Search results for: similarity search
1753 Synthesis and Pharmaco-Potential Evaluation of Quinoline Hybrids
Authors: Paul Awolade, Parvesh Singh
Abstract:
The global threat of pathogenic resistance to available therapeutic agents has become a menace to clinical practice, public health and man’s existence inconsequential. This has therefore led to an exigency in the development of new molecular scaffolds with profound activity profiles. In this vein, a versatile synthetic tool for accessing new molecules by incorporating two or more pharmacophores into a single entity with the unique ability to be recognized by multiple receptors hence leading to an improved bioactivity, known as molecular hybridization, has been explored with tremendous success. Accordingly, aware of the similarity in pharmacological activity spectrum of quinoline and 1,2,3-triazole pharmacophores such as; anti-Alzheimer, anticancer, anti-HIV, antimalarial and antimicrobial to mention but a few, the present study sets out to synthesize hybrids of quinoline and 1,2,3-triazole. The hybrids were accessed via click chemistry using copper catalysed azide-alkyne 1,3-dipolar cycloaddition reaction. All synthesized compounds were evaluated for their pharmaco-potential in an antimicrobial assay out of which the 3-OH derivative emerged as the most active with MIC value of 4 μg/mL against Cryptococcus neoformans; a value superior to standard Fluconazole and comparable to Amphotericin B. Structures of synthesized hybrids were elucidated using appropriate spectroscopic techniques (1H, 13C and 2D NMR, FT-IR and HRMS).Keywords: bioisostere, click chemistry, molecular hybridization, quinoline, 1, 2, 3-triazole
Procedia PDF Downloads 1301752 British English vs. American English: A Comparative Study
Authors: Halima Benazzouz
Abstract:
It is often believed that British English and American English are the foremost varieties of the English Language serving as reference norms for other varieties;that is the reason why they have obviously been compared and contrasted.Meanwhile,the terms “British English” and “American English” are used differently by different people to refer to: 1) Two national varieties each subsuming regional and other sub-varieties standard and non-standard. 2) Two national standard varieties in which each one is only part of the range of English within its own state, but the most prestigious part. 3) Two international varieties, that is each is more than a national variety of the English Language. 4) Two international standard varieties that may or may not each subsume other standard varieties.Furthermore,each variety serves as a reference norm for users of the language elsewhere. Moreover, without a clear identification, as primarily belonging to one variety or the other, British English(Br.Eng) and American English (Am.Eng) are understood as national or international varieties. British English and American English are both “variants” and “varieties” of the English Language, more similar than different.In brief, the following may justify general categories of difference between Standard American English (S.Am.E) and Standard British English (S.Br.e) each having their own sociolectic value: A difference in pronunciation exists between the two foremost varieties, although it is the same spelling, by contrast, a divergence in spelling may be recognized, eventhough the same pronunciation. In such case, the same term is different but there is a similarity in spelling and pronunciation. Otherwise, grammar, syntax, and punctuation are distinctively used to distinguish the two varieties of the English Language. Beyond these differences, spelling is noted as one of the chief sources of variation.Keywords: Greek, Latin, French pronunciation expert, varieties of English language
Procedia PDF Downloads 5011751 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever
Abstract:
Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.Keywords: deep learning model, dengue fever, prediction, optimization
Procedia PDF Downloads 651750 Prediction for the Pressure Drop of Gas-Liquid Cylindrical Cyclone in Sub-Sea Production System
Authors: Xu Rumin, Chen Jianyi, Yue Ti, Wang Yaan
Abstract:
With the rapid development of subsea oil and gas exploitation, the demand for the related underwater process equipment is increasing fast. In order to reduce the energy consuming, people tend to separate the gas and oil phase directly on the seabed. Accordingly, an advanced separator is needed. In this paper, the pressure drop of a new type of separator named Gas Liquid Cylindrical Cyclone (GLCC) which is used in the subsea system is investigated by both experiments and numerical simulation. In the experiments, the single phase flow and gas-liquid two phase flow in GLCC were tested. For the simulation, the performance of GLCC under both laboratory and industrial conditions was calculated. The Eulerian model was implemented to describe the mixture flow field in the GLCC under experimental conditions and industrial oil-natural gas conditions. Furthermore, a relationship among Euler number (Eu), Reynolds number (Re), and Froude number (Fr) is generated according to similarity analysis and simulation data, which can present the GLCC separation performance of pressure drop. These results can give reference to the design and application of GLCC in deep sea.Keywords: dimensionless analysis, gas-liquid cylindrical cyclone, numerical simulation, pressure drop
Procedia PDF Downloads 1701749 Pregnancy and Birth Outcomes of Single versus Multiple Embryo Transfer in Gestational Surrogacy Arrangements: A Systematic Review
Authors: Jutharat Attawet, Alex Y. Wang, Cindy M. Farquhar, Elizabeth A. Sullivan
Abstract:
Background: Adverse maternal and perinatal outcomes of multiple pregnancies resulting from multiple embryo transfers (ET) has become significant concerns. This is particularly relevant for gestational carriers since they usually do not have infertility issues. Single embryo transfer (SET) therefore has been encouraged to assist reproductive technology (ART) practice in order to reduce multiple pregnancies. Objectives: This systematic review aims to investigate the pregnancy and birth outcomes of SET and multiple ET in surrogacy arrangements. Search methods: This study is a systematic review. Electronic databases were searched from CINAHL, Medline, Embase, Scopus and ProQuest for studies from 1980 to 2017. Cross-references and national ART reports were also manual searchings. Articles without restriction of English language and study types were accessed. Carrier cycles involving in SET and multiple ET were identified in database searching. The main outcome measures including clinical pregnancy, live delivery and multiple deliveries per gestational carrier cycle were compared between SET and multiple ET. Mantel-Haenzel risk ratios (RRs) with 95% confidence intervals (CIs), using the numbers of outcome events in SET and multiple ET of each study were calculated suing RevMan5.3. Outcomes: The search returned 97 articles of which 5 met the inclusion criteria. Approximately 50% of carrier cycles were transferred a single embryo and 50% were transferred more than one embryo. The clinical pregnancy rate (CPR) was 39% for SET and 53% for multiple ET, which was not significantly different with RR = 0.83 (95% CI: 0.67-1.03). The live delivery rate was 33% for SET and 57% for multiple ET which was not significantly different with RR = 0.78 (95% CI: 0.61-1.00). The multiple delivery rate per carrier was greater risks in the multiple ET carrier cycles (RR =0.4, 95% CI: 0.01-0.26). There were 104 sets of twins (including one set of twins selectively reduced from triplets to twins) and 1 set of triples in the multiple ET carrier cycle. In the SET carrier cycles, there were 2 sets of twins. Significance of the study: SET should be advocated among surrogate carriers to prevent multiple pregnancies and subsequent adverse outcomes for both carrier and baby. Surrogacy practice should be reviewed and surrogate carriers should be fully informed of the risk of adverse maternal and birth outcome of multiple pregnancies due to multiple embryo transfers.Keywords: assisted reproduction, birth outcomes, carrier, gestational surrogacy, multiple embryo transfer, multiple pregnancy, pregnancy outcomes, single embryo transfer, surrogate mother, systematic review
Procedia PDF Downloads 4041748 Development of Peptide Inhibitors against Dengue Virus Infection by in Silico Design
Authors: Aussara Panya, Nunghathai Sawasdee, Mutita Junking, Chatchawan Srisawat, Kiattawee Choowongkomon, Pa-Thai Yenchitsomanus
Abstract:
Dengue virus (DENV) infection is a global public health problem with approximately 100 million infected cases a year. Presently, there is no approved vaccine or effective drug available; therefore, the development of anti-DENV drug is urgently needed. The clinical reports revealing the positive association between the disease severity and viral titer has been reported previously suggesting that the anti-DENV drug therapy can possibly ameliorate the disease severity. Although several anti-DENV agents showed inhibitory activities against DENV infection, to date none of them accomplishes clinical use in the patients. The surface envelope (E) protein of DENV is critical for the viral entry step, which includes attachment and membrane fusion; thus, the blocking of envelope protein is an attractive strategy for anti-DENV drug development. To search the safe anti-DENV agent, this study aimed to search for novel peptide inhibitors to counter DENV infection through the targeting of E protein using a structure-based in silico design. Two selected strategies has been used including to identify the peptide inhibitor which interfere the membrane fusion process whereby the hydrophobic pocket on the E protein was the target, the destabilization of virion structure organization through the disruption of the interaction between the envelope and membrane proteins, respectively. The molecular docking technique has been used in the first strategy to search for the peptide inhibitors that specifically bind to the hydrophobic pocket. The second strategy, the peptide inhibitor has been designed to mimic the ectodomain portion of membrane protein to disrupt the protein-protein interaction. The designed peptides were tested for the effects on cell viability to measure the toxic to peptide to the cells and their inhibitory assay to inhibit the DENV infection in Vero cells. Furthermore, their antiviral effects on viral replication, intracellular protein level and viral production have been observed by using the qPCR, cell-based flavivirus immunodetection and immunofluorescence assay. None of tested peptides showed the significant effect on cell viability. The small peptide inhibitors achieved from molecular docking, Glu-Phe (EF), effectively inhibited DENV infection in cell culture system. Its most potential effect was observed for DENV2 with a half maximal inhibition concentration (IC50) of 96 μM, but it partially inhibited other serotypes. Treatment of EF at 200 µM on infected cells also significantly reduced the viral genome and protein to 83.47% and 84.15%, respectively, corresponding to the reduction of infected cell numbers. An additional approach was carried out by using peptide mimicking membrane (M) protein, namely MLH40. Treatment of MLH40 caused the reduction of foci formation in four individual DENV serotype (DENV1-4) with IC50 of 24-31 μM. Further characterization suggested that the MLH40 specifically blocked viral attachment to host membrane, and treatment with 100 μM could diminish 80% of viral attachment. In summary, targeting the hydrophobic pocket and M-binding site on the E protein by using the peptide inhibitors could inhibit DENV infection. The results provide proof of-concept for the development of antiviral therapeutic peptide inhibitors to counter DENV infection through the use of a structure-based design targeting conserved viral protein.Keywords: dengue virus, dengue virus infection, drug design, peptide inhibitor
Procedia PDF Downloads 3571747 Automatic Intelligent Analysis of Malware Behaviour
Authors: Hermann Dornhackl, Konstantin Kadletz, Robert Luh, Paul Tavolato
Abstract:
In this paper we describe the use of formal methods to model malware behaviour. The modelling of harmful behaviour rests upon syntactic structures that represent malicious procedures inside malware. The malicious activities are modelled by a formal grammar, where API calls’ components are the terminals and the set of API calls used in combination to achieve a goal are designated non-terminals. The combination of different non-terminals in various ways and tiers make up the attack vectors that are used by harmful software. Based on these syntactic structures a parser can be generated which takes execution traces as input for pattern recognition.Keywords: malware behaviour, modelling, parsing, search, pattern matching
Procedia PDF Downloads 3321746 Facilitating Primary Care Practitioners to Improve Outcomes for People With Oropharyngeal Dysphagia Living in the Community: An Ongoing Realist Review
Authors: Caroline Smith, Professor Debi Bhattacharya, Sion Scott
Abstract:
Introduction: Oropharyngeal Dysphagia (OD) effects around 15% of older people, however it is often unrecognised and under diagnosed until they are hospitalised. There is a need for primary care healthcare practitioners (HCPs) to assume a proactive role in identifying and managing OD to prevent adverse outcomes such as aspiration pneumonia. Understanding the determinants of primary care HCPs undertaking this new behaviour provides the intervention targets for addressing. This realist review, underpinned by the Theoretical Domains Framework (TDF), aims to synthesise relevant literature and develop programme theories to understand what interventions work, how they work and under what circumstances to facilitate HCPs to prevent harm from OD. Combining realist methodology with behavioural science will permit conceptualisation of intervention components as theoretical behavioural constructs, thus informing the design of a future behaviour change intervention. Furthermore, through the TDF’s linkage to a taxonomy of behaviour change techniques, we will identify corresponding behaviour change techniques to include in this intervention. Methods & analysis: We are following the five steps for undertaking a realist review: 1) clarify the scope 2) Literature search 3) appraise and extract data 4) evidence synthesis 5) evaluation. We have searched Medline, Google scholar, PubMed, EMBASE, CINAHL, AMED, Scopus and PsycINFO databases. We are obtaining additional evidence through grey literature, snowball sampling, lateral searching and consulting the stakeholder group. Literature is being screened, evaluated and synthesised in Excel and Nvivo. We will appraise evidence in relation to its relevance and rigour. Data will be extracted and synthesised according to its relation to Initial programme theories (IPTs). IPTs were constructed after the preliminary literature search, informed by the TDF and with input from a stakeholder group of patient and public involvement advisors, general practitioners, speech and language therapists, geriatricians and pharmacists. We will follow the Realist and Meta-narrative Evidence Syntheses: Evolving Standards (RAMESES) quality and publication standards to report study results. Results: In this ongoing review our search has identified 1417 manuscripts with approximately 20% progressing to full text screening. We inductively generated 10 IPTs that hypothesise practitioners require: the knowledge to spot the signs and symptoms of OD; the skills to provide initial advice and support; and access to resources in their working environment to support them conducting these new behaviours. We mapped the 10 IPTs to 8 TDF domains and then generated a further 12 IPTs deductively using domain definitions to fulfil the remaining 6 TDF domains. Deductively generated IPTs broadened our thinking to consider domains such as ‘Emotion,’ ‘Optimism’ and ‘Social Influence’, e.g. If practitioners perceive that patients, carers and relatives expect initial advice and support, then they will be more likely to provide this, because they will feel obligated to do so. After prioritisation with stakeholders using a modified nominal group technique approach, a maximum of 10 IPTs will progress to test against the literature.Keywords: behaviour change, deglutition disorders, primary healthcare, realist review
Procedia PDF Downloads 851745 Comparative Analysis of Edge Detection Techniques for Extracting Characters
Authors: Rana Gill, Chandandeep Kaur
Abstract:
Segmentation of images can be implemented using different fundamental algorithms like edge detection (discontinuity based segmentation), region growing (similarity based segmentation), iterative thresholding method. A comprehensive literature review relevant to the study gives description of different techniques for vehicle number plate detection and edge detection techniques widely used on different types of images. This research work is based on edge detection techniques and calculating threshold on the basis of five edge operators. Five operators used are Prewitt, Roberts, Sobel, LoG and Canny. Segmentation of characters present in different type of images like vehicle number plate, name plate of house and characters on different sign boards are selected as a case study in this work. The proposed methodology has seven stages. The proposed system has been implemented using MATLAB R2010a. Comparison of all the five operators has been done on the basis of their performance. From the results it is found that Canny operators produce best results among the used operators and performance of different edge operators in decreasing order is: Canny>Log>Sobel>Prewitt>Roberts.Keywords: segmentation, edge detection, text, extracting characters
Procedia PDF Downloads 4261744 Identification and Characterization of 18S rRNA Gene of Demodex Canis From the Dog Population of Mizoram, India
Authors: Moneesh Thakur, Hridayesh Prasad, Nikitasha Bora, Parimal Roy Choudhary, A. K. Samanta, Sanjeev Kumar
Abstract:
Canine demodicosis is a common parasitic condition which involves dog skin. Demodicosis in dogs is due the prominent growth of Demodex. Out of various canine Demodex spp., Demodex canis is the most often involved species. Canine demodicosis can occur as either a localized or generalized form of demodicosis severely affect the dogs and in non-treated dogs may cause death. This study was planned with the aim to screen and characterize the 18S rRNA gene of isolated Demodex canis. A total of 1200 dogs were screened during this study period. The skin scrapings of all the suspected dogs were examined under a microscope at 100X magnification for the presence of Demodex canis. The skin scrapings positive for Demodex canis were examined using PCR for confirmation. A total of 35 dogs were confirmed a positive result for D. canis based on 18S rRNA gene amplification by PCR. Further, the 18S rRNA gene of isolated Demodex canis was cloned and sequenced for genome analysis. On the sequence analysis, it was found that isolated sequence (GenBank Accession No. MK177513) had close similarity (99.7%) to that of D. canis genotype of China (Accession No. MG372254).Keywords: PCR, phylogenetic analysis, cloning and sequening, Demodex canis
Procedia PDF Downloads 921743 Evaluation of Genetic Diversity in Iranian Native Silkworm Bombyx mori Using RAPD (Random Amplification of Polymorphic DNA) Molecular Marker
Authors: Rouhollah Radjabi, Mojtaba Zarei, Elham Sanatgar, Hossein Shouhani
Abstract:
RAPD molecular markers in order to discrimination of the Iranian native Bombyx mori silkworm breeds were used. DNA extraction using phenol - chloroform was and the qualitative and quantitative measurements of extracted DNA and its dilution, the obtained bands on agarose gel 1.5 percent were marked and analyzed. Results showed that the bands are observed between 250-2500 bp and most bands have been observed as Gilani-orange, the lowest bands observed are Khorasani-lemon. Primer 3 with 100% polymorphism with the highest polymorphism and primer 2 with 61.5 polymorphism had the lowest percentage of polymorphism. Cluster analysis of races and placed them in three main groups, races Gilani - orange, Baghdad and Khorasani -pink if the first group, camel's thorn, Herati - yellow race was alone in the second group and Khorasani – lemon was alone in the third group. The greatest similarity between the races, between Khorasani- pink and Baghdad (0.64). RAPD markers have been determined different silkworm races based on various morphological or economic characteristics except geographic origin.Keywords: silkworm, molecular marker, RAPD, Iran
Procedia PDF Downloads 4311742 Multimodal Direct Neural Network Positron Emission Tomography Reconstruction
Authors: William Whiteley, Jens Gregor
Abstract:
In recent developments of direct neural network based positron emission tomography (PET) reconstruction, two prominent architectures have emerged for converting measurement data into images: 1) networks that contain fully-connected layers; and 2) networks that primarily use a convolutional encoder-decoder architecture. In this paper, we present a multi-modal direct PET reconstruction method called MDPET, which is a hybrid approach that combines the advantages of both types of networks. MDPET processes raw data in the form of sinograms and histo-images in concert with attenuation maps to produce high quality multi-slice PET images (e.g., 8x440x440). MDPET is trained on a large whole-body patient data set and evaluated both quantitatively and qualitatively against target images reconstructed with the standard PET reconstruction benchmark of iterative ordered subsets expectation maximization. The results show that MDPET outperforms the best previously published direct neural network methods in measures of bias, signal-to-noise ratio, mean absolute error, and structural similarity.Keywords: deep learning, image reconstruction, machine learning, neural network, positron emission tomography
Procedia PDF Downloads 1111741 An Architectural Approach for the Dynamic Adaptation of Services-Based Software
Authors: Mohhamed Yassine Baroudi, Abdelkrim Benammar, Fethi Tarik Bendimerad
Abstract:
This paper proposes software architecture for dynamical service adaptation. The services are constituted by reusable software components. The adaptation’s goal is to optimize the service function of their execution context. For a first step, the context will take into account just the user needs but other elements will be added. A particular feature in our proposition is the profiles that are used not only to describe the context’s elements but also the components itself. An adapter analyzes the compatibility between all these profiles and detects the points where the profiles are not compatibles. The same Adapter search and apply the possible adaptation solutions: component customization, insertion, extraction or replacement.Keywords: adaptative service, software component, service, dynamic adaptation
Procedia PDF Downloads 2981740 Factors Associated with Risky Sexual Behaviour in Adolescent Girls and Young Women in Cambodia: A Systematic Review
Authors: Farwa Rizvi, Joanne Williams, Humaira Maheen, Elizabeth Hoban
Abstract:
There is an increase in risky sexual behavior and unsafe sex in adolescent girls and young women aged 15 to 24 years in Cambodia, which negatively affects their reproductive health by increasing the risk of contracting sexually transmitted infections and unintended pregnancies. Risky sexual behavior includes ‘having sex at an early age, having multiple sexual partners, having sex while under the influence of alcohol or drugs, and unprotected sexual behaviors’. A systematic review of quantitative research conducted in Cambodia was undertaken, using the theoretical framework of the Social Ecological Model to identify the personal, social and cultural factors associated with risky sexual behavior and unsafe sex in young Cambodian women. PRISMA guidelines were used to search databases including Medline Complete, PsycINFO, CINAHL Complete, Academic Search Complete, Global Health, and Social Work Abstracts. Additional searches were conducted in Science Direct, Google Scholar and in the grey literature sources. A risk-of-bias tool developed explicitly for the systematic review of cross-sectional studies was used. Summary item on the overall risk of study bias after the inter-rater response showed that the risk-of-bias was high in two studies, moderate in one study and low in one study. The search strategy included a combination of subject terms and free text terms. The medical subject headings (MeSH) terms included were; contracept* or ‘birth control’ or ‘family planning’ or pregnan* or ‘safe sex’ or ‘protected intercourse’ or ‘unprotected intercourse’ or ‘protected sex’ or ‘unprotected sex’ or ‘risky sexual behaviour*’ or ‘abort*’ or ‘planned parenthood’ or ‘unplanned pregnancy’ AND ( barrier* or obstacle* or challenge* or knowledge or attitude* or factor* or determinant* or choic* or uptake or discontinu* or acceptance or satisfaction or ‘needs assessment’ or ‘non-use’ or ‘unmet need’ or ‘decision making’ ) AND Cambodia*. Initially, 300 studies were identified by using key words and finally, four quantitative studies were selected based on the inclusion criteria. The four studies were published between 2010 and 2016. The study participants ranged in age from 10-24 years, single or married, with 3 to 10 completed years of education. The mean age at sexual debut was reported to be 18 years. Using the perspective of the Social Ecological Model, risky sexual behavior was associated with individual-level factors including young age at sexual debut, low education, unsafe sex under the influence of alcohol and substance abuse, multiple sexual partners or transactional sex. Family level factors included living away from parents, orphan status and low levels of family support. Peer and partner level factors included peer delinquency and lack of condom use. Low socioeconomic status at the society level was also associated with risky sexual behaviour. There is scant research on sexual and reproductive health of adolescent girls and young women in Cambodia. Individual, family and social factors were significantly associated with risky sexual behaviour. More research is required to inform potential preventive strategies and policies that address young women’s sexual and reproductive health.Keywords: adolescents, high-risk sex, sexual activity, unplanned pregnancies
Procedia PDF Downloads 2451739 The Dynamics of Unsteady Squeezing Flow between Parallel Plates (Two-Dimensional)
Authors: Jiya Mohammed, Ibrahim Ismail Giwa
Abstract:
Unsteady squeezing flow of a viscous fluid between parallel plates is considered. The two plates are considered to be approaching each other symmetrically, causing the squeezing flow. Two-dimensional rectangular Cartesian coordinate is considered. The Navier-Stokes equation was reduced using similarity transformation to a single fourth order non-linear ordinary differential equation. The energy equation was transformed to a second order coupled differential equation. We obtained solution to the resulting ordinary differential equations via Homotopy Perturbation Method (HPM). HPM deforms a differential problem into a set of problem that are easier to solve and it produces analytic approximate expression in the form of an infinite power series by using only sixth and fifth terms for the velocity and temperature respectively. The results reveal that the proposed method is very effective and simple. Comparisons among present and existing solutions were provided and it is shown that the proposed method is in good agreement with Variation of Parameter Method (VPM). The effects of appropriate dimensionless parameters on the velocity profiles and temperature field are demonstrated with the aid of comprehensive graphs and tables.Keywords: coupled differential equation, Homotopy Perturbation Method, plates, squeezing flow
Procedia PDF Downloads 4741738 Hybridized Approach for Distance Estimation Using K-Means Clustering
Authors: Ritu Vashistha, Jitender Kumar
Abstract:
Clustering using the K-means algorithm is a very common way to understand and analyze the obtained output data. When a similar object is grouped, this is called the basis of Clustering. There is K number of objects and C number of cluster in to single cluster in which k is always supposed to be less than C having each cluster to be its own centroid but the major problem is how is identify the cluster is correct based on the data. Formulation of the cluster is not a regular task for every tuple of row record or entity but it is done by an iterative process. Each and every record, tuple, entity is checked and examined and similarity dissimilarity is examined. So this iterative process seems to be very lengthy and unable to give optimal output for the cluster and time taken to find the cluster. To overcome the drawback challenge, we are proposing a formula to find the clusters at the run time, so this approach can give us optimal results. The proposed approach uses the Euclidian distance formula as well melanosis to find the minimum distance between slots as technically we called clusters and the same approach we have also applied to Ant Colony Optimization(ACO) algorithm, which results in the production of two and multi-dimensional matrix.Keywords: ant colony optimization, data clustering, centroids, data mining, k-means
Procedia PDF Downloads 1281737 Obstacle Classification Method Based on 2D LIDAR Database
Authors: Moohyun Lee, Soojung Hur, Yongwan Park
Abstract:
In this paper is proposed a method uses only LIDAR system to classification an obstacle and determine its type by establishing database for classifying obstacles based on LIDAR. The existing LIDAR system, in determining the recognition of obstruction in an autonomous vehicle, has an advantage in terms of accuracy and shorter recognition time. However, it was difficult to determine the type of obstacle and therefore accurate path planning based on the type of obstacle was not possible. In order to overcome this problem, a method of classifying obstacle type based on existing LIDAR and using the width of obstacle materials was proposed. However, width measurement was not sufficient to improve accuracy. In this research, the width data was used to do the first classification; database for LIDAR intensity data by four major obstacle materials on the road were created; comparison is made to the LIDAR intensity data of actual obstacle materials; and determine the obstacle type by finding the one with highest similarity values. An experiment using an actual autonomous vehicle under real environment shows that data declined in quality in comparison to 3D LIDAR and it was possible to classify obstacle materials using 2D LIDAR.Keywords: obstacle, classification, database, LIDAR, segmentation, intensity
Procedia PDF Downloads 3491736 Double Burden of Malnutrition among Children under Five in Sub-Saharan Africa and Other Least Developed Countries: A Systematic Review
Authors: Getenet Dessie, Jinhu Li, Son Nghiem, Tinh Doan
Abstract:
Background: Concerns regarding malnutrition have evolved from focusing solely on single forms to addressing the simultaneous occurrence of multiple types, commonly referred to as the double or triple burden of malnutrition. Nevertheless, data concerning the concurrent occurrence of various types of malnutrition are scarce. Therefore, this systematic review and meta-analysis aims to assess the pooled prevalence of the double burden of malnutrition among children under five in Sub-Saharan Africa and other least-developed countries (LDCs). Methods: Electronic, web-based searches were conducted from January 15 to June 28, 2023, across several databases, including PubMed, Embase, Google Scholar, and the World Health Organization's Hinari portal, as well as other search engines, to identify primary studies published up to June 28, 2023. Laboratory-based cross-sectional studies on children under the age of five were included. Two independent authors assessed the risk of bias and the quality of the identified articles. The primary outcomes of this study were micronutrient deficiencies and the comorbidity of stunting and anemia, as well as wasting and anemia. The random-effects model was utilized for analysis. The association of identified variables with the various forms of malnutrition was also assessed using adjusted odds ratios (AOR) with a 95% confidence interval (CI). This review was registered in PROSPERO with the reference number CRD42023409483. Findings: The electronic search generated 6,087 articles, 93 of which matched the inclusion criteria for the final meta-analysis. Micronutrient deficiencies were prevalent among children under five in Sub-Saharan Africa and other LDCs, with rates ranging from 16.63% among 25,169 participants for vitamin A deficiency to 50.90% among 3,936 participants for iodine deficiency. Iron deficiency anemia affected 20.56% of the 63,121 participants. The combined prevalence of wasting anemia and stunting anemia was 5.41% among 64,709 participants and 19.98% among 66,016 participants, respectively. Both stunting and vitamin A supplementation were associated with vitamin A and iron deficiencies, with adjusted odds ratios (AOR) of 1.54 (95% CI: 1.01, 2.37) and 1.37 (95% CI: 1.21, 1.55), respectively. Interpretation: The prevalence of the double burden of malnutrition among children under the age of five was notably high in Sub-Saharan Africa and other LDCs. These findings indicate a need for increased attention and a focus on understanding the factors influencing this double burden of malnutrition.Keywords: children, Sub-Saharan Africa, least developed countries, double burden of malnutrition, systematic review, meta-analysis
Procedia PDF Downloads 811735 Descent Algorithms for Optimization Algorithms Using q-Derivative
Authors: Geetanjali Panda, Suvrakanti Chakraborty
Abstract:
In this paper, Newton-like descent methods are proposed for unconstrained optimization problems, which use q-derivatives of the gradient of an objective function. First, a local scheme is developed with alternative sufficient optimality condition, and then the method is extended to a global scheme. Moreover, a variant of practical Newton scheme is also developed introducing a real sequence. Global convergence of these schemes is proved under some mild conditions. Numerical experiments and graphical illustrations are provided. Finally, the performance profiles on a test set show that the proposed schemes are competitive to the existing first-order schemes for optimization problems.Keywords: Descent algorithm, line search method, q calculus, Quasi Newton method
Procedia PDF Downloads 3981734 Deep Graph Embeddings for the Analysis of Short Heartbeat Interval Time Series
Authors: Tamas Madl
Abstract:
Sudden cardiac death (SCD) constitutes a large proportion of cardiovascular mortalities, provides little advance warning, and the risk is difficult to recognize based on ubiquitous, low cost medical equipment such as the standard, 12-lead, ten second ECG. Autonomic abnormalities have been shown to be strongly predictive of SCD risk; yet current methods are not trivially applicable to the brevity and low temporal and electrical resolution of standard ECGs. Here, we build horizontal visibility graph representations of very short inter-beat interval time series, and perform unsuper- vised representation learning in order to convert these variable size objects into fixed-length vectors preserving similarity rela- tions. We show that such representations facilitate classification into healthy vs. at-risk patients on two different datasets, the Mul- tiparameter Intelligent Monitoring in Intensive Care II and the PhysioNet Sudden Cardiac Death Holter Database. Our results suggest that graph representation learning of heartbeat interval time series facilitates robust classification even in sequences as short as ten seconds.Keywords: sudden cardiac death, heart rate variability, ECG analysis, time series classification
Procedia PDF Downloads 2341733 Social and Peer Influences in College Choice
Authors: Ali Bhayani
Abstract:
College is a high involvement decision making where students are expected to evaluate several college offerings before selecting a college or a course to study. However, even in high involvement product like college, students get influenced by opinion leaders and suffer from social contagion. This narrative style study, involving 98 first year students, was able to demonstrate that social contagion differs with regards to gender, ethnicity and personality. Recommendations from students with academically strong background would impact on the college choice of the undergraduate students and limit information search. Study was able to identify the incidence of anchoring heuristics amongst the students. Managerial implications with regards to design of marketing campaign follows at the end of the study.Keywords: social contagion, opinion leaders, higher education, consumer behavior
Procedia PDF Downloads 3651732 A Review of Existing Turnover Intention Theories
Authors: Pauline E. Ngo-Henha
Abstract:
Existing turnover intention theories are reviewed in this paper. This review was conducted with the help of the search keyword “turnover intention theories” in Google Scholar during the month of July 2017. These theories include: The Theory of Organizational Equilibrium (TOE), Social Exchange Theory, Job Embeddedness Theory, Herzberg’s Two-Factor Theory, the Resource-Based View, Equity Theory, Human Capital Theory, and the Expectancy Theory. One of the limitations of this review paper is that data were only collected from Google Scholar where many papers were sometimes not freely accessible. However, this paper attempts to contribute to the research in clarifying the distinction between theories and models in the context of turnover intention.Keywords: Literature Review, Theory, Turnover, Turnover intention
Procedia PDF Downloads 4551731 Modeling the Acquisition of Expertise in a Sequential Decision-Making Task
Authors: Cristóbal Moënne-Loccoz, Rodrigo C. Vergara, Vladimir López, Domingo Mery, Diego Cosmelli
Abstract:
Our daily interaction with computational interfaces is plagued of situations in which we go from inexperienced users to experts through self-motivated exploration of the same task. In many of these interactions, we must learn to find our way through a sequence of decisions and actions before obtaining the desired result. For instance, when drawing cash from an ATM machine, choices are presented in a step-by-step fashion so that a specific sequence of actions must be performed in order to produce the expected outcome. But, as they become experts in the use of such interfaces, do users adopt specific search and learning strategies? Moreover, if so, can we use this information to follow the process of expertise development and, eventually, predict future actions? This would be a critical step towards building truly adaptive interfaces that can facilitate interaction at different moments of the learning curve. Furthermore, it could provide a window into potential mechanisms underlying decision-making behavior in real world scenarios. Here we tackle this question using a simple game interface that instantiates a 4-level binary decision tree (BDT) sequential decision-making task. Participants have to explore the interface and discover an underlying concept-icon mapping in order to complete the game. We develop a Hidden Markov Model (HMM)-based approach whereby a set of stereotyped, hierarchically related search behaviors act as hidden states. Using this model, we are able to track the decision-making process as participants explore, learn and develop expertise in the use of the interface. Our results show that partitioning the problem space into such stereotyped strategies is sufficient to capture a host of exploratory and learning behaviors. Moreover, using the modular architecture of stereotyped strategies as a Mixture of Experts, we are able to simultaneously ask the experts about the user's most probable future actions. We show that for those participants that learn the task, it becomes possible to predict their next decision, above chance, approximately halfway through the game. Our long-term goal is, on the basis of a better understanding of real-world decision-making processes, to inform the construction of interfaces that can establish dynamic conversations with their users in order to facilitate the development of expertise.Keywords: behavioral modeling, expertise acquisition, hidden markov models, sequential decision-making
Procedia PDF Downloads 2521730 Ensemble of Deep CNN Architecture for Classifying the Source and Quality of Teff Cereal
Authors: Belayneh Matebie, Michael Melese
Abstract:
The study focuses on addressing the challenges in classifying and ensuring the quality of Eragrostis Teff, a small and round grain that is the smallest cereal grain. Employing a traditional classification method is challenging because of its small size and the similarity of its environmental characteristics. To overcome this, this study employs a machine learning approach to develop a source and quality classification system for Teff cereal. Data is collected from various production areas in the Amhara regions, considering two types of cereal (high and low quality) across eight classes. A total of 5,920 images are collected, with 740 images for each class. Image enhancement techniques, including scaling, data augmentation, histogram equalization, and noise removal, are applied to preprocess the data. Convolutional Neural Network (CNN) is then used to extract relevant features and reduce dimensionality. The dataset is split into 80% for training and 20% for testing. Different classifiers, including FVGG16, FINCV3, QSCTC, EMQSCTC, SVM, and RF, are employed for classification, achieving accuracy rates ranging from 86.91% to 97.72%. The ensemble of FVGG16, FINCV3, and QSCTC using the Max-Voting approach outperforms individual algorithms.Keywords: Teff, ensemble learning, max-voting, CNN, SVM, RF
Procedia PDF Downloads 531729 Image Analysis for Obturator Foramen Based on Marker-controlled Watershed Segmentation and Zernike Moments
Authors: Seda Sahin, Emin Akata
Abstract:
Obturator foramen is a specific structure in pelvic bone images and recognition of it is a new concept in medical image processing. Moreover, segmentation of bone structures such as obturator foramen plays an essential role for clinical research in orthopedics. In this paper, we present a novel method to analyze the similarity between the substructures of the imaged region and a hand drawn template, on hip radiographs to detect obturator foramen accurately with integrated usage of Marker-controlled Watershed segmentation and Zernike moment feature descriptor. Marker-controlled Watershed segmentation is applied to seperate obturator foramen from the background effectively. Zernike moment feature descriptor is used to provide matching between binary template image and the segmented binary image for obturator foramens for final extraction. The proposed method is tested on randomly selected 100 hip radiographs. The experimental results represent that our method is able to segment obturator foramens with % 96 accuracy.Keywords: medical image analysis, segmentation of bone structures on hip radiographs, marker-controlled watershed segmentation, zernike moment feature descriptor
Procedia PDF Downloads 4341728 Self-Medication with Antibiotics, Evidence of Factors Influencing the Practice in Low and Middle-Income Countries: A Systematic Scoping Review
Authors: Neusa Fernanda Torres, Buyisile Chibi, Lyn E. Middleton, Vernon P. Solomon, Tivani P. Mashamba-Thompson
Abstract:
Background: Self-medication with antibiotics (SMA) is a global concern, with a higher incidence in low and middle-income countries (LMICs). Despite intense world-wide efforts to control and promote the rational use of antibiotics, continuing practices of SMA systematically exposes individuals and communities to the risk of antibiotic resistance and other undesirable antibiotic side effects. Moreover, it increases the health systems costs of acquiring more powerful antibiotics to treat the resistant infection. This review thus maps evidence on the factors influencing self-medication with antibiotics in these settings. Methods: The search strategy for this review involved electronic databases including PubMed, Web of Knowledge, Science Direct, EBSCOhost (PubMed, CINAHL with Full Text, Health Source - Consumer Edition, MEDLINE), Google Scholar, BioMed Central and World Health Organization library, using the search terms:’ Self-Medication’, ‘antibiotics’, ‘factors’ and ‘reasons’. Our search included studies published from 2007 to 2017. Thematic analysis was performed to identify the patterns of evidence on SMA in LMICs. The mixed method quality appraisal tool (MMAT) version 2011 was employed to assess the quality of the included primary studies. Results: Fifteen studies met the inclusion criteria. Studies included population from the rural (46,4%), urban (33,6%) and combined (20%) settings, of the following LMICs: Guatemala (2 studies), India (2), Indonesia (2), Kenya (1), Laos (1), Nepal (1), Nigeria (2), Pakistan (2), Sri Lanka (1), and Yemen (1). The total sample size of all 15 included studies was 7676 participants. The findings of the review show a high prevalence of SMA ranging from 8,1% to 93%. Accessibility, affordability, conditions of health facilities (long waiting, quality of services and workers) as long well as poor health-seeking behavior and lack of information are factors that influence SMA in LMICs. Antibiotics such as amoxicillin, metronidazole, amoxicillin/clavulanic, ampicillin, ciprofloxacin, azithromycin, penicillin, and tetracycline, were the most frequently used for SMA. The major sources of antibiotics included pharmacies, drug stores, leftover drugs, family/friends and old prescription. Sore throat, common cold, cough with mucus, headache, toothache, flu-like symptoms, pain relief, fever, running nose, toothache, upper respiratory tract infections, urinary symptoms, urinary tract infection were the common disease symptoms managed with SMA. Conclusion: Although the information on factors influencing SMA in LMICs is unevenly distributed, the available information revealed the existence of research evidence on antibiotic self-medication in some countries of LMICs. SMA practices are influenced by social-cultural determinants of health and frequently associated with poor dispensing and prescribing practices, deficient health-seeking behavior and consequently with inappropriate drug use. Therefore, there is still a need to conduct further studies (qualitative, quantitative and randomized control trial) on factors and reasons for SMA to correctly address the public health problem in LMICs.Keywords: antibiotics, factors, reasons, self-medication, low and middle-income countries (LMICs)
Procedia PDF Downloads 2151727 Visual Search Based Indoor Localization in Low Light via RGB-D Camera
Authors: Yali Zheng, Peipei Luo, Shinan Chen, Jiasheng Hao, Hong Cheng
Abstract:
Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments.Keywords: indoor navigation, low light, RGB-D camera, vision based
Procedia PDF Downloads 4601726 Image Features Comparison-Based Position Estimation Method Using a Camera Sensor
Authors: Jinseon Song, Yongwan Park
Abstract:
In this paper, propose method that can user’s position that based on database is built from single camera. Previous positioning calculate distance by arrival-time of signal like GPS (Global Positioning System), RF(Radio Frequency). However, these previous method have weakness because these have large error range according to signal interference. Method for solution estimate position by camera sensor. But, signal camera is difficult to obtain relative position data and stereo camera is difficult to provide real-time position data because of a lot of image data, too. First of all, in this research we build image database at space that able to provide positioning service with single camera. Next, we judge similarity through image matching of database image and transmission image from user. Finally, we decide position of user through position of most similar database image. For verification of propose method, we experiment at real-environment like indoor and outdoor. Propose method is wide positioning range and this method can verify not only position of user but also direction.Keywords: positioning, distance, camera, features, SURF(Speed-Up Robust Features), database, estimation
Procedia PDF Downloads 3491725 Investment Projects Selection Problem under Hesitant Fuzzy Environment
Authors: Irina Khutsishvili
Abstract:
In the present research, a decision support methodology for the multi-attribute group decision-making (MAGDM) problem is developed, namely for the selection of investment projects. The objective of the investment project selection problem is to choose the best project among the set of projects, seeking investment, or to rank all projects in descending order. The project selection is made considering a set of weighted attributes. To evaluate the attributes in our approach, expert assessments are used. In the proposed methodology, lingual expressions (linguistic terms) given by all experts are used as initial attribute evaluations, since they are the most natural and convenient representation of experts' evaluations. Then lingual evaluations are converted into trapezoidal fuzzy numbers, and the aggregate trapezoidal hesitant fuzzy decision matrix will be built. The case is considered when information on the attribute weights is completely unknown. The attribute weights are identified based on the De Luca and Termini information entropy concept, determined in the context of hesitant fuzzy sets. The decisions are made using the extended Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) method under a hesitant fuzzy environment. Hence, a methodology is based on a trapezoidal valued hesitant fuzzy TOPSIS decision-making model with entropy weights. The ranking of alternatives is performed by the proximity of their distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). For this purpose, the weighted hesitant Hamming distance is used. An example of investment decision-making is shown that clearly explains the procedure of the proposed methodology.Keywords: In the present research, a decision support methodology for the multi-attribute group decision-making (MAGDM) problem is developed, namely for the selection of investment projects. The objective of the investment project selection problem is to choose the best project among the set of projects, seeking investment, or to rank all projects in descending order. The project selection is made considering a set of weighted attributes. To evaluate the attributes in our approach, expert assessments are used. In the proposed methodology, lingual expressions (linguistic terms) given by all experts are used as initial attribute evaluations since they are the most natural and convenient representation of experts' evaluations. Then lingual evaluations are converted into trapezoidal fuzzy numbers, and the aggregate trapezoidal hesitant fuzzy decision matrix will be built. The case is considered when information on the attribute weights is completely unknown. The attribute weights are identified based on the De Luca and Termini information entropy concept, determined in the context of hesitant fuzzy sets. The decisions are made using the extended Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) method under a hesitant fuzzy environment. Hence, a methodology is based on a trapezoidal valued hesitant fuzzy TOPSIS decision-making model with entropy weights. The ranking of alternatives is performed by the proximity of their distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). For this purpose, the weighted hesitant Hamming distance is used. An example of investment decision-making is shown that clearly explains the procedure of the proposed methodology.
Procedia PDF Downloads 1171724 Probiotics in Anxiety and Depression
Authors: Pilar Giffenig, Avanna Kotlarz, Taylor Dehring
Abstract:
Anxiety and depression are common mental illnesses in the U.S today. While there are various treatments for these mental health disorders, many of the medications come with a large variety of side effects that decrease medication compliance. Recent studies have looked at the impact of probiotics on anxiety and depression. Our goal was to determine whether probiotics could help relieve symptoms of anxiety and or depression. We conducted a literature search of three databases focusing on systematic reviews and RTC and found 25 articles, 8 of which were used for our analysis. Seven out of the eight articles showed that probiotics have the potential to significantly reduce symptoms of anxiety and depression. However, larger study sample sizes, type of probiotic, and correct dosage are required in future research to determine the role of probiotics in the treatment of anxiety and depression.Keywords: probiotics, anxiety, depression, treatment, psychology, nutrition
Procedia PDF Downloads 270