Search results for: cold energy
8313 Highlighting of the Factors and Policies affecting CO2 Emissions level in Malaysian Transportation Sector
Authors: Siti Indati Mustapa, Hussain Ali Bekhet
Abstract:
Global CO2 emission and increasing fuel consumption to meet energy demand requirement has become a threat in recent decades. Effort to reduce the CO2 emission is now a matter of priority in most countries of the world including Malaysia. Transportation has been identified as the most intensive sector of carbon-based fuels and achievement of the voluntary target to meet 40% carbon intensity reduction set at the 15th Conference of the Parties (COP15) means that the emission from the transport sector must be reduced accordingly. This posed a great challenge to Malaysia and effort has to be made to embrace suitable and appropriate energy policy for sustainable energy and emission reduction of this sector. The focus of this paper is to analyse the trends of Malaysia’s energy consumption and emission of four different transport sub-sectors (road, rail, aviation and maritime). Underlying factors influencing the growth of energy consumption and emission trends are discussed. Besides, technology status towards energy efficiency in transportation sub-sectors is presented. By reviewing the existing policies and trends of energy used, the paper highlights prospective policy options towards achieving emission reduction in the transportation sector.Keywords: CO2 emissions, transportation sector, fuel consumption, energy policy, Malaysia
Procedia PDF Downloads 4688312 Relay-Augmented Bottleneck Throughput Maximization for Correlated Data Routing: A Game Theoretic Perspective
Authors: Isra Elfatih Salih Edrees, Mehmet Serdar Ufuk Türeli
Abstract:
In this paper, an energy-aware method is presented, integrating energy-efficient relay-augmented techniques for correlated data routing with the goal of optimizing bottleneck throughput in wireless sensor networks. The system tackles the dual challenge of throughput optimization while considering sensor network energy consumption. A unique routing metric has been developed to enable throughput maximization while minimizing energy consumption by utilizing data correlation patterns. The paper introduces a game theoretic framework to address the NP-complete optimization problem inherent in throughput-maximizing correlation-aware routing with energy limitations. By creating an algorithm that blends energy-aware route selection strategies with the best reaction dynamics, this framework provides a local solution. The suggested technique considerably raises the bottleneck throughput for each source in the network while reducing energy consumption by choosing the best routes that strike a compromise between throughput enhancement and energy efficiency. Extensive numerical analyses verify the efficiency of the method. The outcomes demonstrate the significant decrease in energy consumption attained by the energy-efficient relay-augmented bottleneck throughput maximization technique, in addition to confirming the anticipated throughput benefits.Keywords: correlated data aggregation, energy efficiency, game theory, relay-augmented routing, throughput maximization, wireless sensor networks
Procedia PDF Downloads 828311 Modeling of Surface Roughness in Hard Turning of DIN 1.2210 Cold Work Tool Steel with Ceramic Tools
Authors: Mehmet Erdi Korkmaz, Mustafa Günay
Abstract:
Nowadays, grinding is frequently replaced with hard turning for reducing set up time and higher accuracy. This paper focused on mathematical modeling of average surface roughness (Ra) in hard turning of AISI L2 grade (DIN 1.2210) cold work tool steel with ceramic tools. The steel was hardened to 60±1 HRC after the heat treatment process. Cutting speed, feed rate, depth of cut and tool nose radius was chosen as the cutting conditions. The uncoated ceramic cutting tools were used in the machining experiments. The machining experiments were performed according to Taguchi L27 orthogonal array on CNC lathe. Ra values were calculated by averaging three roughness values obtained from three different points of machined surface. The influences of cutting conditions on surface roughness were evaluated as statistical and experimental. The analysis of variance (ANOVA) with 95% confidence level was applied for statistical analysis of experimental results. Finally, mathematical models were developed using the artificial neural networks (ANN). ANOVA results show that feed rate is the dominant factor affecting surface roughness, followed by tool nose radius and cutting speed.Keywords: ANN, hard turning, DIN 1.2210, surface roughness, Taguchi method
Procedia PDF Downloads 3718310 Development and Analysis of Multigeneration System by Using Combined Solar and Geothermal Energy Resources
Authors: Muhammad Umar Khan, Mahesh Kumar, Faraz Neakakhtar
Abstract:
Although industrialization marks to the economy of a country yet it increases the pollution and temperature of the environment. The world is now shifting towards green energy because the utilization of fossil fuels is resulting in global warming. So we need to develop systems that can operate on renewable energy resources and have low heat losses. The combined solar and geothermal multigeneration system can solve this issue. Rather than making rankine cycle purely a solar-driven, heat from solar is used to drive vapour absorption cycle and reheated to generate power using geothermal reservoir. The results are displayed by using Engineering Equation Solver software, where inputs are varied to optimize the energy and exergy efficiencies of the system. The cooling effect is 348.2 KW, while the network output is 23.8 MW and reducing resultant emission of 105553 tons of CO₂ per year. This eco-friendly multigeneration system is capable of eliminating the use of fossil fuels and increasing the geothermal energy efficiency.Keywords: cooling effect, eco-friendly, green energy, heat loses, multigeneration system, renewable energy, work output
Procedia PDF Downloads 2658309 Feasibility of Two Positive-Energy Schools in a Hot-Humid Tropical Climate: A Methodological Approach
Authors: Shashwat, Sandra G. L. Persiani, Yew Wah Wong, Pramod S. Kamath, Avinash H. Anantharam, Hui Ling Aw, Yann Grynberg
Abstract:
Achieving zero-energy targets in existing buildings is known to be a difficult task, hence targets are addressed at new buildings almost exclusively. Although these ultra-efficient case-studies remain essential to develop future technologies and drive the concepts of Zero-energy, the immediate need to cut the consumption of the existing building stock remains unaddressed. This work aims to present a reliable and straightforward methodology for assessing the potential of energy-efficient upgrading in existing buildings. Public Singaporean school buildings, characterized by low energy use intensity and large roof areas, were identified as potential objects for conversion to highly-efficient buildings with a positive energy balance. A first study phase included the development of a detailed energy model for two case studies (a primary and a secondary school), based on the architectural drawings provided, site-visits and calibrated using measured end-use power consumption of different spaces. The energy model was used to demonstrate compliances or predict energy consumption of proposed changes in the two buildings. As complete energy monitoring is difficult and substantially time-consuming, short-term energy data was collected in the schools by taking spot measurements of power, voltage, and current for all the blocks of school. The figures revealed that the bulk of the consumption is attributed in decreasing order of magnitude to air-conditioning, plug loads, and lighting. In a second study-phase, a number of energy-efficient technologies and strategies were evaluated through energy-modeling to identify the alternatives giving the highest energy saving potential, achieving a reduction in energy use intensity down to 19.71 kWh/m²/y and 28.46 kWh/m²/y for the primary and the secondary schools respectively. This exercise of field evaluation and computer simulation of energy saving potential aims at a preliminary assessment of the positive-energy feasibility enabling future implementation of the technologies on the buildings studied, in anticipation of a broader and more widespread adoption in Singaporean schools.Keywords: energy simulation, school building, tropical climate, zero energy buildings, positive energy
Procedia PDF Downloads 1498308 Pultrusion of Side by Side Glass/Polypropylene Fibers: Study of Flexural and Shear Properties
Authors: Behrooz Ataee, Mohammad Golzar
Abstract:
The main purpose of using side by side (SBS) hybrid yarn in pultrusion thermoplastic method is reprisal the effect of high viscosity in melted thermoplastic and reduction of distance between reinforced fiber and melted thermoplastic. SBS hybrid fiber yarn composed of thermoplastic fibers and fiber reinforcement should be produced in the preparation of pultruded thermoplastic composites prepreg to reach better impregnation. An experimental set-up was designed and built to pultrude continues polypropylene and glass fiber to get obtain a suitable impregnated round prepregs. In final stage, the round prepregs come together to produce rectangular profile. Higher fiber volume fraction produces higher void volume fraction, however the second stage of the production process of rectangular profile and the cold die decrease 50% of the void volume fraction. Results show that whit increasing void volume fraction, flexural and shear strength decrease. Also, under certain conditions of parameters the pultruded profiles exhibit better flexural and shear strength. The pulling speed seems to have the greatest influence on the profile quality. In addition, adding cold die strongly increases the surface quality of rectangular profile.Keywords: thermoplastic pultrusion, hybrid pultrusion, side-by-side fibers, impregnation
Procedia PDF Downloads 2588307 A Hybrid Simulation Approach to Evaluate Cooling Energy Consumption for Public Housings of Subtropics
Authors: Kwok W. Mui, Ling T. Wong, Chi T. Cheung
Abstract:
Cooling energy consumption in the residential sector, different from shopping mall, office or commercial buildings, is significantly subject to occupant decisions where in-depth investigations are found limited. It shows that energy consumptions could be associated with housing types. Surveys have been conducted in existing Hong Kong public housings to understand the housing characteristics, apartment electricity demands, occupant’s thermal expectations, and air–conditioning usage patterns for further cooling energy-saving assessments. The aim of this study is to develop a hybrid cooling energy prediction model, which integrated by EnergyPlus (EP) and artificial neural network (ANN) to estimate cooling energy consumption in public residential sector. Sensitivity tests are conducted to find out the energy impacts with changing building parameters regarding to external wall and window material selection, window size reduction, shading extension, building orientation and apartment size control respectively. Assessments are performed to investigate the relationships between cooling demands and occupant behavior on thermal environment criteria and air-conditioning operation patterns. The results are summarized into a cooling energy calculator for layman use to enhance the cooling energy saving awareness in their own living environment. The findings can be used as a directory framework for future cooling energy evaluation in residential buildings, especially focus on the occupant behavioral air–conditioning operation and criteria of energy-saving incentives.Keywords: artificial neural network, cooling energy, occupant behavior, residential buildings, thermal environment
Procedia PDF Downloads 1688306 Vibration Energy Harvesting from Aircraft Structure Using Piezoelectric Transduction
Authors: M. Saifudin Ahmed Atique, Santosh Paudyal, Caixia Yang
Abstract:
In an aircraft, a great portion of energy is wasted due to its inflight structural vibration. Structural components vibrate due to aeroelastic instabilities, gust perturbations and engine rotation at very high rpm. Energy losses due to mechanical vibration can be utilized by harvesting energy from aircraft structure as electrical energy. This harvested energy can be stored in battery panels built into aircraft fuselage and can be used to power inflight auxiliary accessories i.e., lighting and entertainment systems. Moreover, this power can be used for wireless Structural Health Monitoring System (SHM) for aircraft and as an excellent replacement of aircraft Ground Power Unit (GPU)/Auxiliary Power Unit (APU) during passenger onboard time to power aircraft cabin accessories to reduce aircraft ground operation cost significantly. In this paper, we propose the design of a noble aircraft wing in which Piezoelectric panels placed under the composite skin of aircraft wing will generate electrical charges from any inflight aerodynamics or mechanical vibration and store it into battery to power auxiliary inflight systems/accessories as per requirement. Experimental results show that a well-engineered piezoelectric energy harvester based aircraft wing can produce adequate energy to support in-flight lighting and auxiliary cabin accessories.Keywords: vibration energy, aircraft wing, piezoelectric material, inflight accessories
Procedia PDF Downloads 1598305 Ab Initio Multiscale Catalytic Synthesis/Cracking Reaction Modelling of Ammonia as Liquid Hydrogen Carrier
Authors: Blaž Likozar, Andraž Pavlišič, Matic Pavlin, Taja Žibert, Aleksandra Zamljen, Sašo Gyergyek, Matej Huš
Abstract:
Ammonia is gaining recognition as a carbon-free fuel for energy-intensive applications, particularly transportation, industry, and power generation. Due to its physical properties, high energy density of 3 kWh kg-1, and high gravimetric hydrogen capacity of 17.6 wt%, ammonia is an efficient energy vector for green hydrogen, capable of mitigating hydrogen’s storage, distribution, and infrastructure deployment limitations. Chemicalstorage in the form of ammonia provides an efficient and affordable solution for energy storage, which is currently a critical step in overcoming the intermittency of abundant renewable energy sources with minimal or no environmental impact. Experiments were carried out to validate the modelling in a packed bed reactor, which proved to be agreeing.Keywords: hydrogen, ammonia, catalysis, modelling, kinetics
Procedia PDF Downloads 698304 Analysis of Energy Required for the Massive Incorporation of Electric Buses in the City of Ambato - Ecuador
Authors: Paola Quintana, Angélica Vaca, Sebastián Villacres, Henry Acurio
Abstract:
Ecuador through the Organic Law of Energy Efficiency establishes that "Starting in the year 2025, all vehicles that are incorporated into the urban and inter-parroquial public transport service must only be electric”, this marks a foundation for the introduction of electric mobility in the country. The present investigation is based on developing an analysis and projection of the Energy Required for the incorporation of electric buses for public passenger transport in the city of Ambato-Ecuador, taking into account the useful life of the vehicle fleet, number of existing vehicles and analysis of transport routes in the study city. The energy demand based on the vehicular dynamics is analyzed, determination of equations for the calculation of force in the wheel since it is considered a variable of slope due to the fact that this has a great incidence in the autonomy when speaking of electric mobility, later the energy analysis applied to public transport routes, finally a projection of the energy requirement is made based on the change of public transport units according to their useful life.Keywords: public transport, electric mobility, energy, ecuador
Procedia PDF Downloads 878303 Simulation and Study of the Effect of Paint Mineral Coating on Energy Saving
Authors: A. A. Azemati, H. Hosseini
Abstract:
By using an adequate paint in buildings, energy consumption can be decreased. In this research, a range of wall paints in different climatic conditions has been investigated to observe its effect on energy consumption. In the current study, the researchers have investigated the effect of different parameters including climatic condition, absorption coefficient, and thermal loads on paint coating. In order to study these effects, heating and cooling loads of a typical building with different color paints have been calculated. The effect of building paint in different climatic condition was studied and a comparison was drawn between paints and painting coats with inorganic micro particles in temperate climate to obtain optimized energy consumption.Keywords: climate, energy consumption, inorganic, painting coats
Procedia PDF Downloads 2908302 CO2 Utilization by Reverse Water-Shift and Fischer-Tropsch Synthesis for Production of Heavier Fraction Hydrocarbons in a Container-Sized Mobile Unit
Authors: Francisco Vidal Vázquez, Pekka Simell, Christian Frilund, Matti Reinikainen, Ilkka Hiltunen, Tim Böltken, Benjamin Andris, Paolo Piermartini
Abstract:
Carbon capture and utilization (CCU) are one of the key topics in mitigation of CO2 emissions. There are many different technologies that are applied for the production of diverse chemicals from CO2 such as synthetic natural gas, Fischer-Tropsch products, methanol and polymers. Power-to-Gas and Power-to-Liquids concepts arise as a synergetic solution for storing energy and producing value added products from the intermittent renewable energy sources and CCU. VTT is a research and technology development company having energy in transition as one of the key focus areas. VTT has extensive experience in piloting and upscaling of new energy and chemical processes. Recently, VTT has developed and commissioned a Mobile Synthesis Unit (MOBSU) in close collaboration with INERATEC, a spin-off company of Karlsruhe Institute of Technology (KIT, Germany). The MOBSU is a multipurpose synthesis unit for CO2 upgrading to energy carriers and chemicals, which can be transported on-site where CO2 emission and renewable energy are available. The MOBSU is initially used for production of fuel compounds and chemical intermediates by combination of two consecutive processes: reverse Water-Gas Shift (rWGS) and Fischer-Tropsch synthesis (FT). First, CO2 is converted to CO by high-pressure rWGS and then, the CO and H2 rich effluent is used as feed for FT using an intensified reactor technology developed and designed by INERATEC. Chemical equilibrium of rWGS reaction is not affected by pressure. Nevertheless, compression would be required in between rWGS and FT in the case when rWGS is operated at atmospheric pressure. This would also require cooling of rWGS effluent, water removal and reheating. For that reason, rWGS is operated using precious metal catalyst in the MOBSU at similar pressure as FT to simplify the process. However, operating rWGS at high pressures has also some disadvantages such as methane and carbon formation, and more demanding specifications for materials. The main parts of FT module are an intensified reactor, a hot trap to condense the FT wax products, and a cold trap to condense the FT liquid products. The FT synthesis is performed using cobalt catalyst in a novel compact reactor technology with integrated highly-efficient water evaporation cooling cycle. The MOBSU started operation in November 2016. First, the FT module is tested using as feedstock H2 and CO. Subsequently, rWGS and FT modules are operated together using CO2 and H2 as feedstock of ca. 5 Nm3/hr total flowrate. On spring 2017, The MOBSU unit will be integrated together with a direct air capture (DAC) of CO2 unit, and a PEM electrolyser unit at Lappeenranta University of Technology (LUT) premises for demonstration of the SoletAir concept. This would be the first time when synthetic fuels are produced by combination of DAC unit and electrolyser unit which uses solar power for H2 production.Keywords: CO2 utilization, demonstration, Fischer-Tropsch synthesis, intensified reactors, reverse water-gas shift
Procedia PDF Downloads 2908301 The Beneficial Effects of Hydrotherapy for Recovery from Team Sport – A Meta-Analysis
Authors: Trevor R. Higgins
Abstract:
To speed/enhance recovery from sport, cold water immersion (CWI) and contrast water therapy (CWT) have become common practice within the high-level team sport. Initially, research into CWI and CWT protocols and recovery was sparse; athletes relied solely upon an anecdotal support. However, an increase into recovery research has occurred. A number of reviews have subsequently been conducted to clarify scientific evidence. However, as the nature of physiological stress and training status of participants will impact on results, an opportunity existed to narrow the focus to a more exacting review evaluating hydrotherapy for recovery in a team sport. A Boolean logic [AND] keyword search of databases was conducted: SPORTDiscus; AMED; CINAHL; MEDLINE. Data was extracted and the standardized mean differences were calculated with 95% CI. The analysis of pooled data was conducted using a random-effect model, with Heterogeneity assessed using I2. 23 peer reviewed papers (n=606) met the criteria. Meta-analyses results indicated CWI was likely beneficial for recovery at 24h (Countermovement Jump (CMJ): p= 0.05, CI -0.004 to 0.578; All-out sprint: p=0.02, -0.056 to 0.801; DOMS: p=0.08, CI -0.092 to 1.936) and at 72h (accumulated sprinting: p=0.07, CI -0.062 to 1.209; DOMS: p=0.09, CI -0.121 to 1.555) following team sport. Whereas CWT was likely beneficial for recovery at 1h (CMJ: p= 0.07, CI -0.004 to 0.863) and at 48h (fatigue: p=0.04, CI 0.013 to 0.942) following team sport. Athlete’s perceptions of muscle soreness and fatigue are enhanced with CWI and/or CWT, however even though CWI and CWT were beneficial in attenuating decrements in neuromuscular performance 24 hours following team sport, indications are those benefits were no longer Sydney evident 48 hours following team sport.Keywords: cold water immersion, contrast water therapy, recovery, team sport
Procedia PDF Downloads 5078300 Investigation on Machine Tools Energy Consumptions
Authors: Shiva Abdoli, Daniel T.Semere
Abstract:
Several researches have been conducted to study consumption of energy in cutting process. Most of these researches are focusing to measure the consumption and propose consumption reduction methods. In this work, the relation between the cutting parameters and the consumption is investigated in order to establish a generalized energy consumption model that can be used for process and production planning in real production lines. Using the generalized model, the process planning will be carried out by taking into account the energy as a function of the selected process parameters. Similarly, the generalized model can be used in production planning to select the right operational parameters like batch sizes, routing, buffer size, etc. in a production line. The description and derivation of the model as well as a case study are given in this paper to illustrate the applicability and validity of the model.Keywords: process parameters, cutting process, energy efficiency, Material Removal Rate (MRR)
Procedia PDF Downloads 4998299 Childhood Respiratory Diseases Related to Indoor and Outdoor Air Temperature in Shanghai, China
Authors: Chanjuan Sun, Shijie Hong, Jialing Zhang, Yuchao Guo, Zhijun Zou, Chen Huang
Abstract:
Background: Studies on associations between air temperature and childhood respiratory diseases are lack in China. Objectives: We aim to analyze the relationship between air temperature and childhood respiratory diseases. Methods: We conducted the on-site inspection into 454 residences and questionnaires survey. Indoor air temperature were from field inspection and outdoor air temperature were from website. Multiple logistic regression analyses were used to investigate the associations. Results: Indoor extreme hot air temperature was positively correlated with duration of a common cold (>=2 weeks), and outdoor extreme hot air temperature was also positively related with pneumonia among children. Indoor and outdoor extreme cold air temperature was a risk factor for rhinitis among children. The biggest indoor air temperature difference (indoor maximum air temperature minus indoor minimum air temperature) (Imax minus Imin) (the 4th quartile, >4 oC) and outdoor air temperature difference (outdoor maximum air temperature minus outdoor minimum air temperature) (Omax minus Omin) (the 4th quartile, >8oC) were positively related to pneumonia among children. Meanwhile, indoor air temperature difference (Imax minus Imin) (the 4th quartile, >4 oC) was positively correlated with diagnosed asthma among children. Air temperature difference between indoor and outdoor was negatively related with the most childhood respiratory diseases. This may be partly related to the avoidance behavior. Conclusions: Improper air temperature may affect the respiratory diseases among children.Keywords: air temperature, extreme air temperature, air temperature difference, respiratory diseases, children
Procedia PDF Downloads 1738298 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences
Authors: C. Xavier Mendieta, J. J McArthur
Abstract:
Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.Keywords: building archetypes, data analysis, energy benchmarks, GHG emissions
Procedia PDF Downloads 3068297 Climate Teleconnections and Their Influence on the Spread of Dengue
Authors: Edilene Machado, Carolina Karoly, Amanda Britz, Luciane Salvi, Claudineia Brazil
Abstract:
Climate teleconnections refer to the climatic relationships between geographically distant regions, where changes in one location can influence weather patterns in another. These connections can occur through atmospheric and oceanic processes, leading to variations in temperature, precipitation, and other climatic elements. Studying teleconnections is crucial for better understanding the mechanisms that govern global climate and the potential consequences of climate change. A notable example of a teleconnection is the El Niño-Southern Oscillation (ENSO), which involves the interaction between the Equatorial Pacific Ocean and the atmosphere. During El Niño episodes, there is anomalous warming of the surface waters in the Equatorial Pacific, resulting in significant changes in global climate patterns. These changes can affect rainfall distribution, wind patterns, and temperatures in different parts of the world. The cold phase of ENSO, known as La Niña, is often associated with reduced precipitation and below-average temperatures in the state of Rio Grande do Sul, Brazil. Therefore, the objective of this research is to identify patterns between El Niño-Southern Oscillation (ENSO) events in their different phases and dengue transmission. Meteorological data and dengue case records for the city of Porto Alegre, in the southern region of Brazil, were used for the development of this research. The study highlighted that the highest incidence of dengue cases occurred during the cold phase of the El Niño-Southern Oscillation (ENSO).Keywords: climate patterns, climate teleconnections, climate variability, dengue, El Niño-Southern oscillation
Procedia PDF Downloads 948296 Harnessing the Potential of Renewable Energy Sources to Reduce Fossil Energy Consumption in the Wastewater Treatment Process
Authors: Hen Friman
Abstract:
Various categories of aqueous solutions are discharged within residential, institutional, commercial, and industrial structures. To safeguard public health and preserve the environment, it is imperative to subject wastewater to treatment processes that eliminate pathogens (such as bacteria and viruses), nutrients (such as nitrogen and phosphorus), and other compounds. Failure to address untreated sewage accumulation can result in an array of adverse consequences. Israel exemplifies a special case in wastewater management. Appropriate wastewater treatment significantly benefits sectors such as agriculture, tourism, horticulture, and industry. Nevertheless, untreated sewage in settlements lacking proper sewage collection or transportation networks remains an ongoing and substantial threat. Notably, the process of wastewater treatment entails substantial energy consumption. Consequently, this study explores the integration of solar energy as a renewable power source within the wastewater treatment framework. By incorporating renewable energy sources into the process, costs can be minimized, and decentralized facilities can be established even in areas lacking adequate infrastructure for traditional treatment methods.Keywords: renewable energy, solar energy, innovative, wastewater treatment
Procedia PDF Downloads 1088295 Energy Saving Study of Mass Rapid Transit by Optimal Train Coasting Operation
Authors: Artiya Sopharak, Tosaphol Ratniyomchai, Thanatchai Kulworawanichpong
Abstract:
This paper presents an energy-saving study of Mass Rapid Transit (MRT) using an optimal train coasting operation. For the dynamic train movement with four modes of operation, including accelerating mode, constant speed or cruising mode, coasting mode, and braking mode are considered in this study. The acceleration rate, the deceleration rate, and the starting coasting point are taken into account the optimal train speed profile during coasting mode with considering the energy saving and acceptable travel time comparison to the based case with no coasting operation. In this study, the mathematical method as a Quadratic Search Method (QDS) is conducted to carry out the optimization problem. A single train of MRT services between two stations with a distance of 2 km and a maximum speed of 80 km/h is taken to be the case study. Regarding the coasting mode operation, the results show that the longer distance of costing mode, the less energy consumption in cruising mode and the less braking energy. On the other hand, the shorter distance of coasting mode, the more energy consumption in cruising mode and the more braking energy.Keywords: energy saving, coasting mode, mass rapid transit, quadratic search method
Procedia PDF Downloads 3028294 High-Performance Non-aqueous Organic Redox Flow Battery in Ambient Condition
Authors: S. K. Mohapatra, K. Ramanujam, S. Sankararaman
Abstract:
Redox flow battery (RFB) is a preferred energy storage option for grid stabilisation and energy arbitrage as it offers energy and power decoupling. In contrast to aqueous RFBs (ARFBs), nonaqueous RFBs (NARFBs) could offer high energy densities due to the wider electrochemical window of the solvents used, which could handle high and low voltage organic redox couples without undergoing electrolysis. In this study, a RFB based on benzyl viologen hexafluorophosphate [BV(PF6)2] as anolyte and N-hexyl phenothiazine [HPT] as catholyte demonstrated. A cell operated with mixed electrolyte (1:1) containing 0.2 M [BV(PF₆)₂] and 0.2 M [HPT] delivered a coulombic efficiency (CE) of 95.3 % and energy efficiency (EE) 53%, with nearly 68.9% material utilisation at 40 mA cm-2 current density.Keywords: non-aqueous redox flow battery, benzyl viologen, N-hexyl phenothiazine, mixed electrolyte
Procedia PDF Downloads 768293 Energy Conversion from Waste Paper Industry Using Fluidized Bed Combustion
Authors: M. Dyah Ayu Yuli, S. Faisal Dhio, P. Johandi, P. Muhammad Sofyan
Abstract:
Pulp and paper mills generate various quantities of energy-rich biomass as wastes, depending on technological level, pulp and paper grades and wood quality. These wastes are produced in all stages of the process: wood preparation, pulp and paper manufacture, chemical recovery, recycled paper processing, waste water treatment. Energy recovery from wastes of different origin has become a generally accepted alternative to their disposal. Pulp and paper industry expresses an interest in adapting and integrating advanced biomass energy conversion technologies into its mill operations using Fluidized Bed Combustion. Industrial adoption of these new technologies has the potential for higher efficiency, lower capital cost, and safer operation than conventional operations that burn fossil fuels for energy. Incineration with energy recovery has the advantage of hygienic disposal, volume reduction, and the recovery of thermal energy by means of steam or super heated water that can be used for heating and power generation.Keywords: biomass, fluidized bed combustion, pulp and paper mills, waste
Procedia PDF Downloads 4738292 Air Quality Health Index in Windsor, Canada, and the Impact of Regional Scale Transport
Authors: Xiaohong Xu, Tianchu Zhang, Yangfan Chen, Rongtai Tan
Abstract:
In Canada, Air Quality Health Index (AQHI) is a scale designed to help residences understand the impact of air quality on human health. In Ontario, Canada, AQHI was implemented in June 2015. This study investigated temporal variability of daily AQHI and impact of regional transport on AQHI in Windsor, Ontario, Canada from 2016 to 2019. During 2016–2019, 1428 daily AQHIs were recorded in Windsor Downtown Station. Among those, the AQHIs were at the low health risk level (AQHI = 1, 2 or 3) in 82% of days, only a few days at high risk level (AQHI = 7), the rest were at moderate health risk level (AQHI = 4, 5, 6), indicating air quality in Windsor was fairly good with relatively low health risk. The annual mean AQHI value decreased from 2.95 in 2016 to 2.81 in 2019, demonstrating the improvement of air quality. Half of the days, AQHI were 3 regardless of season. AQHI was higher in the warm season (3.1) than in the cold season (2.6) due to more frequent moderate risk days (27%, AQHI = 4) in warm season and more frequent low risk days (42%, AQHI = 2) in the cold season. Among the three pollutants considered in AQHI calculation, O3 was the most frequently reported dominant contributor to daily AQHI (88% of days), followed by NO2 (12%), especially in the cold season, with small contribution from PM2.5 (<1%). In the past two decades, NO2 concentrations had decreased significantly and O3 concentrations had increased, resulting in daily AQHI being less reliance on NO2 (from 51% of days being the primary contributor during 2003–2010 to 12% during 2016–2019) and more on O3 concentrations (49% to 88%). Trajectory analysis found that AQHI ≤ 3 days were closely associated with air masses from the north and northwest, whereas AQHI > 3 days were closely associated with air masses from the west and southwest. This is because northerly flows brought in clear air mass owing to less industrial facilities, while polluted air masses were transported from the south of Windsor, where several industrial states of the US were located. Overall, O3 concentrations dictate the daily AQHI values, the seasonal variability of AQHI, and the impact of regional transport on AQHI in Windsor. This makes further reductions of AQHI challenging because O3 concentrations are likely to continue increasing due to weakened consumption of O3 by NO owing to decreasing NO emissions and more hot days because of climate change. The predominant and increasing contribution of O3 to AQHI calls for more effective control measures to mitigate O3 pollution and its impact on human health and the environment.Keywords: air quality, Air Quality Health Index (AQHI), hysplit, regional transport, windsor
Procedia PDF Downloads 648291 Energy Efficiency Analysis of Electrical Submersible Pump on Mature Oil Field Offshore Java Sea
Authors: Marda Vidrianto, Tania Surya Utami
Abstract:
Electrical Submersible Pump (ESP) is an artificial lift of choice to produce oil on Offshore Java Sea. It is selected based on the production rate capacity and running life expectation. ESP performance in a mature field is highly affected by oil well conditions. The presence of sand, scale, gas, and low influx will create unstable ESP operation hence lowering the run life expectation and system efficiency. This paper reviews the current energy usage and efficiency on every part of the ESP system. The hydraulic and electrical losses, as well as system efficiency for each well, are calculated to identify energy losses and the possibility for improvement. It is shown that high back pressure on the system and low-efficiency pump are the major contributors to energy losses. It was found that optimized production rate and the use of advanced technology on pump and motor unit could improve energy efficiency.Keywords: advance technology, energy efficiency, ESP, mature field, production rate
Procedia PDF Downloads 3428290 Combining Chiller and Variable Frequency Drives
Authors: Nasir Khalid, S. Thirumalaichelvam
Abstract:
In most buildings, according to US Department of Energy Data Book, the electrical consumption attributable to centralized heating and ventilation of air- condition (HVAC) component can be as high as 40-60% of the total electricity consumption for an entire building. To provide efficient energy management for the market today, researchers are finding new ways to develop a system that can save electrical consumption of buildings even more. In this concept paper, a system known as Intelligent Chiller Energy Efficiency (iCEE) System is being developed that is capable of saving up to 25% from the chiller’s existing electrical energy consumption. In variable frequency drives (VFDs), research has found significant savings up to 30% of electrical energy consumption. Together with the VFDs at specific Air Handling Unit (AHU) of HVAC component, this system will save even more electrical energy consumption. The iCEE System is compatible with any make, model or age of centrifugal, rotary or reciprocating chiller air-conditioning systems which are electrically driven. The iCEE system uses engineering principles of efficiency analysis, enthalpy analysis, heat transfer, mathematical prediction, modified genetic algorithm, psychometrics analysis, and optimization formulation to achieve true and tangible energy savings for consumers.Keywords: variable frequency drives, adjustable speed drives, ac drives, chiller energy system
Procedia PDF Downloads 5588289 Sustainable Design Features Implementing Public Rental Housing for Remodeling
Authors: So-Young Lee, Myoung-Won Oh, Soon-Cheol Eom, Yeon-Won Suh
Abstract:
Buildings produce more than one thirds of the total energy consumption and CO₂ emissions. Korean government agency pronounced and initiated Zero Energy Buildings policy for construction as of 2025. The net zero energy design features include passive (daylight, layout, materials, insulation, finishes, etc.) and active (renewable energy sources) elements. The Zero Energy House recently built in Nowon-gu, Korea is provided for 121 households as a public rental housing complex. However most of public rental housing did not include sustainable features which can reduce housing maintaining cost significantly including energy cost. It is necessary to implement net zero design features to the obsolete public rental housing during the remodeling procedure since it can reduce housing cost in long term. The purpose of this study is to investigate sustainable design elements implemented in Net Zero Energy House in Korea and passive and active housing design features in order to apply the sustainable features to the case public rental apartment for remodeling. Housing complex cases in this study are Nowan zero Energy house, Gangnam Bogemjari House, and public rental housings built in more than 20 years in Seoul areas. As results, energy consumption in public rental housing built in 5-years can be improved by exterior surfaces. Energy optimizing in case housing built in more than 20 years can be enhanced by renovated materials, insulation, replacement of windows, exterior finishes, lightings, gardening, water, renewable energy installation, Green IT except for sunlight and layout of buildings. Further life costing analysis is needed for energy optimizing for case housing alternatives.Keywords: affordable housing, remodeling, sustainable design, zero-energy house
Procedia PDF Downloads 1928288 Learning Predictive Models for Efficient Energy Management of Exhibition Hall
Authors: Jeongmin Kim, Eunju Lee, Kwang Ryel Ryu
Abstract:
This paper addresses the problem of predictive control for energy management of large-scaled exhibition halls, where a lot of energy is consumed to maintain internal atmosphere under certain required conditions. Predictive control achieves better energy efficiency by optimizing the operation of air-conditioning facilities with not only the current but also some future status taken into account. In this paper, we propose to use predictive models learned from past sensor data of hall environment, for use in optimizing the operating plan for the air-conditioning facilities by simulating future environmental change. We have implemented an emulator of an exhibition hall by using EnergyPlus, a widely used building energy emulation tool, to collect data for learning environment-change models. Experimental results show that the learned models predict future change highly accurately on a short-term basis.Keywords: predictive control, energy management, machine learning, optimization
Procedia PDF Downloads 2748287 Failure Analysis of Low Relaxation Prestressed High Carbon Steel Wire During Drawing Operation: A Metallurgical Investigation
Authors: Souvik Das, Sandip Bhattacharya, Goutam Mukhopadhyay, Manashi Adhikary
Abstract:
Wires breakages during cold drawing are a complex phenomenon; wire breakages may be induced by improper wire-rod quality, inappropriate heat-treated microstructure, and/or lubrication breakdown on the wire surface. A comprehensive metallurgical investigation of failed/broken wire samples is therefore essential for understanding the origin of failure. Frequent breakage of wires during drawing is a matter of serious concern to the wire drawers as it erodes their already slim margins through reduced productivity and loss in yield. The present paper highlights the failure investigation of wires of Low Relaxation Prestressed High Carbon grade during cold drawing due to entrapment of hard constituents detached from the roller entry guide during rolling operations. The hardness measurement of this entrapped location indicates 54.9 Rockwell Hardness as against the rest portion 33.4 Rockwell Hardness. The microstructure chemical analysis and X-ray mapping analysis data of the entrapment location confirmed complex chromium carbide originated from D2-steel used in entry guide during the rolling process. Since the harder entrapped phase could not be deformed in the same manner as the parent phase, the failure of the wire rod occurs during hot rolling.Keywords: LRPC, D2-steel, chromium carbide, roller guide
Procedia PDF Downloads 1598286 STC Parameters versus Real Time Measured Parameters to Determine Cost Effectiveness of PV Panels
Authors: V. E. Selaule, R. M. Schoeman H. C. Z. Pienaar
Abstract:
Research has shown that solar energy is a renewable energy resource with the most potential when compared to other renewable energy resources in South Africa. There are many makes of Photovoltaic (PV) panels on the market and it is difficult to assess which to use. PV panel manufacturers use Standard Test Conditions (STC) to rate their PV panels. STC conditions are different from the actual operating environmental conditions were the PV panels are used. This paper describes a practical method to determine the most cost effective available PV panel. The method shows that PV panel manufacturer STC ratings cannot be used to select a cost effective PV panel.Keywords: PV orientation, PV panel, PV STC, Solar energy
Procedia PDF Downloads 4738285 Prediction of Pounding between Two SDOF Systems by Using Link Element Based On Mathematic Relations and Suggestion of New Equation for Impact Damping Ratio
Authors: Seyed M. Khatami, H. Naderpour, R. Vahdani, R. C. Barros
Abstract:
Many previous studies have been carried out to calculate the impact force and the dissipated energy between two neighboring buildings during seismic excitation, when they collide with each other. Numerical studies are an important part of impact, which several researchers have tried to simulate the impact by using different formulas. Estimation of the impact force and the dissipated energy depends significantly on some parameters of impact. Mass of bodies, stiffness of spring, coefficient of restitution, damping ratio of dashpot and impact velocity are some known and unknown parameters to simulate the impact and measure dissipated energy during collision. Collision is usually shown by force-displacement hysteresis curve. The enclosed area of the hysteresis loop explains the dissipated energy during impact. In this paper, the effect of using different types of impact models is investigated in order to calculate the impact force. To increase the accuracy of impact model and to optimize the results of simulations, a new damping equation is assumed and is validated to get the best results of impact force and dissipated energy, which can show the accuracy of suggested equation of motion in comparison with other formulas. This relation is called "n-m". Based on mathematical relation, an initial value is selected for the mentioned coefficients and kinetic energy loss is calculated. After each simulation, kinetic energy loss and energy dissipation are compared with each other. If they are equal, selected parameters are true and, if not, the constant of parameters are modified and a new analysis is performed. Finally, two unknown parameters are suggested to estimate the impact force and calculate the dissipated energy.Keywords: impact force, dissipated energy, kinetic energy loss, damping relation
Procedia PDF Downloads 5528284 Routing and Energy Efficiency through Data Coupled Clustering in Large Scale Wireless Sensor Networks (WSNs)
Authors: Jainendra Singh, Zaheeruddin
Abstract:
A typical wireless sensor networks (WSNs) consists of several tiny and low-power sensors which use radio frequency to perform distributed sensing tasks. The longevity of wireless sensor networks (WSNs) is a major issue that impacts the application of such networks. While routing protocols are striving to save energy by acting on sensor nodes, recent studies show that network lifetime can be enhanced by further involving sink mobility. A common approach for energy efficiency is partitioning the network into clusters with correlated data, where the representative nodes simply transmit or average measurements inside the cluster. In this paper, we propose an energy- efficient homogenous clustering (EHC) technique. In this technique, the decision of each sensor is based on their residual energy and an estimate of how many of its neighboring cluster heads (CHs) will benefit from it being a CH. We, also explore the routing algorithm in clustered WSNs. We show that the proposed schemes significantly outperform current approaches in terms of packet delay, hop count and energy consumption of WSNs.Keywords: wireless sensor network, energy efficiency, clustering, routing
Procedia PDF Downloads 264