Search results for: SPE’s comparative solution projects
2371 Member States 'Perception of Threat' to Migration Crises as a Determinant Factor of Change in Cooperation: A Comparison between the Yugoslav Migration Crisis and the Syrian Refugees' Crisis
Authors: Diego Caballero Vélez
Abstract:
In 1997 the Schengen Convention was incorporated in the mainstream of EU law by the Amsterdam Treaty. It came into effect in 1999 with the abolition of internal border controls in the EU, a milestone in the European integration project. In the meantime, due to the Yugoslav wars, nearly 700,000 asylum applications were filed in the European countries provoking a major refugee crisis. During this period, the opening of Eastern Europe fostered more cooperation and policy-making at the EU level in migration issues. Currently, a similar migratory crisis is taking place in Europe. The Syrian war has caused the most massive influx of immigrants in Europe since World War II. Nevertheless, the EU is adopting different migration policies from those implemented during the Yugoslav migration crisis. The current crisis has not led to a common European position but national responses have been offered on migration policies and responsibility for border security and asylum-seekers. A lot of factors can explain this change from a cooperation scenario to a no cooperation one, such as the economic crisis, but this research is focused on the premise that 'threat perception' lies at the core of some states grand strategies towards migration and it also influences in multilateral or unilateral responses. Migration rests at the nexus of three dimensions of security, including geopolitical interests, material production, and internal security. According to some scholars, migration policy is an 'integral instrument' of state grand strategy in that context. Political integration at the EU might be altered with the emergence of existential threats. In other words, some areas of the European cooperation can be transformed when a 'critical juncture' occurs, for instance a migration crisis. In that instance, Member states could see migration as a matter of threat that modifies their national interests and willingness to embrace international cooperation. This research will focus on EU Member states´ perceptions of the 90´s migration crisis and the current one. The goal is to evaluate to what extent the perceptions of threat are one of the main factors for explaining the transition from a cooperation scenario to a no-cooperation one in European asylum and security policies. To analyze threat perception in both migration crisis, some relevant Member states are treated as cases of study and a comparative analysis is carried out based on public opinion polls, public and policy discourse in migration, voting practices and deconstruction of the migration policies themselves both at EU level and a national one.Keywords: cooperation, migration crisis, national responses, threat perception
Procedia PDF Downloads 2432370 Developing a Health Literacy Questionnaire in Breast Cancer
Authors: Lida Moghaddam-Banaem, Mahmood Tavoosi, Soheila Khalili
Abstract:
Objective: The main objective of this study was designing a breast cancer health literacy questionnaire and assess its psychometric properties. Methods: A comprehensive literature review was performed to develop a primary questionnaire consisting of five domains. Qualitative and quantitative content validity were assessed by relevant experts, and after some modifications, the content validity index (CVI) and content validity ratio (CVR) were calculated. Qualitative and quantitative face validity were evaluated by a number of patients, and the impact score for each item was calculated. 225 women with breast cancer were asked to fill out the questionnaire and construct validity was determined by using exploratory factor analysis. The reliability was tested by Cronbach's alpha coefficient. Results: A 36-item questionnaire with five domains of reading, having access, understanding, assessing/judgment, and decision making/behavior was designed. 2 items were omitted in the qualitative content validity process. All items achieved optimum values in CVI, CVR and impact scores. Content and face validity of the questionnaire were confirmed too. According to the exploratory factor analysis, the five-factor solution accounted for 64.98 percent of the observed variance. Conclusion: Due to the obtained satisfactory validity and reliability, this tool can be used to assess health literacy in women with breast cancer. Health policy makers can use these findings for improving health-related behaviors in breast cancer patients.Keywords: health literacy, breast cancer, questionnaire, psychometric properties
Procedia PDF Downloads 2372369 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain
Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA
Abstract:
In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.Keywords: BER, DWT, extreme leaning machine (ELM), PSNR
Procedia PDF Downloads 3152368 Development of an Aptamer-Molecularly Imprinted Polymer Based Electrochemical Sensor to Detect Pathogenic Bacteria
Authors: Meltem Agar, Maisem Laabei, Hannah Leese, Pedro Estrela
Abstract:
Pathogenic bacteria and the diseases they cause have become a global problem. Their early detection is vital and can only be possible by detecting the bacteria causing the disease accurately and rapidly. Great progress has been made in this field with the use of biosensors. Molecularly imprinted polymers have gain broad interest because of their excellent properties over natural receptors, such as being stable in a variety of conditions, inexpensive, biocompatible and having long shelf life. These properties make molecularly imprinted polymers an attractive candidate to be used in biosensors. In this study it is aimed to produce an aptamer-molecularly imprinted polymer based electrochemical sensor by utilizing the properties of molecularly imprinted polymers coupled with the enhanced specificity offered by DNA aptamers. These ‘apta-MIP’ sensors were used for the detection of Staphylococcus aureus and Escherichia coli. The experimental parameters for the fabrication of sensor were optimized, and detection of the bacteria was evaluated via Electrochemical Impedance Spectroscopy. Sensitivity and selectivity experiments were conducted. Furthermore, molecularly imprinted polymer only and aptamer only electrochemical sensors were produced separately, and their performance were compared with the electrochemical sensor produced in this study. Aptamer-molecularly imprinted polymer based electrochemical sensor showed good sensitivity and selectivity in terms of detection of Staphylococcus aureus and Escherichia coli. The performance of the sensor was assessed in buffer solution and tap water.Keywords: aptamer, electrochemical sensor, staphylococcus aureus, molecularly imprinted polymer
Procedia PDF Downloads 1212367 Influence of Single and Multiple Skin-Core Debonding on Free Vibration Characteristics of Innovative GFRP Sandwich Panels
Authors: Indunil Jayatilake, Warna Karunasena, Weena Lokuge
Abstract:
An Australian manufacturer has fabricated an innovative GFRP sandwich panel made from E-glass fiber skin and a modified phenolic core for structural applications. Debonding, which refers to separation of skin from the core material in composite sandwiches, is one of the most common types of damage in composites. The presence of debonding is of great concern because it not only severely affects the stiffness but also modifies the dynamic behaviour of the structure. Generally, it is seen that the majority of research carried out has been concerned about the delamination of laminated structures whereas skin-core debonding has received relatively minor attention. Furthermore, it is observed that research done on composite slabs having multiple skin-core debonding is very limited. To address this gap, a comprehensive research investigating dynamic behaviour of composite panels with single and multiple debonding is presented. The study uses finite-element modelling and analyses for investigating the influence of debonding on free vibration behaviour of single and multilayer composite sandwich panels. A broad parametric investigation has been carried out by varying debonding locations, debonding sizes and support conditions of the panels in view of both single and multiple debonding. Numerical models were developed with Strand7 finite element package by innovatively selecting the suitable elements to diligently represent their actual behavior. Three-dimensional finite element models were employed to simulate the physically real situation as close as possible, with the use of an experimentally and numerically validated finite element model. Comparative results and conclusions based on the analyses are presented. For similar extents and locations of debonding, the effect of debonding on natural frequencies appears greatly dependent on the end conditions of the panel, giving greater decrease in natural frequency when the panels are more restrained. Some modes are more sensitive to debonding and this sensitivity seems to be related to their vibration mode shapes. The fundamental mode seems generally the least sensitive mode to debonding with respect to the variation in free vibration characteristics. The results indicate the effectiveness of the developed three-dimensional finite element models in assessing debonding damage in composite sandwich panelsKeywords: debonding, free vibration behaviour, GFRP sandwich panels, three dimensional finite element modelling
Procedia PDF Downloads 3192366 Review on Crew Scheduling of Bus Transit: A Case Study in Kolkata
Authors: Sapan Tiwari, Namrata Ghosh
Abstract:
In urban mass transit, crew scheduling always plays a significant role. It deals with the formulation of work timetables for its staff so that an organization can meet the demand for its products or services. The efficient schedules of a specified timetable have an enormous impact on staff demand. It implies that an urban mass transit company's financial outcomes are strongly associated with planning operations in the region. The research aims to demonstrate the state of the crew scheduling studies and its practical implementation in mass transit businesses in metropolitan areas. First, there is a short overview of past studies in the field. Subsequently, the restrictions and problems with crew scheduling and some models, which have been developed to solve the related issues with their mathematical formulation, are defined. The comments are completed by a description of the solution opportunities provided by computer-aided scheduling program systems for operational use and exposures from urban mass transit organizations. Furthermore, Bus scheduling is performed using the Hungarian technique of problem-solving tasks and mathematical modeling. Afterward, the crew scheduling problem, which consists of developing duties using predefined tasks with set start and end times and places, is resolved. Each duty has to comply with a set line of work. The objective is to minimize a mixture of fixed expenses (number of duties) and varying costs. After the optimization of cost, the outcome of the research is that the same frequency can be provided with fewer buses and less workforce.Keywords: crew scheduling, duty, optimization of cost, urban mass transit
Procedia PDF Downloads 1542365 Ultrasonic Investigation as Tool for Study of Molecular Interaction of 2-Hydroxy Substituted Pyrimidine Derivative at Different Concentrations
Authors: Shradha S. Binani, P. S. Bodke, R. V. Joat
Abstract:
Recent decades have witnessed an exponential growth in the field of acoustical parameters and ultrasound on solid, liquid and gases. Ultrasonic propagation parameters yield valuable information regarding the behavior of liquid systems because intra and intermolecular association, dipolar interaction, complex formation and related structural changes affecting the compressibility of the system which in turn produces variations in the ultrasonic velocity. The acoustic and thermo dynamical parameters obtained in ultrasonic study show that ion-solvation is accompanied by the destruction or enhancement of the solvent structure. In the present paper the ultrasonic velocity (v), density (ρ), viscosity(η) have been measured for the pharmacological important compound 2-hydroxy substituted phenyl pyrimidine derivative (2-hydroxy-4-(4’-methoxy phenyl)-6-(2’-hydroxy-4’-methyl-5’-chlorophenyl)pyrimidine) in ethanol as a solvent by using different concentration at constant room temperature. These experimental data have been used to estimate physical parameter like adiabatic compressibility, intermolecular free length, relaxation time, free volume, specific acoustic impedance, relative association, Wada’s constant, Rao’s constant etc. The above parameters provide information in understanding the structural and molecular interaction between solute-solvent in the drug solution with respect to change in concentration.Keywords: acoustical parameters, ultrasonic velocity, density, viscosity, 2-hydroxy substituted phenyl pyrimidine derivative
Procedia PDF Downloads 4732364 A Concept of Rational Water Management at Local Utilities: The Use of RO for Water Supply and Wastewater Treatment/Reuse
Authors: N. Matveev, A. Pervov
Abstract:
Local utilities often face problems of local industrial wastes, storm water disposal due to existing strict regulations. For many local industries, the problem of wastewater treatment and discharge into surface reservoirs can’t be solved through the use of conventional biological treatment techniques. Current discharge standards require very strict removal of a number of impurities such as ammonia, nitrates, phosphate, etc. To reach this level of removal, expensive reagents and sorbents are used. The modern concept of rational water resources management requires the development of new efficient techniques that provide wastewater treatment and reuse. As RO membranes simultaneously reject all dissolved impurities such as BOD, TDS, ammonia, phosphates etc., they become very attractive for the direct treatment of wastewater without biological stage. To treat wastewater, specially designed membrane "open channel" modules are used that do not possess "dead areas" that cause fouling or require pretreatment. A solution to RO concentrate disposal problem is presented that consists of reducing of initial wastewater volume by 100 times. Concentrate is withdrawn from membrane unit as sludge moisture. The efficient use of membrane RO techniques is connected with a salt balance in water system. Thus, to provide high ecological efficiency of developed techniques, all components of water supply and wastewater discharge systems should be accounted for.Keywords: reverse osmosis, stormwater treatment, open-channel module, wastewater reuse
Procedia PDF Downloads 3212363 A Study on the Reinforced Earth Walls Using Sandwich Backfills under Seismic Loads
Authors: Kavitha A.S., L.Govindaraju
Abstract:
Reinforced earth walls offer excellent solution to many problems associated with earth retaining structures especially under seismic conditions. Use of cohesive soils as backfill material reduces the cost of reinforced soil walls if proper drainage measures are taken. This paper presents a numerical study on the application of a new technique called sandwich technique in reinforced earth walls. In this technique, a thin layer of granular soil is placed above and below the reinforcement layer to initiate interface friction and the remaining portion of the backfill is filled up using the existing insitu cohesive soil. A 6 m high reinforced earth wall has been analysed as a two-dimensional plane strain finite element model. Three types of reinforcing elements such as geotextile, geogrid and metallic strips were used. The horizontal wall displacements and the tensile loads in the reinforcement were used as the criteria to evaluate the results at the end of construction and dynamic excitation phases. Also to verify the effectiveness of sandwich layer on the performance of the wall, the thickness of sand fill surrounding the reinforcement was varied. At the end of construction stage it is found that the wall with sandwich type backfill yielded lower displacements when compared to the wall with cohesive soil as backfill. Also with sandwich backfill, the reinforcement loads reduced substantially when compared to the wall with cohesive soil as backfill. Further, it is found that sandwich technique as backfill and geogrid as reinforcement is a good combination to reduce the deformations of geosynthetic reinforced walls during seismic loading.Keywords: geogrid, geotextile, reinforced earth, sandwich technique
Procedia PDF Downloads 2892362 Generating Spherical Surface of Wear Drain in Cutting Metal by Finite Element Method Analysis
Authors: D. Kabeya Nahum, L. Y. Kabeya Mukeba
Abstract:
In this work, the design of surface defects some support of the anchor rod ball joint. The future adhesion contact was rocking in manufacture machining, for giving by the numerical analysis of a short simple solution of thermo-mechanical coupled problem in process engineering. The analysis of geometrical evaluation and the quasi-static and dynamic states are discussed in kinematic dimensional tolerances onto surfaces of part. Geometric modeling using the finite element method (FEM) in rough part of such phase provides an opportunity to solve the nonlinearity behavior observed by empirical data to improve the discrete functional surfaces. The open question here is to obtain spherical geometry of drain wear with the operation of rolling. The formulation with (1 ± 0.01) mm thickness near the drain wear semi-finishing tool for studying different angles, do not help the professional factor in design cutting metal related vibration, friction and interface solid-solid of part and tool during this physical complex process, with multi-parameters no-defined in Sobolev Spaces. The stochastic approach of cracking, wear and fretting due to the cutting forces face boundary layers small dimensions thickness of the workpiece and the tool in the machining position is predicted neighbor to ‘Yakam Matrix’.Keywords: FEM, geometry, part, simulation, spherical surface engineering, tool, workpiece
Procedia PDF Downloads 2792361 A Moroccan Natural Solution for Treating Industrial Effluents: Evaluating the Effectiveness of Using Date Kernel Residues for Purification
Authors: Ahmed Salim, A. El Bouari, M. Tahiri, O. Tanane
Abstract:
This research aims to develop and comprehensively characterize a cost-effective activated carbon derived from date residues, with a focus on optimizing its physicochemical properties to achieve superior performance in a variety of applications. The samples were synthesized via a chemical activation process utilizing phosphoric acid (H₃PO₄) as the activating agent. Activated carbon, produced through this method, functions as a vital adsorbent for the removal of contaminants, with a specific focus on methylene blue, from industrial wastewater. This study meticulously examined the influence of various parameters, including carbonization temperature and duration, on both the combustion properties and adsorption efficiency of the resultant material. Through extensive analysis, the optimal conditions for synthesizing the activated carbon were identified as a carbonization temperature of 600°C and a duration of 2 hours. The activated carbon synthesized under optimized conditions demonstrated an exceptional carbonization yield and methylene blue adsorption efficiency of 99.71%. The produced carbon was subsequently characterized using X-ray diffraction (XRD) analysis. Its effectiveness in the adsorption of methylene blue from contaminated water was then evaluated. A comprehensive assessment of the adsorption capacity was conducted by varying parameters such as carbon dosage, contact time, initial methylene blue concentration, and pH levels.Keywords: environmental pollution, adsorbent, activated carbon, phosphoric acid, date Kernels, pollutants, adsorption
Procedia PDF Downloads 502360 Thiourea: Single Crystal with Non Linear Optical Characteristics
Authors: Kishor C. Poria, Deepak Adroja, Arvind Bajaj
Abstract:
During the last few decades, the growth of single crystals has attained enormous importance for both academic research and technology. Single crystals are pillars of modern technology. In recent emerging trends of photonics and optoelectronics technology, there has been increased need for organic and semi organic materials for Non-Linear Optical (NLO) applications. The paper dealt with the initiation of good single crystals of thiourea and metal doped thiourea. The authors have successfully grown thiourea (pure) and metal doped thiourea crystals using relatively simple and inexpensive slow evaporation of aqueous solution technique. Pure thiourea crystals were grown with different light intensities and frequencies as there growth conditions. Metals (Cu, Co, Ni, Fe) doped crystals were grown using a simple evaporation technique. The paper explains growth methods and associated grown parameters in detail. The average size of the crystal is varied in size from 40 mm x 1mm to 1.5 mm x 1.5 mm to 0.5 mm. Crystals obtained are hexagonal, tetragonal, and rectangular in shape with different optical qualities. All grown crystals are characterized using X-Ray Diffraction Analysis (XRD), Ultra Violet Visible analysis, and Fourier Transform Infrared Spectrometry. Their non-linear optical characteristics were determined by Second Harmonic Generation (SHG) and their Laser Dispersive analysis. The grown crystals are characterized using Nd:YAG laser and the highest conversion efficiency of the signal pass light are calculated. It shows 58 % of standard values for KDP crystals. All results are summarized in this work.Keywords: crystal, metal-doped thiourea, non-linear optical, NLO, thiourea
Procedia PDF Downloads 1442359 Mechanical and Biodegradability of Porous Poly-ε-Caprolactone/Polyethylene Glycol Copolymer-Reinforced Cellulose Nanofibers for Soft Tissue Engineering Applications
Authors: Mustafa Abu Ghalia, Mohammed Seddik
Abstract:
The design and development of a new class of biomaterial has gained particular interest in producing polymer scaffold for biomedical applications. Improving mechanical properties, biological and controlling pores scaffold are important factors to provide appropriate biomaterial for implement in soft tissue repair and regeneration. In this study, poly-ε-caprolactone (PCL) /polyethylene glycol (PEG) copolymer (80/20) incorporated with CNF scaffolds were made employing solvent casting and particulate leaching methods. Four mass percentages of CNF (1, 2.5, 5, and 10 wt.%) were integrated into the copolymer through a silane coupling agent. Mechanical properties were determined using Tensile Tester data acquisition to investigate the effect of porosity, pore size, and CNF contents. Tensile strength obtained for PCL/PEG- 5 wt.% CNF was 16 MPa, which drastically decreased after creating a porous structure to 7.1 MPa. The optimum parameters of the results were found to be 5 wt.% for CNF, 240 μm for pore size, and 83% for porosity. Scanning electron microscopy (SEM) micrograph reveals that consistent pore size and regular pore shape were accomplished after the addition of CNF-5 wt. % into PCL/PEG. The results of mass loss of PCL/PEG reinforced-CNF 1% have clearly enhanced to double values compared with PCL/PEG copolymer and three times with PCL/PEG scaffold-CNF 1%. In addition, all PCL/PEG reinforced and scaffold- CNF were partially disintegrated under composting conditions confirming their biodegradable behavior. This also provides a possible solution for the end life of these biomaterials.Keywords: PCL/PEG, cellulose nanofibers, tissue engineering, biodegradation, compost polymers
Procedia PDF Downloads 652358 Glutharaldyde Free Processing of Patch for Cardiovascular Repair Is Associated with Improved Outcomes on Rvot Repair, Rat Model
Authors: Parnaz Boodagh, Danila Vella, Antonio Damore, Laura Modica De Mohac, Sang-Ho Ye, Garret Coyan, Gaetano Burriesci, William Wagner, Federica Cosentino
Abstract:
The use of cardiac patches is among the main therapeutic solution for cardiovascular diseases, a leading mortality cause in the world with an increasing trend, responsible of 19 millions deaths in 2020. Several classes of biomaterials serve that purpose, both of synthetic origin and biological derivation, and many bioengineered treatment alternatives were proposed to satisfy two main requirements, providing structural support and promoting tissue remodeling. The objective of this paper is to compare the mechanical properties and the characterization of four cardiac patches: the Adeka, PhotoFix, CorPatch, and CardioCel patches. In vitro and in vivo tests included: biaxial, uniaxial, ball burst, suture retention for mechanical characterization; 2D surface topography, 3D volume and microstructure, and histology assessments for structure characterization; in vitro test to evaluate platelet deposition, calcium deposition, and macrophage polarization; rat right ventricular outflow tract (RVOT) models at 8- and 16-week time points to characterize the patch-host interaction. Lastly, the four patches were used to produce four stented aortic valve prosthesis, subjected to hydrodynamic assessment as well as durability testing to verify compliance with the standard ISO.Keywords: cardiac patch, cardiovascular disease, cardiac repair, blood contact biomaterial
Procedia PDF Downloads 1652357 Analysis of Autoantibodies to the S-100 Protein, NMDA, and Dopamine Receptors in Children with Type 1 Diabetes Mellitus
Authors: Yuri V. Bykov, V. A. Baturin
Abstract:
Aim of the study: The aim of the study was to perform a comparative analysis of the levels of autoantibodies (AAB) to the S-100 protein as well as to the dopamine and NMDA receptors in children with type 1 diabetes mellitus (DM) in therapeutic remission. Materials and methods: Blood serum obtained from 42 children ages 4 to 17 years (20 boys and 22 girls) was analyzed. Twenty-one of these children had a diagnosis of type 1 DM and were in therapeutic remission (study group). The mean duration of disease in children with type 1 DM was 9.6±0.36 years. Children without DM were included in a group of "apparently healthy children" (21 children, comparison group). AAB to the S-100 protein, the dopamine, and NMDA receptors were measured by ELISA. The normal range of IgG AAB was specified as up to 10 µg/mL. In order to compare the central parameters of the groups, the following parametric and non-parametric methods were used: Student's t-test or Mann-Whitney U test. The level of significance for inter-group comparisons was set at p<0.05. Results: The mean levels of AAB to the S-100B protein were significantly higher (p=0.0045) in children with DM (16.84±1.54 µg/mL) when compared with "apparently healthy children" (2.09±0.05 µg/mL). The detected elevated levels of AAB to NMDA receptors may indicate that in children with type 1 DM, there is a change in the activity of the glutamatergic system, which in its turn suggests the presence of excitotoxicity. The mean levels of AAB to dopamine receptors were higher (p=0.0082) in patients comprising the study group than in the children of the comparison group (40.47±2.31 µg/mL and 3.91±0.09 µg/mL). The detected elevated levels of AAB to dopamine receptors suggest an altered activity of the dopaminergic system in children with DM. This can also be viewed as indirect evidence of altered activity of the brain's glutamatergic system. The mean levels of AAB to NMDA receptors were higher in patients with type 1 DM compared with the "apparently healthy children," at 13.16±2.07 µg/mL and 1.304±0.05 µg/mL, respectively (p=0.0021). The elevated mean levels of AAB to the S-100B protein may indicate damage to brain tissue in children with type 1 DM. A difference was also detected between the mean values of the measured AABs, and this difference depended on the duration of the disease: mean AAB values were significantly higher in patients whose disease had lasted more than five years. Conclusions: The elevated mean levels of AAB to the S-100B protein may indicate damage to brain tissue in the setting of excitotoxicity in children with type 1 DM. The discovered elevation of the levels of AAB to NMDA and dopamine receptors may indicate the activation of the glutamatergic and dopaminergic systems. The observed abnormalities indicate the presence of central nervous system damage in children with type 1 DM, with a tendency towards the elevation of the levels of the studied AABs with disease progression.Keywords: autoantibodies, brain damage, children, diabetes mellitus
Procedia PDF Downloads 982356 Student Feedback of a Major Curricular Reform Based on Course Integration and Continuous Assessment in Electrical Engineering
Authors: Heikki Valmu, Eero Kupila, Raisa Vartia
Abstract:
A major curricular reform was implemented in Metropolia UAS in 2014. The teaching was to be based on larger course entities and collaborative pedagogy. The most thorough reform was conducted in the department of electrical engineering and automation technology. It has been already shown that the reform has been extremely successful with respect to student progression and drop-out rate. The improvement of the results has been much more significant in this department compared to the other engineering departments making only minor pedagogical changes. In the beginning of the spring term of 2017, a thorough student feedback project was conducted in the department. The study consisted of thirty questions about the implementation of the curriculum, the student workload and other matters related to student satisfaction. The reply rate was more than 40%. The students were divided to four different categories: first year students [cat.1] and students of all the three different majors [categories 2-4]. These categories were found valid since all the students have the same course structure in the first two semesters after which they may freely select the major. All staff members are divided into four teams respectively. The curriculum consists of consecutive 15 credit (ECTS) courses each taught by a group of teachers (3-5). There are to be no end exams and continuous assessment is to be employed. In 2014 the different teacher groups were encouraged to employ innovatively different assessment methods within the given specs. One of these methods has been since used in categories 1 and 2. These students have to complete a number of compulsory tasks each week to pass the course and the actual grade is defined by a smaller number of tests throughout the course. The tasks vary from homework assignments, reports and laboratory exercises to larger projects and the actual smaller tests are usually organized during the regular lecture hours. The teachers of the other two majors have been pedagogically more conservative. The student progression has been better in categories 1 and 2 compared to categories 3 and 4. One of the main goals of this survey was to analyze the reasons for the difference and the assessment methods in detail besides the general student satisfaction. The results show that in the categories following more strictly the specified assessment model much more versatile assessment methods are used and the basic spirit of the new pedagogy is followed. Also, the student satisfaction is significantly better in categories 1 and 2. It may be clearly stated that continuous assessment and teacher cooperation improve the learning outcomes, student progression as well as student satisfaction. Too much academic freedom seems to lead to worse results [cat 3 and 4]. A standardized assessment model is launched for all students in autumn 2017. This model is different from the one used so far in categories 1 and 2 allowing more flexibility to teacher groups, but it will force all the teacher groups to follow the general rules in order to improve the results and the student satisfaction further.Keywords: continuous assessment, course integration, curricular reform, student feedback
Procedia PDF Downloads 2072355 Mitigation of Interference in Satellite Communications Systems via a Cross-Layer Coding Technique
Authors: Mario A. Blanco, Nicholas Burkhardt
Abstract:
An important problem in satellite communication systems which operate in the Ka and EHF frequency bands consists of the overall degradation in link performance of mobile terminals due to various types of degradations in the link/channel, such as fading, blockage of the link to the satellite (especially in urban environments), intentional as well as other types of interference, etc. In this paper, we focus primarily on the interference problem, and we develop a very efficient and cost-effective solution based on the use of fountain codes. We first introduce a satellite communications (SATCOM) terminal uplink interference channel model that is classically used against communication systems that use spread-spectrum waveforms. We then consider the use of fountain codes, with focus on Raptor codes, as our main mitigation technique to combat the degradation in link/receiver performance due to the interference signal. The performance of the receiver is obtained in terms of average probability of bit and message error rate as a function of bit energy-to-noise density ratio, Eb/N0, and other parameters of interest, via a combination of analysis and computer simulations, and we show that the use of fountain codes is extremely effective in overcoming the effects of intentional interference on the performance of the receiver and associated communication links. We then show this technique can be extended to mitigate other types of SATCOM channel degradations, such as those caused by channel fading, shadowing, and hard-blockage of the uplink signal.Keywords: SATCOM, interference mitigation, fountain codes, turbo codes, cross-layer
Procedia PDF Downloads 3662354 Configuration as a Service in Multi-Tenant Enterprise Resource Planning System
Authors: Mona Misfer Alshardan, Djamal Ziani
Abstract:
Enterprise resource planning (ERP) systems are the organizations tickets to the global market. With the implementation of ERP, organizations can manage and coordinate all functions, processes, resources and data from different departments by a single software. However, many organizations consider the cost of traditional ERP to be expensive and look for alternative affordable solutions within their budget. One of these alternative solutions is providing ERP over a software as a service (SaaS) model. This alternative could be considered as a cost effective solution compared to the traditional ERP system. A key feature of any SaaS system is the multi-tenancy architecture where multiple customers (tenants) share the system software. However, different organizations have different requirements. Thus, the SaaS developers accommodate each tenant’s unique requirements by allowing tenant-level customization or configuration. While customization requires source code changes and in most cases a programming experience, the configuration process allows users to change many features within a predefined scope in an easy and controlled manner. The literature provides many techniques to accomplish the configuration process in different SaaS systems. However, the nature and complexity of SaaS ERP needs more attention to the details regarding the configuration process which is merely described in previous researches. Thus, this research is built on strong knowledge regarding the configuration in SaaS to define specifically the configuration borders in SaaS ERP and to design a configuration service with the consideration of the different configuration aspects. The proposed architecture will ensure the easiness of the configuration process by using wizard technology. Also, the privacy and performance are guaranteed by adopting the databases isolation technique.Keywords: configuration, software as a service, multi-tenancy, ERP
Procedia PDF Downloads 3972353 Sensitivity of Steindachneridion parahybae Mature Oocytes versus Embryos at Low Temperature
Authors: Tais Silva Lopes, Danilo Caneppele, Elizabeth Romagosa
Abstract:
Surubim-do-Paraíba, Steindachneridion parahybae is a species of South American fish in critical conditions of extinction. Researches have been developed with the objective of conserving the biological material of this species. We evaluated the cooling of mature oocytes in the cryoprotective solutions containing the following alcohols: methanol, Propylene glycol and DMSO, each at concentrations of 1M, 2M and 4M, totaling nine treatments. After being submitted to treatments, the oocytes were maintained for 120 minutes in cooling to -5.52±2.58⁰C. A sample of oocytes was submitted to negative control (NC), kept in 90% L-15 solution, and positive control (PC), fertilized and taken directly to the incubator. Fertilization and hatching rates were evaluated. In order to compare the sensitivity of oocytes to embryos of the same species, the embryos maintained as CP in the previous assay were used in the free-flow stage (about 22 hours post fertilization) and submitted to the same treatments (prepared in distilled water) and also cooled for 120 min. The evaluation was done by the hatch rate. There was no fertilization rate of the oocytes submitted to the cooling with propylene glycol; the other cryoprotectants presented values of at most 3.7% of fertilization (Methanol 1M), and no treatment completed development until hatching. The cooled embryos had a significant percentage of normal larvae in all treatments, but inversely proportional to the increase in the concentration of the alcohols. DMSO 1M was the most promising treatment for embryo cooling, with 41.7% ± 20.2 of normal larvae, while mature oocytes were highly sensitive to cold.Keywords: cryoconservation, cooling, embryos, freezing, oocytes, south American fish
Procedia PDF Downloads 2472352 Effects of Beeswax Coating on the Properties of Cocoa Bean Shell Based Papers
Authors: Sri Rejeki, Tamrin Tamrin, RH. F. Faradilla, Muhammad N. Ibrahim, Mariana M., Irnawati Irnawati
Abstract:
Cocoa bean shells, despite their antioxidant and antimicrobial properties, are still considered as an underutilized agricultural waste. The functional properties and their lignocelluloses content make cocoa bean shells a potential material for paper-based food packaging. In our previous research, we have successfully produced papers from cocoa bean shells that had antioxidant and antibacterial activities. However, the hydrophilic nature of the lignocelluloses of cocoa bean shells hinders the application of the paper to be used as a food packaging. In this research, we aimed to study the effects of beeswax coating on the wettability and mechanical properties of the paper. The coating was done by dipping the papers in beeswax solution several times and in three different beeswax concentrations. The number of dipping and beeswax concentration significantly (p<0.05) affected the water contact angle of the papers. Results show that the water contact angle increases dramatically due to the coating treatment. The control paper or uncoated paper had a contact angle of 40.50o, while the contact angle of the best-coated paper (D3B3: 3x dipping, 3g/10mL beeswax) reached 96.93o. Both tensile strength and percent elongation were not significantly (p>0.05) affected by the coating treatment. This showed that beeswax was a potential organic material to improve the hydrophobicity of paper from cocoa bean shells without any undesirable effects on the mechanical properties of the paper.Keywords: cocoa bean shell, paper, beeswax, coating, contact angle
Procedia PDF Downloads 1502351 Urban and Building Information Modeling’s Applications for Environmental Education: Case Study of Educational Campuses
Authors: Samar Alarif
Abstract:
Smart sustainable educational campuses are the latest paradigm of innovation in the education domain. Campuses become a hub for sustainable environmental innovations. University has a vital role in paving the road for digital transformations in the infrastructure domain by preparing skilled engineers and specialists. The open digital platform enables smart campuses to simulate real education experience by managing their infrastructure within the curriculums. Moreover, it allows the engagement between governments, businesses, and citizens to push for innovation and sustainable services. Urban and building information modeling platforms have recently attained widespread attention in smart campuses due to their applications and benefits for creating the campus's digital twin in the form of an open digital platform. Qualitative and quantitative strategies were used in directing this research to develop and validate the UIM/BIM platform benefits for smart campuses FM and its impact on the institution's sustainable vision. The research findings are based on literature reviews and case studies of the TU berlin El-Gouna campus. Textual data will be collected using semi-structured interviews with actors, secondary data like BIM course student projects, documents, and publications related to the campus actors. The study results indicated that UIM/BIM has several benefits for the smart campus. Universities can achieve better capacity-building by integrating all the actors in the UIM/BIM process. Universities would achieve their community outreach vision by launching an online outreach of UIM/BIM course for the academic and professional community. The UIM/BIM training courses would integrate students from different disciplines and alumni graduated as well as engineers and planners and technicians. Open platforms enable universities to build a partnership with the industry; companies should be involved in the development of BIM technology courses. The collaboration between academia and the industry would fix the gap, promote the academic courses to reply to the professional requirements, and transfer the industry's academic innovations. In addition to that, the collaboration between academia, industry, government vocational and training centers, and civil society should be promoted by co-creation workshops, a series of seminars, and conferences. These co-creation activities target the capacity buildings and build governmental strategies and policies to support expanding the sustainable innovations and to agree on the expected role of all the stakeholders to support the transformation.Keywords: smart city, smart educational campus, UIM, urban platforms, sustainable campus
Procedia PDF Downloads 1252350 Solar Photovoltaic Pumping and Water Treatment Tools: A Case Study in Ethiopian Village
Authors: Corinna Barraco, Ornella Salimbene
Abstract:
This research involves the Ethiopian locality of Jeldi (North Africa), an area particularly affected by water shortage and in which the pumping and treatment of drinking water are extremely sensitive issues. The study aims to develop and apply low-cost tools for the design of solar water pumping and water purification systems in a not developed country. Consequently, two technical tools have been implemented in Excel i) Solar photovoltaic Pumping (Spv-P) ii) Water treatment (Wt). The Spv-P tool was applied to the existing well (depth 110 [m], dynamic water level 90 [m], static water level 53 [m], well yield 0.1728 [m³h⁻¹]) in the Jeldi area, where estimated water demand is about 50 [m3d-1]. Through the application of the tool, it was designed the water extraction system of the well, obtaining the number of pumps and solar panels necessary for water pumping from the well of Jeldi. Instead, the second tool Wt has been applied in the subsequent phase of extracted water treatment. According to the chemical-physical parameters of the water, Wt returns as output the type of purification treatment(s) necessary to potable the extracted water. In the case of the well of Jeldi, the tool identified a high criticality regarding the turbidity parameter (12 [NTU] vs 5 [NTU]), and a medium criticality regarding the exceeding limits of sodium concentration (234 [mg/L Na⁺] vs 200 [mg/L Na⁺]) and ammonia (0.64 [mg/L NH³-N] vs 0.5 [mg/L NH³-N]). To complete these tools, two specific manuals are provided for the users. The joint use of the two tools would help reduce problems related to access to water resources compared to the current situation and represents a simplified solution for the design of pumping systems and analysis of purification treatments to be performed in undeveloped countries.Keywords: drinking water, Ethiopia, treatments, water pumping
Procedia PDF Downloads 1632349 Hand Gesture Interface for PC Control and SMS Notification Using MEMS Sensors
Authors: Keerthana E., Lohithya S., Harshavardhini K. S., Saranya G., Suganthi S.
Abstract:
In an epoch of expanding human-machine interaction, the development of innovative interfaces that bridge the gap between physical gestures and digital control has gained significant momentum. This study introduces a distinct solution that leverages a combination of MEMS (Micro-Electro-Mechanical Systems) sensors, an Arduino Mega microcontroller, and a PC to create a hand gesture interface for PC control and SMS notification. The core of the system is an ADXL335 MEMS accelerometer sensor integrated with an Arduino Mega, which communicates with a PC via a USB cable. The ADXL335 provides real-time acceleration data, which is processed by the Arduino to detect specific hand gestures. These gestures, such as left, right, up, down, or custom patterns, are interpreted by the Arduino, and corresponding actions are triggered. In the context of SMS notifications, when a gesture indicative of a new SMS is recognized, the Arduino relays this information to the PC through the serial connection. The PC application, designed to monitor the Arduino's serial port, displays these SMS notifications in the serial monitor. This study offers an engaging and interactive means of interfacing with a PC by translating hand gestures into meaningful actions, opening up opportunities for intuitive computer control. Furthermore, the integration of SMS notifications adds a practical dimension to the system, notifying users of incoming messages as they interact with their computers. The use of MEMS sensors, Arduino, and serial communication serves as a promising foundation for expanding the capabilities of gesture-based control systems.Keywords: hand gestures, multiple cables, serial communication, sms notification
Procedia PDF Downloads 732348 2D Numerical Modeling of Ultrasonic Measurements in Concrete: Wave Propagation in a Multiple-Scattering Medium
Authors: T. Yu, L. Audibert, J. F. Chaix, D. Komatitsch, V. Garnier, J. M. Henault
Abstract:
Linear Ultrasonic Techniques play a major role in Non-Destructive Evaluation (NDE) for civil engineering structures in concrete since they can meet operational requirements. Interpretation of ultrasonic measurements could be improved by a better understanding of ultrasonic wave propagation in a multiple scattering medium. This work aims to develop a 2D numerical model of ultrasonic wave propagation in a heterogeneous medium, like concrete, integrating the multiple scattering phenomena in SPECFEM software. The coherent field of multiple scattering is obtained by averaging numerical wave fields, and it is used to determine the effective phase velocity and attenuation corresponding to an equivalent homogeneous medium. First, this model is applied to one scattering element (a cylinder) in a homogenous medium in a linear-elastic system, and its validation is completed thanks to the comparison with analytical solution. Then, some cases of multiple scattering by a set of randomly located cylinders or polygons are simulated to perform parametric studies on the influence of frequency and scatterer size, concentration, and shape. Also, the effective properties are compared with the predictions of Waterman-Truell model to verify its validity. Finally, the mortar viscoelastic behavior is introduced in the simulation in order to considerer the dispersion and the attenuation due to porosity included in the cement paste. In the future, different steps will be developed: The comparisons with experimental results, the interpretation of NDE measurements, and the optimization of NDE parameters before an auscultation.Keywords: attenuation, multiple-scattering medium, numerical modeling, phase velocity, ultrasonic measurements
Procedia PDF Downloads 2772347 Breakthrough Highly-Effective Extraction of Perfluoroctanoic Acid Using Natural Deep Eutectic Solvents
Authors: Sana Eid, Ahmad S. Darwish, Tarek Lemaoui, Maguy Abi Jaoude, Fawzi Banat, Shadi W. Hasan, Inas M. AlNashef
Abstract:
Addressing the growing challenge of per- and polyfluoroalkyl substances (PFAS) pollution in water bodies, this study introduces natural deep eutectic solvents (NADESs) as a pioneering solution for the efficient extraction of perfluorooctanoic acid (PFOA), one of the most persistent and concerning PFAS pollutants. Among the tested NADESs, trioctylphosphine oxide: lauric acid (TOPO:LauA) in a 1:1 molar ratio was distinguished as the most effective, achieving an extraction efficiency of approximately 99.52% at a solvent-to-feed (S:F) ratio of 1:2, room temperature, and neutral pH. This efficiency is achieved within a notably short mixing time of only one min, which is significantly less than the time required by conventional methods, underscoring the potential of TOPO:LauA for rapid and effective PFAS remediation. TOPO:LauA maintained consistent performance across various operational parameters, including a range of initial PFOA concentrations (0.1 ppm to 1000 ppm), temperatures (15 °C to 100 °C), pH values (3 to 9), and S:F ratios (2:3 to 1:7), demonstrating its versatility and robustness. Furthermore, its effectiveness was consistently high over seven consecutive extraction cycles, highlighting TOPO:LauA as a sustainable, environmentally friendly alternative to hazardous organic solvents, with promising applications for reliable, repeatable use in combating persistent water pollutants such as PFOA.Keywords: deep eutectic solvents, natural deep eutectic solvents, perfluorooctanoic acid, water remediation
Procedia PDF Downloads 682346 Microchip-Integrated Computational Models for Studying Gait and Motor Control Deficits in Autism
Authors: Noah Odion, Honest Jimu, Blessing Atinuke Afuape
Abstract:
Introduction: Motor control and gait abnormalities are commonly observed in individuals with autism spectrum disorder (ASD), affecting their mobility and coordination. Understanding the underlying neurological and biomechanical factors is essential for designing effective interventions. This study focuses on developing microchip-integrated wearable devices to capture real-time movement data from individuals with autism. By applying computational models to the collected data, we aim to analyze motor control patterns and gait abnormalities, bridging a crucial knowledge gap in autism-related motor dysfunction. Methods: We designed microchip-enabled wearable devices capable of capturing precise kinematic data, including joint angles, acceleration, and velocity during movement. A cross-sectional study was conducted on individuals with ASD and a control group to collect comparative data. Computational modelling was applied using machine learning algorithms to analyse motor control patterns, focusing on gait variability, balance, and coordination. Finite element models were also used to simulate muscle and joint dynamics. The study employed descriptive and analytical methods to interpret the motor data. Results: The wearable devices effectively captured detailed movement data, revealing significant gait variability in the ASD group. For example, gait cycle time was 25% longer, and stride length was reduced by 15% compared to the control group. Motor control analysis showed a 30% reduction in balance stability in individuals with autism. Computational models successfully predicted movement irregularities and helped identify motor control deficits, particularly in the lower limbs. Conclusions: The integration of microchip-based wearable devices with computational models offers a powerful tool for diagnosing and treating motor control deficits in autism. These results have significant implications for patient care, providing objective data to guide personalized therapeutic interventions. The findings also contribute to the broader field of neuroscience by improving our understanding of the motor dysfunctions associated with ASD and other neurodevelopmental disorders.Keywords: motor control, gait abnormalities, autism, wearable devices, microchips, computational modeling, kinematic analysis, neurodevelopmental disorders
Procedia PDF Downloads 282345 A Multi-Objective Gate Assignment Model Based on Airport Terminal Configuration
Authors: Seyedmirsajad Mokhtarimousavi, Danial Talebi, Hamidreza Asgari
Abstract:
Assigning aircrafts’ activities to appropriate gates is one the most challenging issues in airport authorities’ multiple criteria decision making. The potential financial loss due to imbalances of demand and supply in congested airports, higher occupation rates of gates, and the existing restrictions to expand facilities provide further evidence for the need for an optimal supply allocation. Passengers walking distance, towing movements, extra fuel consumption (as a result of awaiting longer to taxi when taxi conflicts happen at the apron area), etc. are the major traditional components involved in GAP models. In particular, the total cost associated with gate assignment problem highly depends on the airport terminal layout. The study herein presents a well-elaborated literature review on the topic focusing on major concerns, applicable variables and objectives, as well as proposing a three-objective mathematical model for the gate assignment problem. The model has been tested under different concourse layouts in order to check its performance in different scenarios. Results revealed that terminal layout pattern is a significant parameter in airport and that the proposed model is capable of dealing with key constraints and objectives, which supports its practical usability for future decision making tools. Potential solution techniques were also suggested in this study for future works.Keywords: airport management, terminal layout, gate assignment problem, mathematical modeling
Procedia PDF Downloads 2332344 Unusual Weld Failures of Rotary Compressor during Hydraulic Tests: Analysis revealed Boron Induced Cracking in Fusion Zone
Authors: Kaushal Kishore, Vaibhav Jain, Hrishikesh Jugade, Saurabh Hadas, Manashi Adhikary, Goutam Mukhopadhyay, Sandip Bhattacharyya
Abstract:
Rotary air compressors in air conditioners are used to suck excessive volume of air from the atmosphere in a small space to provide drive to the components attached to them. Hydraulic test is one of the most important methods to decide the suitability of these components for usage. In the present application, projection welding is used to join the hot rolled steel sheets after forming for manufacturing of air compressors. These sheets belong to two different high strength low alloy (HSLA) steel grades. It was observed that one batch of compressors made of a particular grade was cracking from the weld, whereas those made of another grade were passing the hydraulic tests. Cracking was repeatedly observed from the weld location. A detailed comparative study of the compressors which failed and successfully passed pressure tests has been presented. Location of crack initiation was identified to be the interface of fusion zone/heat affected zone. Shear dimples were observed on the fracture surface confirming the ductile mode of failure. Hardness profile across the weld revealed a sharp rise in hardness in the fusion zone. This was attributed to the presence of untempered martensitic lath in the fusion zone. A sharp metallurgical notch existed at the heat affected zone/fusion zone interface due to transition in microstructure from acicular ferrite and bainite in HAZ to untempered martensite in the fusion zone. In contrast, welds which did not fail during the pressure tests showed a smooth hardness profile with no abnormal rise in hardness in the fusion zone. The bainitic microstructure was observed in the fusion zone of successful welds. This difference in microstructural constituents in the fusion zone was attributed to the presence of a small amount of boron (0.002 wt. %) in the sheets which were cracking. Trace amount of boron is known to substantially increase the hardenability of HSLA steel, and cooling rate during resolidification in the fusion zone is sufficient to form martensite. Post-weld heat treatment was recommended to transform untempered martensite to tempered martensite with lower hardness.Keywords: compressor, cracking, martensite, weld, boron, hardenability, high strength low alloy steel
Procedia PDF Downloads 1722343 Effect of Permeability Reducing Admixture Utilization on Sulfate Resistance of Self-Consolidating Concrete Mixture
Authors: Ali Mardani-Aghabaglou, Zia Ahmad Faqiri, Semsi Yazici
Abstract:
In this study, the effect of permeability reducing admixture (PRA) utilization on fresh properties, compressive strength and sulfate resistance of self-consolidating concrete (SSC) were investigated. For this aim, two different commercial PRA were used at two utilization ratios as %0.1 and %0.2 wt. CEM I 42.5 R type cement and crushed limestone aggregate having Dmax of 15 mm were used for preparing of SCC mixtures. In all mixtures, cement content, water/cement ratio, and flow value were kept constant as 450 kg, 0.40 and 65 ± 2 cm, respectively. In order to obtain desired flow value, a polycarboxylate ether-based high range water reducing admixture was used at different content. T50 flow time, flow value, L-box, and U-funnel of SCC mixture were measured as fresh properties. 1, 3, 7 and 28-day compressive strength of SCC mixture were obtained on 150 mm cubic specimens. To investigate the sulfate resistance of SCC mixture 75x75x285 mm prismatic specimens were produced. After 28-day water curing, specimens were immersed in %5 sodium sulfate solution during 210 days. The length change of specimens was measured at 5-day time intervals up to 210 days. According to the test results, all fresh properties of SCC mixtures were in accordance with the European federation of specialist construction chemicals and concrete systems (EFNARC) critter for SCC mixtures. The utilization of PRA had no significant effect on compressive strength and fresh properties of SCC mixtures. Regardless of PRA type, sulfate resistance of SCC mixture increased by adding of PRA into the SCC mixtures. The length changes of the SCC mixtures containing %1 and %2 PRA were measured as %8 and %14 less than that of control mixture containing no PRA, respectively.Keywords: permeability reducing admixture, self-consolidating concrete, fresh properties, sulfate resistance
Procedia PDF Downloads 1592342 Polyvinyl Alcohol Processed Templated Polyaniline Films: Preparation, Characterization and Assessment of Tensile Strength
Authors: J. Subbalakshmi, G. Dhruvasamhith, S. M. Hussain
Abstract:
Polyaniline (PANI) is one of the most extensively studied material among the conducting polymers due to its simple synthesis by chemical and electrochemical routes. PANIs have advantages of chemical stability and high conductivity making their commercial applications quite attractive. However, to our knowledge, very little work has been reported on the tensile strength properties of templated PANIs processed with polyvinyl alcohol and also, detailed study has not been carried out. We have investigated the effect of small molecule and polymers as templates on PANI. Stable aqueous colloidal suspensions of trisodium citrate (TSC), poly(ethylenedioxythiophene)-polystyrene sulfonate (PEDOT-PSS), and polyethylene glycol (PEG) templated PANIs were prepared through chemical synthesis, processed with polyvinyl alcohol (PVA) and were fabricated into films by solution casting. Absorption and infra-red spectra were studied to gain insight into the possible molecular interactions. Surface morphology was studied through scanning electron microscope and optical microscope. Interestingly, tensile testing studies revealed least strain for pure PVA when compared to the blends of templated PANI. Furthermore, among the blends, TSC templated PANI possessed maximum elasticity. The ultimate tensile strength for PVA processed, PEG-templated PANI was found to be five times more than other blends considered in this study. We establish structure–property correlation with morphology, spectral characterization and tensile testing studies.Keywords: surface morphology, processed films, polyvinyl alcohol, templated polyanilines, tensile testing
Procedia PDF Downloads 217