutionized the field of biosensing. Their functionalization, or modification with specific molecules, is crucial for enhancing their biocompatibility, selectivity, and sensitivity. This review explores recent advancements in nanomaterial functionalization for biosensing applications. We discuss various strategies, including covalent and non-covalent modifications, and their impact on biosensor performance. The use of biomolecules like antibodies, enzymes, and nucleic acids for targeted detection is highlighted. Furthermore, the integration of nanomaterials with different sensing modalities, such as electrochemical, optical, and mechanical, is examined. The future outlook for nanomaterial-based biosensing is promising, with potential applications in healthcare, environmental monitoring, and food safety. However, challenges related to biocompatibility, scalability, and cost-effectiveness need to be addressed. Continued research and development in this area will likely lead to even more sophisticated and versatile biosensing technologies.Keywords: biosensing, nanomaterials, biotechnology, nanotechnology
Procedia PDF Downloads 325271 Applying Element Free Galerkin Method on Beam and Plate
Authors: Mahdad M’hamed, Belaidi Idir
Abstract:
This paper develops a meshless approach, called Element Free Galerkin (EFG) method, which is based on the weak form Moving Least Squares (MLS) of the partial differential governing equations and employs the interpolation to construct the meshless shape functions. The variation weak form is used in the EFG where the trial and test functions are approximated bye the MLS approximation. Since the shape functions constructed by this discretization have the weight function property based on the randomly distributed points, the essential boundary conditions can be implemented easily. The local weak form of the partial differential governing equations is obtained by the weighted residual method within the simple local quadrature domain. The spline function with high continuity is used as the weight function. The presently developed EFG method is a truly meshless method, as it does not require the mesh, either for the construction of the shape functions, or for the integration of the local weak form. Several numerical examples of two-dimensional static structural analysis are presented to illustrate the performance of the present EFG method. They show that the EFG method is highly efficient for the implementation and highly accurate for the computation. The present method is used to analyze the static deflection of beams and plate holeKeywords: numerical computation, element-free Galerkin (EFG), moving least squares (MLS), meshless methods
Procedia PDF Downloads 2875270 Enterprise Risk Management, Human Capital and Organizational Performance: Insights from Public Listed Companies
Authors: Omar Moafaq Saleh Aljanabi, Noradiva Hamzah, Ruhanita Maelah
Abstract:
In today’s challenging global economy, which is driven by information and knowledge, risk management is undergoing a great change, as organizations shift from traditional and compartmental risk management to an enterprise-wide approach. Enterprise risk management (ERM), which aims at increasing the sustainability of an organization and achieving competitive advantage, is gaining global attention and fast becoming an essential concern in all industries. Furthermore, in order to be effective, ERM should be managed by managers with high-level skills and knowledge. Despite the importance of the knowledge embedded in, there remains a paucity of evidence concerning how human capital could influence the organization’s ERM. Responses from 116 public listed companies (PLCs) on the main market of Bursa Malaysia were analyzed using Structural Equation Modelling (SEM). This study found that there is a significant association between ERM and organizational performance. The results also indicate that human capital has a positive moderating effect on the relationship between ERM and performance. The study contributes to the ERM literature by providing empirical evidence on the relationship between ERM, human capital, and organizational performance. Findings from this study also provide guidelines for managers, policy makers, and the regulatory bodies, to evaluate the ERM practices in PLCs.Keywords: enterprise risk management, human capital, organizational performance, Malaysian public listed companies
Procedia PDF Downloads 2015269 Epitaxial Growth of Crystalline Polyaniline on Reduced Graphene Oxide
Authors: D. Majumdar, M. Baskey, S. K. Saha
Abstract:
Graphene has already been identified as a promising material for future carbon based electronics. To develop graphene technology, the fabrication of a high quality P-N junction is a great challenge. In the present work, we have described a simple and general technique to grow single crystalline polyaniline (PANI) films on graphene sheets using in situ polymerization via the oxidation-reduction of aniline monomer and graphene oxide, respectively, to fabricate a high quality P-N junction, which shows diode-like behavior with a remarkably low turn-on voltage (60 mV) and high rectification ratio (1880:1) up to a voltage of 0.2 Volt. The origin of these superior electronic properties is the preferential growth of a highly crystalline PANI film as well as lattice matching between the d-values [~2.48 Å] of graphene and {120} planes of PANI.Keywords: epitaxial growth, PANI, reduced graphene oxide, rectification ratio
Procedia PDF Downloads 2915268 Copper Complexe Derivative of Chalcone: Synthesis, Characterization, Electrochemical Properties and XRD/Hirschfeld Surface
Authors: Salima Tabti, Amel Djedouani., Djouhra Aggoun, Ismail Warad
Abstract:
The reaction of copper (II) with 4-hydroxy-3-[(2E)-3-(1H-indol-3-yl)prop-2-enoyl]-6-methyl-2H-pyran-2-one (HL) lead to a new complexe: Cu(L)₂(DMF)₂. The crystal structure of the Cu(L)₂(DMF)₂ complex have been determined by X-ray diffraction methods. The Cu(II) lying on an inversion centre is coordinated to six oxygen atoms forming an octahedral elongated. Additionally, the electrochemical behavior of the metal complexe was investigated by cyclic voltammetry at a glassy carbon electrode (GC) in CH₃CN solution, showing the quasi-reversible redox process ascribed to the reduction of the MII/MI couple. The X-ray single crystal structure data of the complex was matched excellently with the optimized monomer structure of the desired compound; Hirschfeld surface analysis supported the packed crystal lattice 3D network intermolecular forces.Keywords: chalcones, cyclic voltametry, X-ray, Hirschfeld surface
Procedia PDF Downloads 675267 Influence of P-Y Curves on Buckling Capacity of Pile Foundation
Authors: Praveen Huded, Suresh Dash
Abstract:
Pile foundations are one of the most preferred deep foundation system for high rise or heavily loaded structures. In many instances, the failure of the pile founded structures in liquefiable soils had been observed even in many recent earthquakes. Recent centrifuge and shake table experiments on two layered soil system have credibly shown that failure of pile foundation can occur because of buckling, as the pile behaves as an unsupported slender structural element once the surrounding soil liquefies. However the buckling capacity depends on largely on the depth of soil liquefied and its residual strength. Hence it is essential to check the pile against the possible buckling failure. Beam on non-linear Winkler Foundation is one of the efficient method to model the pile-soil behavior in liquefiable soil. The pile-soil interaction is modelled through p-y springs, different author have proposed different types of p-y curves for the liquefiable soil. In the present paper the influence two such p-y curves on the buckling capacity of pile foundation is studied considering initial geometric and non-linear behavior of pile foundation. The proposed method is validated against experimental results. Significant difference in the buckling capacity is observed for the two p-y curves used in the analysis. A parametric study is conducted to understand the influence of pile diameter, pile flexural rigidity, different initial geometric imperfections, and different soil relative densities on buckling capacity of pile foundation.Keywords: Pile foundation , Liquefaction, Buckling load, non-linear py curve, Opensees
Procedia PDF Downloads 1685266 Nanocrystalline Na0.1V2O5.nH2Oxerogel Thin Film for Gas Sensing
Authors: M. S. Al-Assiri, M. M. El-Desoky, A. A. Bahgat
Abstract:
Nanocrystalline thin film of Na0.1V2O5.nH2O xerogel obtained by sol-gel synthesis was used as a gas sensor. Gas sensing properties of different gases such as hydrogen, petroleum and humidity were investigated. Applying XRD and TEM the size of the nanocrystals is found to be 7.5 nm. SEM shows a highly porous structure with submicron meter-sized voids present throughout the sample. FTIR measurement shows different chemical groups identifying the obtained series of gels. The sample was n-type semiconductor according to the thermoelectric power and electrical conductivity. It can be seen that the sensor response curves from 130°C to 150°C show a rapid increase in sensitivity for all types of gas injection, low response values for heating period and the rapid high response values for cooling period. This result may suggest that this material is able to act as gas sensor during the heating and cooling process.Keywords: sol-gel, thermoelectric power, XRD, TEM, gas sensing
Procedia PDF Downloads 3055265 Identifying Chaotic Architecture: Origins of Nonlinear Design Theory
Authors: Mohammadsadegh Zanganehfar
Abstract:
Since the modernism, movement, and appearance of modern architecture, an aggressive desire for a general design theory in the theoretical works of architects in the form of books and essays emerges. Since Robert Venturi and Denise Scott Brown’s published complexity and contradiction in architecture in 1966, the discourse of complexity and volumetric composition has been an important and controversial issue in the discipline. Ever since various theories and essays were involved in this discourse, this paper attempt to identify chaos theory as a scientific model of complexity and its relation to architecture design theory by conducting a qualitative analysis and multidisciplinary critical approach through architecture and basic sciences resources. As a result, we identify chaotic architecture as the correlation of chaos theory and architecture as an independent nonlinear design theory with specific characteristics and properties.Keywords: architecture complexity, chaos theory, fractals, nonlinear dynamic systems, nonlinear ontology
Procedia PDF Downloads 3815264 DNA Intercalating Alkaloids Isolated from Chelidonium majus (Papaveraceae)
Authors: Mohamed Tamer, Wink Michael
Abstract:
DNA intercalating agents increase the stability of DNA which can be demonstrated by measuring the melting temperature Tm. Tm can be determined in a spectrophotometer in which the cell temperature is increased gradually. The resulting absorption data comes as a sigmoidal curve from which melting temperature can be determined when half of the DNA has denatured. The current study aims to assess DNA intercalating activities of four pure bioactive isoquinoline alkaloids: sanguinarine, berberine, allocryptopine, and chelerythrine which were isolated from Chelidonium majus (Papaveraceae) by repeated silica gel column chromatography, recrystallization and preparative TLC. The isolated compounds were identified by comparing their physical properties and mass spectra with those of the published data. The results showed that sanguiarine is the most active intercalating agent with Tm value of 83.55 ± 0.49 followed by berberine, chelerythrine, and allocryptopine with Tm values 62.58 ± 0.47, 51.38 ± 0.37 and 50.94 ± 0.65, respectively, relative to 49.78 ± 1.05 of bacteriophage DNA alone and 86.09 ± 0.5 for ethidium bromide as a positive control.Keywords: alkaloids, Chelidonium majus, DNA intercalation, Tm
Procedia PDF Downloads 5045263 Kerr Electric-Optic Measurement of Electric Field and Space Charge Distribution in High Voltage Pulsed Transformer Oil
Authors: Hongda Guo, Wenxia Sima
Abstract:
Transformer oil is widely used in power systems because of its excellent insulation properties. The accurate measurement of electric field and space charge distribution in transformer oil under high voltage impulse has important theoretical and practical significance, but still remains challenging to date because of its low Kerr constant. In this study, the continuous electric field and space charge distribution over time between parallel-plate electrodes in high-voltage pulsed transformer oil based on the Kerr effect is directly measured using a linear array photoelectrical detector. Experimental results demonstrate the applicability and reliability of this method. This study provides a feasible approach to further study the space charge effects and breakdown mechanisms in transformer oil.Keywords: electric field, Kerr, space charge, transformer oil
Procedia PDF Downloads 3675262 In-Situ Formation of Particle Reinforced Aluminium Matrix Composites by Laser Powder Bed Fusion of Fe₂O₃/AlSi12 Powder Mixture Using Consecutive Laser Melting+Remelting Strategy
Authors: Qimin Shi, Yi Sun, Constantinus Politis, Shoufeng Yang
Abstract:
In-situ preparation of particle-reinforced aluminium matrix composites (PRAMCs) by laser powder bed fusion (LPBF) additive manufacturing is a promising strategy to strengthen traditional Al-based alloys. The laser-driven thermite reaction can be a practical mechanism to in-situ synthesize PRAMCs. However, introducing oxygen elements through adding Fe₂O₃ makes the powder mixture highly sensitive to form porosity and Al₂O₃ film during LPBF, bringing challenges to producing dense Al-based materials. Therefore, this work develops a processing strategy combined with consecutive high-energy laser melting scanning and low-energy laser remelting scanning to prepare PRAMCs from a Fe₂O₃/AlSi12 powder mixture. The powder mixture consists of 5 wt% Fe₂O₃ and the remainder AlSi12 powder. The addition of 5 wt% Fe₂O₃ aims to achieve balanced strength and ductility. A high relative density (98.2 ± 0.55 %) was successfully obtained by optimizing laser melting (Emelting) and laser remelting surface energy density (Eremelting) to Emelting = 35 J/mm² and Eremelting = 5 J/mm². Results further reveal the necessity of increasing Emelting, to improve metal liquid’s spreading/wetting by breaking up the Al₂O₃ films surrounding the molten pools; however, the high-energy laser melting produced much porosity, including H₂₋, O₂₋ and keyhole-induced pores. The subsequent low-energy laser remelting could close the resulting internal pores, backfill open gaps and smoothen solidified surfaces. As a result, the material was densified by repeating laser melting and laser remelting layer by layer. Although with two-times laser scanning, the microstructure still shows fine cellular Si networks with Al grains inside (grain size of about 370 nm) and in-situ nano-precipitates (Al₂O₃, Si, and Al-Fe(-Si) intermetallics). Finally, the fine microstructure, nano-structured dispersion strengthening, and high-level densification strengthened the in-situ PRAMCs, reaching yield strength of 426 ± 4 MPa and tensile strength of 473 ± 6 MPa. Furthermore, the results can expect to provide valuable information to process other powder mixtures with severe porosity/oxide-film formation potential, considering the evidenced contribution of laser melting/remelting strategy to densify material and obtain good mechanical properties during LPBF.Keywords: densification, laser powder bed fusion, metal matrix composites, microstructures, mechanical properties
Procedia PDF Downloads 1615261 Issues in Implementation of Vertical Greenery System on Existing Government Building in Malaysia
Authors: Jamilah Halina Abdul Halim, Norsiah Hassan, Azlina Aziz, Norhayati Mat Wajid, Mohd Saipul Asrafi
Abstract:
There are various types of vertical greenery system (VGS) in Malaysia, but none is installed at government buildings, although the government is looking into energy efficient building design. This is due to lack of technical information that focus on the maintenance and care, issues, and challenges face by vertical greenery system under tropical climate conditions. This research aim to identify issues in implementation of vertical greenery system on existing government building in Malaysia. The methodology used are literature reviews (desktop study), observation on sites, and case studies. Initial findings indicates that design and maintenance issues of vertical greenery system are the main challenges faced mainly by designer, especially those who involved in decision-making process. It can be concluded that orientation, openings, maintenance, performance, longevity, structural load, access, wind resistance, design failure, system failure, and lack of maintenance foresight are the main factors that need to be considered. These factors should be holistically aligned towards the economic cost, effective time, and quality design in implementation of vertical greenery system on existing government building. A comprehensive implementation of vertical greenery system will lead to greater sustainable investment for government buildings and responsive action to climate change.Keywords: issues, government building, maintenance, vertical greenery system
Procedia PDF Downloads 895260 Assessment of the Performance of Fly Ash Based Geo-Polymer Concrete under Sulphate and Acid Attack
Authors: Talakokula Visalakshi
Abstract:
Concrete is the most commonly used construction material across the globe, its usage is second only to water. It is prepared using ordinary Portland cement whose production contributes to 5-8% of total carbon emission in the world. On the other hand the fly ash by product from the power plants is produced in huge quantities is termed as waste and disposed in landfills. In order to address the above issues mentioned, it is essential that other forms of binding material must be developed in place of cement to make concrete. The geo polymer concrete is one such alternative developed by Davidovits in 1980’s. Geopolymer do not form calcium-silicate hydrates for matrix formation and strength but undergo polycondensation of silica and alumina precursors to attain structural strength. Its setting mechanism depends upon polymerization rather than hydration. As a result it is able to achieve its strength in 3-5 days whereas concrete requires about a month to do the same. The objective of this research is to assess the performance of geopolymer concrete under sulphate and acid attack. The assessment is done based on the experiments conducted on geopolymer concrete. The expected outcomes include that if geopolymer concrete is more durable than normal concrete, then it could be a competitive replacement option of concrete and can lead to significant reduction of carbon foot print and have a positive impact on the environment. Fly ash based geopolymer concrete offers an opportunity to completely remove the cement content from concrete thereby making the concrete a greener and future construction material.Keywords: fly ash, geo polymer, geopolymer concrete, construction material
Procedia PDF Downloads 4925259 The Effect of Solution pH of Chitosan on Antimicrobial Properties of Nylon 6,6 Fabrics
Authors: Nilüfer Yıldız Varan
Abstract:
The antimicrobial activities of chitosan against various bacteria and fungi are well known, and the antimicrobial activity of chitosan depends on pH. This study investigates the antimicrobial activity at different pH levels. Nylon 6,6 fabrics were treated with different chitosan solutions. Additionally, samples were treated also in basic conditions to see the antimicrobial activities. AATCC Test Method 100 was followed to evaluate the antimicrobial activity using Staphylococcus aureus ATCC 6538 test inoculum. The pH of the chitosan solutions was controlled below 6.5 since chitosan shows its antimicrobial activity only in acidic conditions because of its poor solubility above 6.5. In basic conditions, the samples did not show any antimicrobial activity. It appears from SEM images that the bonded chitosan in the structures exists. In acidic media (ph < 6.5), all samples showed antimicrobial activity. No correlation was found between pH levels and antimicrobial activity in acidic media.Keywords: chitosan, nylon 6, 6, crosslinking, pH stability, antimicrobial
Procedia PDF Downloads 2235258 Barriers to Health and Safety Practices in South African Construction Industry: Subcontractors Perspective
Authors: Kenneth O. Otasowie, Matthew Ikuabe, Clinton Aigbavboa, Ayodeji Oke
Abstract:
Subcontracting has become a fundamental feature in the construction industry, particularly as most projects in South Africa (SA) are executed by subcontractors. However, the sector in SA contributes to the high level of occupational hazards and injuries recorded, despite Health and Safety (H&S) regulations being enforced in the industry. Hence, this study aims to evaluate the barriers to health and safety practices by subcontractors in SA Construction Industry. A survey design was adopted. A total number of one hundred and forty-four (144) questionnaires were administered to quantity surveyors, construction managers, construction project managers, project managers, architects, and civil and structural engineers, who are owners or work in small and medium enterprises in Guateng Province, SA and eighty-three (83) were returned and found suitable for analysis. Collected data were analysed using percentage, mean item score, standard deviation, and one-sample t-test. The findings show that lack of skilled workers, lack of safety training, and insufficient safety awareness are the most significant barriers to health and safety practices in SA Construction Industry. Therefore, the study recommends the improvement in skills of staff and adequate training for the safe execution of work be provided to all employees and supervisors in these subcontracting firms. These will mitigate the rate of accident occurrence on construction sites.Keywords: barriers, health and safety, subcontractors, South Africa
Procedia PDF Downloads 1075257 Quantitative Structure Activity Relationship Model for Predicting the Aromatase Inhibition Activity of 1,2,3-Triazole Derivatives
Authors: M. Ouassaf, S. Belaidi
Abstract:
Aromatase is an estrogen biosynthetic enzyme belonging to the cytochrome P450 family, which catalyzes the limiting step in the conversion of androgens to estrogens. As it is relevant for the promotion of tumor cell growth. A set of thirty 1,2,3-triazole derivatives was used in the quantitative structure activity relationship (QSAR) study using regression multiple linear (MLR), We divided the data into two training and testing groups. The results showed a good predictive ability of the MLR model, the models were statistically robust internally (R² = 0.982) and the predictability of the model was tested by several parameters. including external criteria (R²pred = 0.851, CCC = 0.946). The knowledge gained in this study should provide relevant information that contributes to the origins of aromatase inhibitory activity and, therefore, facilitates our ongoing quest for aromatase inhibitors with robust properties.Keywords: aromatase inhibitors, QSAR, MLR, 1, 2, 3-triazole
Procedia PDF Downloads 1185256 A Study on the Effect of Socioeconomic Status on Adolescents' Health Promoting Behaviors: Mediating Effect of Family-Based Activity
Authors: Sue Lynn Kim, Sang-Gyun Lee, Joan P. Yoo
Abstract:
Although adolescents in low socioeconomic status (SES) have been reported to less engage in health promoting behaviors (HPB), the specific mechanism between their SES and HPB has not been extensively studied. Considering the Korean education system which focuses only on college entrance exams while lacking of interest in students’ health, and unique traits of adolescents, such as ego-centric thinking, family members can significantly contribute to develop and enhance adolescents’ HPB. Based on the review of related literature and previous researches, this study examined the mediating effect of family-based activities on the relationship between SES and adolescents' HPB. 636 adolescents (4th graders in elementary and 1st graders in middle school) and their parents from the 1st year survey of Seoul Education & Health Welfare Panel were analyzed by AMOS 19.0 utilizing structural equation modeling. Analytic results show that adolescents in low SES were less likely to engage in family-based activities as well as HPB. This association between SES and HPB was partially mediated by family-based activities. Based on the findings, we suggest that special education programs to enhance HPB should be required in schools and community organizations especially for adolescents in low SES who may have difficulties in doing family-based activities due to parents’ low income and insufficient leisure time. In addition, family-based activities should be encouraged to enhance HPB by raising parents' awareness about the importance of family-based activities on their children's HPB.Keywords: family-based activity, health promoting behaviors, socioeconomic status, HPB
Procedia PDF Downloads 3845255 The Friction and Wear Behavior of 0.35 VfTiC-Ti3SiC2 Composite
Authors: M. Hadji, A. Haddad, Y. Hadji
Abstract:
The effects of boronizing treatment on the friction coefficient and wear behavior of 0.35 Vf TiC- Ti3 SiC2 composite were investigated. In order to modify the surface properties of Ti3SiC2, boronizing treatment was carried out through powder pack cementation in the 1150-1350 °C temperature range. After boronizing treatment, one mixture layer, composed of TiB2 and SiC, forms on the surface of Ti3SiC2. The growth of the coating is processed by inward diffusion of Boron and obeys a linear rule. The Boronizing treatment increases the hardness of Ti3SiC2 from 6 GPa to 13 GPa. In the pin-on-disc test, i twas found that the material undergoes a steady-state coefficient of friction of around 0.8 and 0.45 in case of Ti3SiC2/Al2O3 tribocouple under 7 N load for the non treated and the boronized samples, respectively. The wear resistance of Ti3SiC2 under Al2O3 ball sliding has been significantly improved, which indicated that the boronizing treatment is a promising surface modification way of Ti3SiC2.Keywords: MAX phase, boronizing, hardness, wear
Procedia PDF Downloads 3535254 Analysis of Secondary Stage Creep in Thick-Walled Composite Cylinders Subjected to Rotary Inertia
Authors: Tejeet Singh, Virat Khanna
Abstract:
Composite materials have drawn considerable attention of engineers due to their light weight and application at high thermo-mechanical loads. With regard to the prediction of the life of high temperature structural components like rotating cylinders and the evaluation of their deterioration with time, it is essential to have a full knowledge of creep characteristics of these materials. Therefore, in the present study the secondary stage creep stresses and strain rates are estimated in thick-walled composite cylinders subjected to rotary inertia at different angular speeds. The composite cylinder is composed of aluminum matrix (Al) and reinforced with silicon carbide (SiC) particles which are uniformly mixed. The creep response of the material of the cylinder is described by threshold stress based creep law. The study indicates that with the increase in angular speed, the radial, tangential, axial and effective stress increases to a significant value. However, the radial stress remains zero at inner radius and outer radius due to imposed boundary conditions of zero pressure. Further, the stresses are tensile in nature throughout the entire radius of composite cylinder. The strain rates are also influenced in the same manner as that of creep stresses. The creep rates will increase significantly with the increase of centrifugal force on account of rotation.Keywords: composite, creep, rotating cylinder, angular speed
Procedia PDF Downloads 4515253 Immune Activity of Roman Hens as Influenced by the Feed Formulated with Germinated Paddy Rice
Authors: Wirot Likittrakulwong, Pisit Poolprasert, Tossaporn Incharoen
Abstract:
Germinated paddy rice (GPR) has the potential to be used as a feed ingredient. However, their properties have not been fully investigated. This paper examined the nutrient digestibility and the relationship to immune activity in Roman hens fed with GPR. It was found that true and apparent metabolizable energy (ME) values of GPR were 3.20 and 3.28 kcal/g air dry, respectively. GPR exhibited high content of phytonutrients, especially GABA. GPR showed similar protein profiles in comparison to non-germinated paddy rice. For immune activity, the feed with GPR enhanced the immune activity of Roman hens under high stocking density stress as evidenced by the activity of superoxide dismutase (SOD) and lysozyme activity. In this study, GPR is proved to be a good source of functional ingredient for chicken feed.Keywords: germinated paddy rice, nutrient digestibility, immune activity, functional property
Procedia PDF Downloads 1685252 Exploring the Techniques of Achieving Structural Electrical Continuity for Gas Plant Facilities
Authors: Abdulmohsen Alghadeer, Fahad Al Mahashir, Loai Al Owa, Najim Alshahrani
Abstract:
Electrical continuity of steel structure members is an essential condition to ensure equipotential and ultimately to protect personnel and assets in industrial facilities. The steel structure is electrically connected to provide a low resistance path to earth through equipotential bonding to prevent sparks and fires in the event of fault currents and avoid malfunction of the plant with detrimental consequences to the local and global environment. The oil and gas industry is commonly establishing steel structure electrical continuity by bare surface connection of coated steel members. This paper presents information pertaining to a real case of exploring and applying different techniques to achieve the electrical continuity in erecting steel structures at a gas plant facility. A project was supplied with fully coated steel members even at the surface connection members that cause electrical discontinuity. This was observed while a considerable number of steel members had already been received at the job site and erected. This made the resolution of the case to use different techniques such as bolt tightening and torqueing, chemical paint stripping and single point jumpers. These techniques are studied with comparative analysis related to their applicability, workability, time and cost advantages and disadvantages.Keywords: coated Steel, electrical continuity, equipotential bonding, galvanized steel, gas plant facility, lightning protection, steel structure
Procedia PDF Downloads 1325251 Polymer Nanocomposite Containing Silver Nanoparticles for Wound Healing
Authors: Patrícia Severino, Luciana Nalone, Daniele Martins, Marco Chaud, Classius Ferreira, Cristiane Bani, Ricardo Albuquerque
Abstract:
Hydrogels produced with polymers have been used in the development of dressings for wound treatment and tissue revitalization. Our study on polymer nanocomposites containing silver nanoparticles shows antimicrobial activity and applications in wound healing. The effects are linked with the slow oxidation and Ag⁺ liberation to the biological environment. Furthermore, bacterial cell membrane penetration and metabolic disruption through cell cycle disarrangement also contribute to microbial cell death. The silver antimicrobial activity has been known for many years, and previous reports show that low silver concentrations are safe for human use. This work aims to develop a hydrogel using natural polymers (sodium alginate and gelatin) combined with silver nanoparticles for wound healing and with antimicrobial properties in cutaneous lesions. The hydrogel development utilized different sodium alginate and gelatin proportions (20:80, 50:50 and 80:20). The silver nanoparticles incorporation was evaluated at the concentrations of 1.0, 2.0 and 4.0 mM. The physico-chemical properties of the formulation were evaluated using ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric (TG) analysis. The morphological characterization was made using transmission electron microscopy (TEM). Human fibroblast (L2929) viability assay was performed with a minimum inhibitory concentration (MIC) assessment as well as an in vivo cicatrizant test. The results suggested that sodium alginate and gelatin in the (80:20) proportion with 4 mM of AgNO₃ in the (UV-Vis) exhibited a better hydrogel formulation. The nanoparticle absorption spectra of this analysis showed a maximum band around 430 - 450 nm, which suggests a spheroidal form. The TG curve exhibited two weight loss events. DSC indicated one endothermic peak at 230-250 °C, due to sample fusion. The polymers acted as stabilizers of a nanoparticle, defining their size and shape. Human fibroblast viability assay L929 gave 105 % cell viability with a negative control, while gelatin presented 96% viability, alginate: gelatin (80:20) 96.66 %, and alginate 100.33 % viability. The sodium alginate:gelatin (80:20) exhibited significant antimicrobial activity, with minimal bacterial growth at a ratio of 1.06 mg.mL⁻¹ in Pseudomonas aeruginosa and 0.53 mg.mL⁻¹ in Staphylococcus aureus. The in vivo results showed a significant reduction in wound surface area. On the seventh day, the hydrogel-nanoparticle formulation reduced the total area of injury by 81.14 %, while control reached a 45.66 % reduction. The results suggest that silver-hydrogel nanoformulation exhibits potential for wound dressing therapeutics.Keywords: nanocomposite, wound healing, hydrogel, silver nanoparticle
Procedia PDF Downloads 1105250 Multi-Scale Control Model for Network Group Behavior
Authors: Fuyuan Ma, Ying Wang, Xin Wang
Abstract:
Social networks have become breeding grounds for the rapid spread of rumors and malicious information, posing threats to societal stability and causing significant public harm. Existing research focuses on simulating the spread of information and its impact on users through propagation dynamics and applies methods such as greedy approximation strategies to approximate the optimal control solution at the global scale. However, the greedy strategy at the global scale may fall into locally optimal solutions, and the approximate simulation of information spread may accumulate more errors. Therefore, we propose a multi-scale control model for network group behavior, introducing individual and group scales on top of the greedy strategy’s global scale. At the individual scale, we calculate the propagation influence of nodes based on their structural attributes to alleviate the issue of local optimality. At the group scale, we conduct precise propagation simulations to avoid introducing cumulative errors from approximate calculations without increasing computational costs. Experimental results on three real-world datasets demonstrate the effectiveness of our proposed multi-scale model in controlling network group behavior.Keywords: influence blocking maximization, competitive linear threshold model, social networks, network group behavior
Procedia PDF Downloads 255249 Sequential Pulsed Electric Field and Ultrasound Assisted Extraction of Bioactive Enriched Fractions from Button Mushroom Stalks
Authors: Bibha Kumari, Nigel P. Brunton, Dilip K. Rai, Brijesh K. Tiwari
Abstract:
Edible mushrooms possess numerous functional components like homo- and hetero- β-glucans [β(1→3), β(1→4) and β(1→6) glucosidic linkages], chitins, ergosterols, bioactive polysaccharides and peptides imparting health beneficial properties to mushrooms. Some of the proven biological activities of mushroom extracts are antioxidant, antimicrobial, immunomodulatory, cholesterol lowering activity by inhibiting a key cholesterol metabolism enzyme i.e. 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGCR), angiotensin I-converting enzyme (ACE) inhibition. Application of novel extraction technologies like pulsed electric field (PEF) and high power ultrasound offers clean, green, faster and efficient extraction alternatives with enhanced and good quality extracts. Sequential PEF followed by ultrasound assisted extraction (UAE) were applied to recover bioactive enriched fractions from industrial white button mushroom (Agaricus bisporus) stalk waste using environmentally friendly and GRAS solvents i.e. water and water/ethanol combinations. The PEF treatment was carried out at 60% output voltage, 2 Hz frequency for 500 pulses of 20 microseconds pulse width, using KCl salt solution of 0.6 mS/cm conductivity by the placing 35g of chopped fresh mushroom stalks and 25g of salt solution in the 4x4x4cm3 treatment chamber. Sequential UAE was carried out on the PEF pre-treated samples using ultrasonic-water-bath (USB) of three frequencies (25 KHz, 35 KHz and 45 KHz) for various treatment times (15-120 min) at 80°C. Individual treatment using either PEF or UAE were also investigation to compare the effect of each treatment along with the combined effect on the recovery and bioactivity of the crude extracts. The freeze dried mushroom stalk powder was characterised for proximate compositional parameters (dry weight basis) showing 64.11% total carbohydrate, 19.12% total protein, 7.21% total fat, 31.2% total dietary fiber, 7.9% chitin (as glucosamine equivalent) and 1.02% β-glucan content. The total phenolic contents (TPC) were determined by the Folin-Ciocalteu procedure and expressed as gallic-acid-equivalents (GAE). The antioxidant properties were ascertained using DPPH and FRAP assays and expressed as trolox-equivalents (TE). HMGCR activity and molecular mass of β-glucans will be measured using the commercial HMG-CoA Reductase Assay kit (Sigma-Aldrich) and size exclusion chromatography (HPLC-SEC), respectively. Effects of PEF, UAE and their combination on the antioxidant capacity, HMGCR inhibition and β-glucans content will be presented.Keywords: β-glucan, mushroom stalks, pulsed electric field (PEF), ultrasound assisted extraction (UAE)
Procedia PDF Downloads 2975248 Foliation and the First Law of Thermodynamics for the Kerr Newman Black Hole
Authors: Syed M. Jawwad Riaz
Abstract:
There has been a lot of interest in exploring the thermodynamic properties at the horizon of a black hole geometry. Earlier, it has been shown, for different spacetimes, that the Einstein field equations at the horizon can be expressed as a first law of black hole thermodynamics. In this paper, considering r = constant slices, for the Kerr-Newman black hole, shown that the Einstein field equations for the induced 3-metric of the hypersurface is expressed in thermodynamic quantities under the virtual displacements of the hypersurfaces. As expected, it is found that the field equations of the induced metric corresponding to the horizon can only be written as a first law of black hole thermodynamics. It is to be mentioned here that the procedure adopted is much easier, to obtain such results, as here one has to essentially deal with (n - 1)-dimensional induced metric for an n-dimensional spacetime.Keywords: black hole space-times, Einstein's field equation, foliation, hyper-surfaces
Procedia PDF Downloads 3485247 Integrated Geophysical Surveys for Sinkhole and Subsidence Vulnerability Assessment, in the West Rand Area of Johannesburg
Authors: Ramoshweu Melvin Sethobya, Emmanuel Chirenje, Mihlali Hobo, Simon Sebothoma
Abstract:
The recent surge in residential infrastructure development around the metropolitan areas of South Africa has necessitated conditions for thorough geotechnical assessments to be conducted prior to site developments to ensure human and infrastructure safety. This paper appraises the success in the application of multi-method geophysical techniques for the delineation of sinkhole vulnerability in a residential landscape. Geophysical techniques ERT, MASW, VES, Magnetics and gravity surveys were conducted to assist in mapping sinkhole vulnerability, using an existing sinkhole as a constraint at Venterspost town, West of Johannesburg city. A combination of different geophysical techniques and results integration from those proved to be useful in the delineation of the lithologic succession around sinkhole locality, and determining the geotechnical characteristics of each layer for its contribution to the development of sinkholes, subsidence and cavities at the vicinity of the site. Study results have also assisted in the determination of the possible depth extension of the currently existing sinkhole and the location of sites where other similar karstic features and sinkholes could form. Results of the ERT, VES and MASW surveys have uncovered dolomitic bedrock at varying depths around the sites, which exhibits high resistivity values in the range 2500-8000ohm.m and corresponding high velocities in the range 1000-2400 m/s. The dolomite layer was found to be overlain by a weathered chert-poor dolomite layer, which has resistivities between the range 250-2400ohm.m, and velocities ranging from 500-600m/s, from which the large sinkhole has been found to collapse/ cave in. A compiled 2.5D high resolution Shear Wave Velocity (Vs) map of the study area was created using 2D profiles of MASW data, offering insights into the prevailing lithological setup conducive for formation various types of karstic features around the site. 3D magnetic models of the site highlighted the regions of possible subsurface interconnections between the currently existing large sinkhole and the other subsidence feature at the site. A number of depth slices were used to detail the conditions near the sinkhole as depth increases. Gravity surveys results mapped the possible formational pathways for development of new karstic features around the site. Combination and correlation of different geophysical techniques proved useful in delineation of the site geotechnical characteristics and mapping the possible depth extend of the currently existing sinkhole.Keywords: resistivity, magnetics, sinkhole, gravity, karst, delineation, VES
Procedia PDF Downloads 855246 Characterization of Ultrasonic Nonlinearity in Concrete under Cyclic Change of Prestressing Force
Authors: Gyu-Jin Kim, Hyo-Gyoung Kwak
Abstract:
In this research, the effect of prestressing force on the nonlinearity of concrete was investigated by an experimental study. For the measurement of ultrasonic nonlinearity, a prestressed concrete beam was prepared and a nonlinear resonant ultrasound method was adopted. When the prestressing force changes, the stress state of the concrete inside the beam is affected, which leads to the occurrence of micro-cracks and changes in mechanical properties. Therefore, it is necessary to introduce nonlinear ultrasonic technology which sensitively reflects microstructural changes. Repetitive prestressing load history, including maximum levels of 45%, 60% and 75%, depending on the compressive strength, is designed to evaluate the impact of loading levels on the nonlinearity. With the experimental results, the possibility of ultrasonic nonlinearity as a trial indicator of stress was evaluated.Keywords: micro crack, nonlinear ultrasonic resonant spectroscopy, prestressed concrete beam, prestressing force, ultrasonic nonlinearity
Procedia PDF Downloads 2445245 Cloning and Characterization of Uridine-5’-Diphosphate -Glucose Pyrophosphorylases from Lactobacillus Kefiranofaciens and Rhodococcus Wratislaviensis
Authors: Mesfin Angaw Tesfay
Abstract:
Uridine-5’-diphosphate (UDP)-glucose is one of the most versatile building blocks within the metabolism of prokaryotes and eukaryotes serving as an activated sugar donor during the glycosylation of natural products. It is formed by the enzyme UDP-glucose pyrophosphorylase (UGPase) using uridine-5′-triphosphate (UTP) and α-d-glucose 1-phosphate as a substrate. Herein two UGPase genes from Lactobacillus kefiranofaciens ZW3 (LkUGPase) and Rhodococcus wratislaviensis IFP 2016 (RwUGPase) were identified through genome mining approaches. The LkUGPase and RwUGPase have 299 and 306 amino acids, respectively. Both UGPase has the conserved UTP binding site (G-X-G-T-R-X-L-P) and the glucose -1-phosphate binding site (V-E-K-P). The LkUGPase and RwUGPase were cloned in E. coli and SDS-PAGE analysis showed the expression of both enzymes forming about 36 KDa of protein band after induction. LkUGPase and RwUGPase have an activity of 1549.95 and 671.53 U/mg respectively. Currently, their kinetic properties are under investigation.Keywords: UGPase, LkUGPase, RwUGPase, UDP-glucose, Glycosylation
Procedia PDF Downloads 265244 Like Making an Ancient Urn: Metaphor Conceptualization of L2 Writing
Authors: Muhalim Muhalim
Abstract:
Drawing on Lakoff’s theory of metaphor conceptualization, this article explores the conceptualization of language two writing (L2W) of ten students-teachers in Indonesia via metaphors. The ten postgraduate English language teaching students and at the same time (former) English teachers received seven days of intervention in teaching and learning L2. Using introspective log and focus group discussion, the results illuminate us that all participants are unanimous on perceiving L2W as process-oriented rather than product-oriented activity. Specifically, the metaphor conceptualizations exhibit three categories of process-oriented L2W: deliberate process, learning process, and problem-solving process. However, it has to be clarified from the outset that this categorization is not rigid because some of the properties of metaphors might belong to other categories. Results of the study and implications for English language teaching will be further discussed.Keywords: metaphor conceptualisation, second language, learning writing, teaching writing
Procedia PDF Downloads 4175243 Selective Electrooxidation of Ammonia to Nitrogen Gas on the Crystalline Cu₂O/Ni Foam Electrode
Authors: Ming-Han Tsai, Chihpin Huang
Abstract:
Electrochemical oxidation of ammonia (AEO) is one of the highly efficient and environmentally friendly methods for NH₃ removal from wastewater. Recently, researchers have focused on non-Pt-based electrodes (n-PtE) for AEO, aiming to evaluate the feasibility of these low-cost electrodes for future practical applications. However, for most n-PtE, NH₃ is oxidized mainly to nitrate ion NO₃⁻ instead of the desired nitrogen gas N₂, which requires further treatment to remove excess NO₃⁻. Therefore, developing a high N₂ conversion electrode for AEO is highly urgent. In this study, we fabricated various Cu₂O/Ni foam (NF) electrodes by electrodeposition of Cu on NF. The Cu plating bath contained different additives, including cetyltrimethylammonium chloride (CTAC), sodium dodecyl sulfate (SDS), polyamide acid (PAA), and sodium alginate (SA). All the prepared electrodes were physically and electrochemically investigated. Batch AEO experiments were conducted for 3 h to clarify the relation between electrode structures and N₂ selectivity. The SEM and XRD results showed that crystalline platelets-like Cu₂O, particles-like Cu₂O, cracks-like Cu₂O, and sheets-like Cu₂O were formed in the Cu plating bath by adding CTAC, SDS, PAA, and SA, respectively. For electrochemical analysis, all Cu₂O/NF electrodes revealed a higher current density (2.5-3.2 mA/cm²) compared to that without additives modification (1.6 mA/cm²). At a constant applied potential of 0.95 V (vs Hg/HgO), the Cu₂O sheet (51%) showed the highest N₂ selectivity, followed by Cu₂O cracks (38%), Cu₂O particles (30%), and Cu₂O platelet (18%) after 3 h reaction. Our result demonstrated that the selectivity of N₂ during AEO was surface structural dependent.Keywords: ammonia, electrooxidation, selectivity, cuprous oxide, Ni foam
Procedia PDF Downloads 92