Search results for: automated theorem proving
414 Smart Interior Design: A Revolution in Modern Living
Authors: Fatemeh Modirzare
Abstract:
Smart interior design represents a transformative approach to creating living spaces that integrate technology seamlessly into our daily lives, enhancing comfort, convenience, and sustainability. This paper explores the concept of smart interior design, its principles, benefits, challenges, and future prospects. It also highlights various examples and applications of smart interior design to illustrate its potential in shaping the way we live and interact with our surroundings. In an increasingly digitized world, the boundaries between technology and interior design are blurring. Smart interior design, also known as intelligent or connected interior design, involves the incorporation of advanced technologies and automation systems into residential and commercial spaces. This innovative approach aims to make living environments more efficient, comfortable, and adaptable while promoting sustainability and user well-being. Smart interior design seamlessly integrates technology into the aesthetics and functionality of a space, ensuring that devices and systems do not disrupt the overall design. Sustainable materials, energy-efficient systems, and eco-friendly practices are central to smart interior design, reducing environmental impact. Spaces are designed to be adaptable, allowing for reconfiguration to suit changing needs and preferences. Smart homes and spaces offer greater comfort through features like automated climate control, adjustable lighting, and customizable ambiance. Smart interior design can significantly reduce energy consumption through optimized heating, cooling, and lighting systems. Smart interior design integrates security systems, fire detection, and emergency response mechanisms for enhanced safety. Sustainable materials, energy-efficient appliances, and waste reduction practices contribute to a greener living environment. Implementing smart interior design can be expensive, particularly when retrofitting existing spaces with smart technologies. The increased connectivity raises concerns about data privacy and cybersecurity, requiring robust measures to protect user information. Rapid advancements in technology may lead to obsolescence, necessitating updates and replacements. Users must be familiar with smart systems to fully benefit from them, requiring education and ongoing support. Residential spaces incorporate features like voice-activated assistants, automated lighting, and energy management systems. Intelligent office design enhances productivity and employee well-being through smart lighting, climate control, and meeting room booking systems. Hospitals and healthcare facilities use smart interior design for patient monitoring, wayfinding, and energy conservation. Smart retail design includes interactive displays, personalized shopping experiences, and inventory management systems. The future of smart interior design holds exciting possibilities, including AI-powered design tools that create personalized spaces based on user preferences. Smart interior design will increasingly prioritize factors that improve physical and mental health, such as air quality monitoring and mood-enhancing lighting. Smart interior design is revolutionizing the way we interact with our living and working spaces. By embracing technology, sustainability, and user-centric design principles, smart interior design offers numerous benefits, from increased comfort and convenience to energy efficiency and sustainability. Despite challenges, the future holds tremendous potential for further innovation in this field, promising a more connected, efficient, and harmonious way of living and working.Keywords: smart interior design, home automation, sustainable living spaces, technological integration, user-centric design
Procedia PDF Downloads 70413 Using Satellite Images Datasets for Road Intersection Detection in Route Planning
Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever
Abstract:
Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles
Procedia PDF Downloads 145412 A Study of Tibetan Buddhism in Kalmykia: Reform or Revival
Authors: Dawa Wangmo
Abstract:
The anti-religious campaigns of the Soviet Union in the 1930s eradicated Kalmyk Buddhism from the public sphere. Following Perestroika, the Kalmyks retained a sense of being essentially Buddhist people. Nevertheless, since the collapse of the Soviet Communist regime, Kalmykia has been going through vigorous ethnic and cultural revitalization. The new Kalmyk government is reviving the religion with the building of Buddhist temples and the attempted training of Kalymk monks. Kalmykia, officially an autonomous republic within the Federation of Russia, is situated in the European part of Russia in the steppe region bordering the Caspian Sea in its southeast. According to the 2010 census, the Kalmyks, a people of Mongolian origin, constitute over 57 percent of the Republic’s population of less than 290000. Russians living in Kalmykia comprise around 30 percent, the remainder being various Slavic and Asian groups. Since the Kalmyks historically adhere to Buddhism, Kalmykia is often described in tourist brochures and proudly by the Kalmyks themselves as one of the three “traditional Buddhist republics” of Russia and “the only Buddhist region” in Europe. According to traditional Kalmyk Gelug Buddhism, monasticism is the central aspect; hence monastic Tibetans from India have been invited to the Republic to help revive Buddhism and their Buddhist identity in Russia as a whole. However, for the young post-soviets, the monastic way of life is proving too alien, and the subsequent labeling by these monks of ‘surviving’ Kalmyk Buddhist practices as superstitious, mistaken, or corrupt is an initial step in the purification of alternate views, leading to religious reform. This sentiment is also felt by younger Kalmyks who do not find sense in surviving Buddhism but believe more in the philosophical approach of Buddhism taught by the visiting Buddhist teachers at Dharma centers. By discussing this post-soviet shift in local notions of religious efficacy, an attempt will be made to shed light on how the social movements of both reform and revival arise as a collusion between contemporary Tibetan and Kalmyk views on the nature of true Buddhism. This work explores aspects of religious innovation that have developed since the early 1990s in the process of reconstitution of ethnic and religious identity in Kalmykia, a Republic in the southwest of Russia. Any attempts to study the history of Buddhism in Kalmykia would surely mean studying the “History of the most northern Dharma community in the World.”Keywords: Kalmykia, Tibetan Buddhism, reform, revival, identity
Procedia PDF Downloads 76411 Integration of Load Introduction Elements into Fabrics
Authors: Jan Schwennen, Harlad Schmid, Juergen Fleischer
Abstract:
Lightweight design plays an important role in the automotive industry. Especially the combination of metal and CFRP shows great potential for future vehicle concepts. This requires joining technologies that are cost-efficient and appropriate for the materials involved. Previous investigations show that integrating load introduction elements during CFRP part manufacturing offers great advantages in mechanical performance. However, it is not yet clear how to integrate the elements in an automated process without harming the fiber structure. In this paper, a test rig is build up to investigate the effect of different parameters during insert integration experimentally. After a short description of the experimental equipment, preliminary tests are performed to determine a set of important process parameters. Based on that, the planning of design of experiments is given. The interpretation and evaluation of the test results show that with a minimization of the insert diameter and the peak angle less harm on the fiber structure can be achieved. Furthermore, a maximization of the die diameter above the insert shows a positive effect on the fiber structure. At the end of this paper, a theoretical description of alternative peak shaping is given and then the results get validated on the basis of an industrial reference part.Keywords: CFRP, fabrics, insert, load introduction element, integration
Procedia PDF Downloads 243410 Fuzzy Expert Approach for Risk Mitigation on Functional Urban Areas Affected by Anthropogenic Ground Movements
Authors: Agnieszka A. Malinowska, R. Hejmanowski
Abstract:
A number of European cities are strongly affected by ground movements caused by anthropogenic activities or post-anthropogenic metamorphosis. Those are mainly water pumping, current mining operation, the collapse of post-mining underground voids or mining-induced earthquakes. These activities lead to large and small-scale ground displacements and a ground ruptures. The ground movements occurring in urban areas could considerably affect stability and safety of structures and infrastructures. The complexity of the ground deformation phenomenon in relation to the structures and infrastructures vulnerability leads to considerable constraints in assessing the threat of those objects. However, the increase of access to the free software and satellite data could pave the way for developing new methods and strategies for environmental risk mitigation and management. Open source geographical information systems (OS GIS), may support data integration, management, and risk analysis. Lately, developed methods based on fuzzy logic and experts methods for buildings and infrastructure damage risk assessment could be integrated into OS GIS. Those methods were verified base on back analysis proving their accuracy. Moreover, those methods could be supported by ground displacement observation. Based on freely available data from European Space Agency and free software, ground deformation could be estimated. The main innovation presented in the paper is the application of open source software (OS GIS) for integration developed models and assessment of the threat of urban areas. Those approaches will be reinforced by analysis of ground movement based on free satellite data. Those data would support the verification of ground movement prediction models. Moreover, satellite data will enable our mapping of ground deformation in urbanized areas. Developed models and methods have been implemented in one of the urban areas hazarded by underground mining activity. Vulnerability maps supported by satellite ground movement observation would mitigate the hazards of land displacements in urban areas close to mines.Keywords: fuzzy logic, open source geographic information science (OS GIS), risk assessment on urbanized areas, satellite interferometry (InSAR)
Procedia PDF Downloads 159409 Computational Aerodynamic Shape Optimisation Using a Concept of Control Nodes and Modified Cuckoo Search
Authors: D. S. Naumann, B. J. Evans, O. Hassan
Abstract:
This paper outlines the development of an automated aerodynamic optimisation algorithm using a novel method of parameterising a computational mesh by employing user–defined control nodes. The shape boundary movement is coupled to the movement of the novel concept of the control nodes via a quasi-1D-linear deformation. Additionally, a second order smoothing step has been integrated to act on the boundary during the mesh movement based on the change in its second derivative. This allows for both linear and non-linear shape transformations dependent on the preference of the user. The domain mesh movement is then coupled to the shape boundary movement via a Delaunay graph mapping. A Modified Cuckoo Search (MCS) algorithm is used for optimisation within the prescribed design space defined by the allowed range of control node displacement. A finite volume compressible NavierStokes solver is used for aerodynamic modelling to predict aerodynamic design fitness. The resulting coupled algorithm is applied to a range of test cases in two dimensions including the design of a subsonic, transonic and supersonic intake and the optimisation approach is compared with more conventional optimisation strategies. Ultimately, the algorithm is tested on a three dimensional wing optimisation case.Keywords: mesh movement, aerodynamic shape optimization, cuckoo search, shape parameterisation
Procedia PDF Downloads 337408 Smart Demand Response: A South African Pragmatic, Non-Destructive and Alternative Advanced Metering Infrastructure-Based Maximum Demand Reduction Methodology
Authors: Christo Nicholls
Abstract:
The National Electricity Grid (NEG) in South Africa has been under strain for the last five years. This overburden of the NEG led Eskom (the State-Owned Entity responsible for the NEG) to implement a blunt methodology to assist them in reducing the maximum demand (MD) on the NEG, when required, called Loadshedding. The challenge of this methodology is that not only does it lead to immense technical issues with the distribution network equipment, e.g., transformers, due to the frequent abrupt off and on switching, it also has a broader negative fiscal impact on the distributors, as their key consumers (commercial & industrial) are now grid defecting due to the lack of Electricity Security Provision (ESP). This paper provides a pragmatic alternative methodology utilizing specific functionalities embedded within direct-connect single and three-phase Advanced Meter Infrastructure (AMI) Solutions deployed within the distribution network, in conjunction with a Multi-Agent Systems Based AI implementation focused on Automated Negotiation Peer-2-Peer trading. The results of this research clearly illustrate, not only does methodology provide a factual percentage contribution towards the NEG MD at the point of consideration, it also allows the distributor to leverage the real-time MD data from key consumers to activate complex, yet impact-measurable Demand Response (DR) programs.Keywords: AI, AMI, demand response, multi-agent
Procedia PDF Downloads 112407 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning
Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam
Abstract:
Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped
Procedia PDF Downloads 316406 Automated Classification of Hypoxia from Fetal Heart Rate Using Advanced Data Models of Intrapartum Cardiotocography
Authors: Malarvizhi Selvaraj, Paul Fergus, Andy Shaw
Abstract:
Uterine contractions produced during labour have the potential to damage the foetus by diminishing the maternal blood flow to the placenta. In order to observe this phenomenon labour and delivery are routinely monitored using cardiotocography monitors. An obstetrician usually makes the diagnosis of foetus hypoxia by interpreting cardiotocography recordings. However, cardiotocography capture and interpretation is time-consuming and subjective, often lead to misclassification that causes damage to the foetus and unnecessary caesarean section. Both of these have a high impact on the foetus and the cost to the national healthcare services. Automatic detection of foetal heart rate may be an objective solution to help to reduce unnecessary medical interventions, as reported in several studies. This paper aim is to provide a system for better identification and interpretation of abnormalities of the fetal heart rate using RStudio. An open dataset of 552 Intrapartum recordings has been filtered with 0.034 Hz filters in an attempt to remove noise while keeping as much of the discriminative data as possible. Features were chosen following an extensive literature review, which concluded with FIGO features such as acceleration, deceleration, mean, variance and standard derivation. The five features were extracted from 552 recordings. Using these features, recordings will be classified either normal or abnormal. If the recording is abnormal, it has got more chances of hypoxia.Keywords: cardiotocography, foetus, intrapartum, hypoxia
Procedia PDF Downloads 216405 Data-Driven Decision Making: A Reference Model for Organizational, Educational and Competency-Based Learning Systems
Authors: Emanuel Koseos
Abstract:
Data-Driven Decision Making (DDDM) refers to making decisions that are based on historical data in order to inform practice, develop strategies and implement policies that benefit organizational settings. In educational technology, DDDM facilitates the implementation of differential educational learning approaches such as Educational Data Mining (EDM) and Competency-Based Education (CBE), which commonly target university classrooms. There is a current need for DDDM models applied to middle and secondary schools from a concern for assessing the needs, progress and performance of students and educators with respect to regional standards, policies and evolution of curriculums. To address these concerns, we propose a DDDM reference model developed using educational key process initiatives as inputs to a machine learning framework implemented with statistical software (SAS, R) to provide a best-practices, complex-free and automated approach for educators at their regional level. We assessed the efficiency of the model over a six-year period using data from 45 schools and grades K-12 in the Langley, BC, Canada regional school district. We concluded that the model has wider appeal, such as business learning systems.Keywords: competency-based learning, data-driven decision making, machine learning, secondary schools
Procedia PDF Downloads 174404 The Proposal of a Shared Mobility City Index to Support Investment Decision Making for Carsharing
Authors: S. Murr, S. Phillips
Abstract:
One of the biggest challenges entering a market with a carsharing or any other shared mobility (SM) service is sound investment decision-making. To support this process, the authors think that a city index evaluating different criteria is necessary. The goal of such an index is to benchmark cities along a set of external measures to answer the main two challenges: financially viability and the understanding of its specific requirements. The authors have consulted several shared mobility projects and industry experts to create such a Shared Mobility City Index (SMCI). The current proposal of the SMCI consists of 11 individual index measures: general data (demographics, geography, climate and city culture), shared mobility landscape (current SM providers, public transit options, commuting patterns and driving culture) and political vision and goals (vision of the Mayor, sustainability plan, bylaws/tenders supporting SM). To evaluate the suitability of the index, 16 cities on the East Coast of North America were selected and secondary research was conducted. The main sources of this study were census data, organisational records, independent press releases and informational websites. Only non-academic sources where used because the relevant data for the chosen cities is not published in academia. Applying the index measures to the selected cities resulted in three major findings. Firstly, density (city area divided by number of inhabitants) is not an indicator for the number of SM services offered: the city with the lowest density has five bike and carsharing options. Secondly, there is a direct correlation between commuting patterns and how many shared mobility services are offered. New York, Toronto and Washington DC have the highest public transit ridership and the most shared mobility providers. Lastly, except one, all surveyed cities support shared mobility with their sustainability plan. The current version of the shared mobility index is proving a practical tool to evaluate cities, and to understand functional, political, social and environmental considerations. More cities will have to be evaluated to refine the criteria further. However, the current version of the index can be used to assess cities on their suitability for shared mobility services and will assist investors deciding which city is a financially viable market.Keywords: carsharing, transportation, urban planning, shared mobility city index
Procedia PDF Downloads 303403 Association of Sensory Processing and Cognitive Deficits in Children with Autism Spectrum Disorders – Pioneer Study in Saudi Arabia
Authors: Rana Zeina
Abstract:
Objective: The association between Sensory problems and cognitive abilities has been studied in individuals with Autism Spectrum Disorders (ASDs). In this study, we used a neuropsychological test to evaluate memory and attention in ASDs children with sensory problems compared to the ASDs children without sensory problems. Methods: Four visual memory tests of Cambridge Neuropsychological Test Automated Battery (CANTAB) including Big/Little Circle (BLC), Simple Reaction Time (SRT), Intra/Extra Dimensional Set Shift (IED), Spatial Recognition Memory (SRM), were administered to 14 ASDs children with sensory problems compared to 13 ASDs without sensory problems aged 3 to 12 with IQ of above 70. Results: ASDs Individuals with sensory problems performed worse than the ASDs group without sensory problems on comprehension, learning, reversal and simple reaction time tasks, and no significant difference between the two groups was recorded in terms of the visual memory and visual comprehension tasks. Conclusion: The findings of this study suggest that ASDs children with sensory problems are facing deficits in learning, comprehension, reversal, and speed of response to stimuli.Keywords: visual memory, attention, autism spectrum disorders, CANTAB eclipse
Procedia PDF Downloads 451402 Effective Glosses in Reading to Help L2 Vocabulary Learning for Low-Intermediate Technology University Students in Taiwan
Authors: Pi-Lan Yang
Abstract:
It is controversial which type of gloss condition (i.e., gloss language or gloss position) is more effective in second or foreign language (L2) vocabulary learning. The present study compared the performance on learning ten English words in the conditions of L2 English reading with no glosses and with glosses of Chinese equivalents/translations and L2 English definitions at the side of a page and at an attached sheet for low-intermediate Chinese-speaking learners of English, who were technology university students in Taiwan. It is found first that the performances on the immediate posttest and the delayed posttest were overall better in the gloss condition than those in the no-gloss condition. Next, it is found that the glosses of Chinese translations were more effective and sustainable than those of L2 English definitions. Finally, the effects of L2 English glosses at the side of a page were observed to be less sustainable than those at an attached sheet. In addition, an opinion questionnaire used also showed a preference for the glosses of Chinese translations in L2 English reading. These results would be discussed in terms of automated lexical access, sentence processing mechanisms, and the trade-off nature of storage and processing functions in working memory system, proposed by the capacity theory of language comprehension.Keywords: glosses of Chinese equivalents/translations, glosses of L2 English definitions, L2 vocabulary learning, L2 English reading
Procedia PDF Downloads 247401 Autogenous Diabetic Retinopathy Censor for Ophthalmologists - AKSHI
Authors: Asiri Wijesinghe, N. D. Kodikara, Damitha Sandaruwan
Abstract:
The Diabetic Retinopathy (DR) is a rapidly growing interrogation around the world which can be annotated by abortive metabolism of glucose that causes long-term infection in human retina. This is one of the preliminary reason of visual impairment and blindness of adults. Information on retinal pathological mutation can be recognized using ocular fundus images. In this research, we are mainly focused on resurrecting an automated diagnosis system to detect DR anomalies such as severity level classification of DR patient (Non-proliferative Diabetic Retinopathy approach) and vessel tortuosity measurement of untwisted vessels to assessment of vessel anomalies (Proliferative Diabetic Retinopathy approach). Severity classification method is obtained better results according to the precision, recall, F-measure and accuracy (exceeds 94%) in all formats of cross validation. In ROC (Receiver Operating Characteristic) curves also visualized the higher AUC (Area Under Curve) percentage (exceeds 95%). User level evaluation of severity capturing is obtained higher accuracy (85%) result and fairly better values for each evaluation measurements. Untwisted vessel detection for tortuosity measurement also carried out the good results with respect to the sensitivity (85%), specificity (89%) and accuracy (87%).Keywords: fundus image, exudates, microaneurisms, hemorrhages, tortuosity, diabetic retinopathy, optic disc, fovea
Procedia PDF Downloads 342400 Prediction of Changes in Optical Quality by Tissue Redness after Pterygium Surgery
Authors: Mohd Radzi Hilmi, Mohd Zulfaezal Che Azemin, Khairidzan Mohd Kamal, Azrin Esmady Ariffin, Mohd Izzuddin Mohd Tamrin, Norfazrina Abdul Gaffur, Tengku Mohd Tengku Sembok
Abstract:
Purpose: The purpose of this study is to predict optical quality changes after pterygium surgery using tissue redness grading. Methods: Sixty-eight primary pterygium participants were selected from patients who visited an ophthalmology clinic. We developed a semi-automated computer program to measure the pterygium fibrovascular redness from digital pterygium images. The outcome of this software is a continuous scale grading of 1 (minimum redness) to 3 (maximum redness). The region of interest (ROI) was selected manually using the software. Reliability was determined by repeat grading of all 68 images and its association with contrast sensitivity function (CSF) and visual acuity (VA) was examined. Results: The mean and standard deviation of redness of the pterygium fibrovascular images was 1.88 ± 0.55. Intra- and inter-grader reliability estimates were high with intraclass correlation ranging from 0.97 to 0.98. The new grading was positively associated with CSF (p<0.01) and VA (p<0.01). The redness grading was able to predict 25% and 23% of the variance in the CSF and the VA respectively. Conclusions: The new grading of pterygium fibrovascular redness can be reliably measured from digital images and show a good correlation with CSF and VA. The redness grading can be used in addition to the existing pterygium grading.Keywords: contrast sensitivity, pterygium, redness, visual acuity
Procedia PDF Downloads 515399 Evaluation of the Hepatitis C Virus and Classical and Modern Immunoassays Used Nowadays to Diagnose It in Tirana
Authors: Stela Papa, Klementina Puto, Migena Pllaha
Abstract:
HCV is a hepatotropic RNA virus, transmitted primarily via the blood route, which causes progressive disease such as chronic hepatitis, liver cirrhosis, or hepatocellular carcinoma. HCV nowadays is a global healthcare problem. A variety of immunoassays including old and new technologies are being applied to detect HCV in our country. These methods include Immunochromatography assays (ICA), Fluorescence immunoassay (FIA), Enzyme linked fluorescent assay (ELFA), and Enzyme linked immunosorbent assay (ELISA) to detect HCV antibodies in blood serum, which lately is being slowly replaced by more sensitive methods such as rapid automated analyzer chemiluminescence immunoassay (CLIA). The aim of this study is to estimate HCV infection in carriers and chronic acute patients and to evaluate the use of new diagnostic methods. This study was realized from September 2016 to May 2018. During this study period, 2913 patients were analyzed for the presence of HCV by taking samples from their blood serum. The immunoassays performed were ICA, FIA, ELFA, ELISA, and CLIA assays. Concluding, 82% of patients taken in this study, resulted infected with HCV. Diagnostic methods in clinical laboratories are crucial in the early stages of infection, in the management of chronic hepatitis and in the treatment of patients during their disease.Keywords: CLIA, ELISA, Hepatitis C virus, immunoassay
Procedia PDF Downloads 153398 Impedance Based Biosensor for Agricultural Pathogen Detection
Authors: Rhea Patel, Madhuri Vinchurkar, Rajul Patkar, Gopal Pranjale, Maryam Shojaei Baghini
Abstract:
One of the major limitations on food resources worldwide is the deterioration of plant products due to pathogenic infections. Early screening of plants for pathogenic infections can serve as a boon in the Agricultural sector. The standard microbiology techniques has not kept pace with the rapid enumeration and automated methods for bacteria detection. Electrochemical Impedance Spectroscopy (EIS) serves as a label free bio sensing technique to monitor pathogens in real time. The changes in the electrical impedance of a growing bacterial culture can be monitored to detect activity of microorganisms. In this study, we demonstrate development of a gold interdigitated electrode (gold IDE) based impedance biosensor to detect bacterial cells in real on-field crop samples. To calibrate our impedance measurement system, nutrient broth suspended Escherichia coli cells were used. We extended this calibrated protocol to identify the agricultural pathogens in real potato tuber samples. Distinct difference was seen in the impedance recorded for the healthy and infected potato samples. Our results support the potential application of this Impedance based biosensor in Agricultural pathogen detection.Keywords: agriculture, biosensor, electrochemical impedance spectroscopy, microelectrode, pathogen detection
Procedia PDF Downloads 155397 Stochastic Modeling and Productivity Analysis of a Flexible Manufacturing System
Authors: Mehmet Savsar, Majid Aldaihani
Abstract:
Flexible Manufacturing Systems (FMS) are used to produce a variety of parts on the same equipment. Therefore, their utilization is higher than traditional machining systems. Higher utilization, on the other hand, results in more frequent equipment failures and additional need for maintenance. Therefore, it is necessary to carefully analyze operational characteristics and productivity of FMS or Flexible Manufacturing Cells (FMC), which are smaller configuration of FMS, before installation or during their operation. Appropriate models should be developed to determine production rates based on operational conditions, including equipment reliability, availability, and repair capacity. In this paper, a stochastic model is developed for an automated FMC system, which consists of two machines served by two robots and a single repairman. The model is used to determine system productivity and equipment utilization under different operational conditions, including random machine failures, random repairs, and limited repair capacity. The results are compared to previous study results for FMC system with sufficient repair capacity assigned to each machine. The results show that the model will be useful for design engineers and operational managers to analyze performance of manufacturing systems at the design or operational stages.Keywords: flexible manufacturing, FMS, FMC, stochastic modeling, production rate, reliability, availability
Procedia PDF Downloads 516396 Market Solvency Capital Requirement Minimization: How Non-linear Solvers Provide Portfolios Complying with Solvency II Regulation
Authors: Abraham Castellanos, Christophe Durville, Sophie Echenim
Abstract:
In this article, a portfolio optimization problem is performed in a Solvency II context: it illustrates how advanced optimization techniques can help to tackle complex operational pain points around the monitoring, control, and stability of Solvency Capital Requirement (SCR). The market SCR of a portfolio is calculated as a combination of SCR sub-modules. These sub-modules are the results of stress-tests on interest rate, equity, property, credit and FX factors, as well as concentration on counter-parties. The market SCR is non convex and non differentiable, which does not make it a natural optimization criteria candidate. In the SCR formulation, correlations between sub-modules are fixed, whereas risk-driven portfolio allocation is usually driven by the dynamics of the actual correlations. Implementing a portfolio construction approach that is efficient on both a regulatory and economic standpoint is not straightforward. Moreover, the challenge for insurance portfolio managers is not only to achieve a minimal SCR to reduce non-invested capital but also to ensure stability of the SCR. Some optimizations have already been performed in the literature, simplifying the standard formula into a quadratic function. But to our knowledge, it is the first time that the standard formula of the market SCR is used in an optimization problem. Two solvers are combined: a bundle algorithm for convex non- differentiable problems, and a BFGS (Broyden-Fletcher-Goldfarb- Shanno)-SQP (Sequential Quadratic Programming) algorithm, to cope with non-convex cases. A market SCR minimization is then performed with historical data. This approach results in significant reduction of the capital requirement, compared to a classical Markowitz approach based on the historical volatility. A comparative analysis of different optimization models (equi-risk-contribution portfolio, minimizing volatility portfolio and minimizing value-at-risk portfolio) is performed and the impact of these strategies on risk measures including market SCR and its sub-modules is evaluated. A lack of diversification of market SCR is observed, specially for equities. This was expected since the market SCR strongly penalizes this type of financial instrument. It was shown that this direct effect of the regulation can be attenuated by implementing constraints in the optimization process or minimizing the market SCR together with the historical volatility, proving the interest of having a portfolio construction approach that can incorporate such features. The present results are further explained by the Market SCR modelling.Keywords: financial risk, numerical optimization, portfolio management, solvency capital requirement
Procedia PDF Downloads 117395 Humanitarian Emergency of the Refugee Condition for Central American Immigrants in Irregular Situation
Authors: María de los Ángeles Cerda González, Itzel Arriaga Hurtado, Pascacio José Martínez Pichardo
Abstract:
In México, the recognition of refugee condition is a fundamental right which, as host State, has the obligation of respect, protect, and fulfill to the foreigners – where we can find the figure of immigrants in irregular situation-, that cannot return to their country of origin for humanitarian reasons. The recognition of the refugee condition as a fundamental right in the Mexican law system proceeds under these situations: 1. The immigrant applies for the refugee condition, even without the necessary proving elements to accredit the humanitarian character of his departure from his country of origin. 2. The immigrant does not apply for the recognition of refugee because he does not know he has the right to, even if he has the profile to apply for. 3. The immigrant who applies fulfills the requirements of the administrative procedure and has access to the refugee recognition. Of the three situations above, only the last one is contemplated for the national indexes of the status refugee; and the first two prove the inefficiency of the governmental system viewed from its lack of sensibility consequence of the no education in human rights matter and which results in the legal vulnerability of the immigrants in irregular situation because they do not have access to the procuration and administration of justice. In the aim of determining the causes and consequences of the no recognition of the refugee status, this investigation was structured from a systemic analysis which objective is to show the advances in Central American humanitarian emergency investigation, the Mexican States actions to protect, respect and fulfil the fundamental right of refugee of immigrants in irregular situation and the social and legal vulnerabilities suffered by Central Americans in Mexico. Therefore, to achieve the deduction of the legal nature of the humanitarian emergency from the Human Rights as a branch of the International Public Law, a conceptual framework is structured using the inductive deductive method. The problem statement is made from a legal framework to approach a theoretical scheme under the theory of social systems, from the analysis of the lack of communication of the governmental and normative subsystems of the Mexican legal system relative to the process undertaken by the Central American immigrants to achieve the recognition of the refugee status as a human right. Accordingly, is determined that fulfilling the obligations of the State referent to grant the right of the recognition of the refugee condition, would mean a guideline for a new stage in Mexican Law, because it would enlarge the constitutional benefits to everyone whose right to the recognition of refugee has been denied an as consequence, a great advance in human rights matter would be achieved.Keywords: central American immigrants in irregular situation, humanitarian emergency, human rights, refugee
Procedia PDF Downloads 289394 Optimization of a High-Growth Investment Portfolio for the South African Market Using Predictive Analytics
Authors: Mia Françoise
Abstract:
This report aims to develop a strategy for assisting short-term investors to benefit from the current economic climate in South Africa by utilizing technical analysis techniques and predictive analytics. As part of this research, value investing and technical analysis principles will be combined to maximize returns for South African investors while optimizing volatility. As an emerging market, South Africa offers many opportunities for high growth in sectors where other developed countries cannot grow at the same rate. Investing in South African companies with significant growth potential can be extremely rewarding. Although the risk involved is more significant in countries with less developed markets and infrastructure, there is more room for growth in these countries. According to recent research, the offshore market is expected to outperform the local market over the long term; however, short-term investments in the local market will likely be more profitable, as the Johannesburg Stock Exchange is predicted to outperform the S&P500 over the short term. The instabilities in the economy contribute to increased market volatility, which can benefit investors if appropriately utilized. Price prediction and portfolio optimization comprise the two primary components of this methodology. As part of this process, statistics and other predictive modeling techniques will be used to predict the future performance of stocks listed on the Johannesburg Stock Exchange. Following predictive data analysis, Modern Portfolio Theory, based on Markowitz's Mean-Variance Theorem, will be applied to optimize the allocation of assets within an investment portfolio. By combining different assets within an investment portfolio, this optimization method produces a portfolio with an optimal ratio of expected risk to expected return. This methodology aims to provide a short-term investment with a stock portfolio that offers the best risk-to-return profile for stocks listed on the JSE by combining price prediction and portfolio optimization.Keywords: financial stocks, optimized asset allocation, prediction modelling, South Africa
Procedia PDF Downloads 98393 Evaluation of Coastal Erosion in the Jurisdiction of the Municipalities of Puerto Colombia and Tubará, Atlántico – Colombia in Google Earth Engine with Landsat and Sentinel 2 Images
Authors: Francisco Reyes, Hector Ramirez
Abstract:
In the coastal zones are home to mangrove swamps, coral reefs, and seagrass ecosystems, which are the most biodiverse and fragile on the planet. These areas support a great diversity of marine life; they are also extraordinarily important for humans in the provision of food, water, wood, and other associated goods and services; they also contribute to climate regulation. The lack of an automated model that generates information on the dynamics of changes in coastlines and coastal erosion is identified as a central problem. Coastlines were determined from 1984 to 2020 on the Google Earth platform Engine from Landsat and Sentinel images, using the Normalized Differential Water Index (MNDWI) and Digital Shoreline Analysis System (DSAS) v5.0. Starting from the 2020 coastline, the 10-year prediction (Year 2031) was determined with the erosion of 238.32 hectares and an accretion of 181.96 hectares, while the 20-year prediction (Year 2041) will be presented an erosion of 544.04 hectares and an accretion of 133.94 hectares. The erosion and accretion of Playa Muelle in the municipality of Puerto Colombia were established, which will register the highest value of erosion. The coverage that presented the greatest change was that of artificialized Territories.Keywords: coastline, coastal erosion, MNDWI, Google Earth Engine, Colombia
Procedia PDF Downloads 120392 A Variable Speed DC Motor Using a Converter DC-DC
Authors: Touati Mawloud
Abstract:
Between electronics and electrical systems has developed a new technology that is power electronics, also called electronic of strong currents, this application covers a very wide range of use particularly in the industrial sector, where direct current engines are frequently used, they control their speed by the use of the converters (DC-DC), which aims to deal with various mechanical disturbances (fillers) or electrical (power). In future, it will play a critical role in transforming the current electric grid into the next generation grid. Existing silicon-based PE devices enable electric grid functionalities such as fault-current limiting and converter devices. Systems of future are envisioned to be highly automated, interactive "smart" grid that can self-adjust to meet the demand for electricity reliability, securely, and economically. Transforming today’s electric grid to the grid of the future will require creating or advancing a number of technologies, tools, and techniques—specifically, the capabilities of power electronics (PE). PE devices provide an interface between electrical system, and electronics system by converting AC to direct current (DC) and vice versa. Solid-state wide Bandgap (WBG), semiconductor electronics (such as silicon carbide [SiC], gallium nitride [GaN], and diamond) are envisioned to improve the reliability and efficiency of the next-generation grid substantially.Keywords: Power Electronics (PE), electrical system generation electric grid, switching frequencies, converter devices
Procedia PDF Downloads 442391 PsyVBot: Chatbot for Accurate Depression Diagnosis using Long Short-Term Memory and NLP
Authors: Thaveesha Dheerasekera, Dileeka Sandamali Alwis
Abstract:
The escalating prevalence of mental health issues, such as depression and suicidal ideation, is a matter of significant global concern. It is plausible that a variety of factors, such as life events, social isolation, and preexisting physiological or psychological health conditions, could instigate or exacerbate these conditions. Traditional approaches to diagnosing depression entail a considerable amount of time and necessitate the involvement of adept practitioners. This underscores the necessity for automated systems capable of promptly detecting and diagnosing symptoms of depression. The PsyVBot system employs sophisticated natural language processing and machine learning methodologies, including the use of the NLTK toolkit for dataset preprocessing and the utilization of a Long Short-Term Memory (LSTM) model. The PsyVBot exhibits a remarkable ability to diagnose depression with a 94% accuracy rate through the analysis of user input. Consequently, this resource proves to be efficacious for individuals, particularly those enrolled in academic institutions, who may encounter challenges pertaining to their psychological well-being. The PsyVBot employs a Long Short-Term Memory (LSTM) model that comprises a total of three layers, namely an embedding layer, an LSTM layer, and a dense layer. The stratification of these layers facilitates a precise examination of linguistic patterns that are associated with the condition of depression. The PsyVBot has the capability to accurately assess an individual's level of depression through the identification of linguistic and contextual cues. The task is achieved via a rigorous training regimen, which is executed by utilizing a dataset comprising information sourced from the subreddit r/SuicideWatch. The diverse data present in the dataset ensures precise and delicate identification of symptoms linked with depression, thereby guaranteeing accuracy. PsyVBot not only possesses diagnostic capabilities but also enhances the user experience through the utilization of audio outputs. This feature enables users to engage in more captivating and interactive interactions. The PsyVBot platform offers individuals the opportunity to conveniently diagnose mental health challenges through a confidential and user-friendly interface. Regarding the advancement of PsyVBot, maintaining user confidentiality and upholding ethical principles are of paramount significance. It is imperative to note that diligent efforts are undertaken to adhere to ethical standards, thereby safeguarding the confidentiality of user information and ensuring its security. Moreover, the chatbot fosters a conducive atmosphere that is supportive and compassionate, thereby promoting psychological welfare. In brief, PsyVBot is an automated conversational agent that utilizes an LSTM model to assess the level of depression in accordance with the input provided by the user. The demonstrated accuracy rate of 94% serves as a promising indication of the potential efficacy of employing natural language processing and machine learning techniques in tackling challenges associated with mental health. The reliability of PsyVBot is further improved by the fact that it makes use of the Reddit dataset and incorporates Natural Language Toolkit (NLTK) for preprocessing. PsyVBot represents a pioneering and user-centric solution that furnishes an easily accessible and confidential medium for seeking assistance. The present platform is offered as a modality to tackle the pervasive issue of depression and the contemplation of suicide.Keywords: chatbot, depression diagnosis, LSTM model, natural language process
Procedia PDF Downloads 69390 Modeling the Philippine Stock Exchange Index Closing Value Using Artificial Neural Network
Authors: Frankie Burgos, Emely Munar, Conrado Basa
Abstract:
This paper aimed at developing an artificial neural network (ANN) model specifically for the Philippine Stock Exchange index closing value. The inputs to the ANN are US Dollar and Philippine Peso(USD-PHP) exchange rate, GDP growth of the country, quarterly inflation rate, 10-year bond yield, credit rating of the country, previous open, high, low, close values and volume of trade of the Philippine Stock Exchange Index (PSEi), gold price of the previous day, National Association of Securities Dealers Automated Quotations (NASDAQ), Standard and Poor’s 500 (S & P 500) and the iShares MSCI Philippines ETF (EPHE) previous closing value. The target is composed of the closing value of the PSEi during the 627 trading days from November 3, 2011, to May 30, 2014. MATLAB’s Neural Network toolbox was employed to create, train and simulate the network using multi-layer feed forward neural network with back-propagation algorithm. The results satisfactorily show that the neural network developed has the ability to model the PSEi, which is affected by both internal and external economic factors. It was found out that the inputs used are the main factors that influence the movement of the PSEi closing value.Keywords: artificial neural networks, artificial intelligence, philippine stocks exchange index, stocks trading
Procedia PDF Downloads 297389 THRAP2 Gene Identified as a Candidate Susceptibility Gene of Thyroid Autoimmune Diseases Pedigree in Tunisian Population
Authors: Ghazi Chabchoub, Mouna Feki, Mohamed Abid, Hammadi Ayadi
Abstract:
Autoimmune thyroid diseases (AITDs), including Graves’ disease (GD) and Hashimoto’s thyroiditis (HT), are inherited as complex traits. Genetic factors associated with AITDs have been tentatively identified by candidate gene and genome scanning approaches. We analysed three intragenic microsatellite markers in the thyroid hormone receptor associated protein 2 gene (THRAP2), mapped near D12S79 marker, which have a potential role in immune function and inflammation [THRAP2-1(TG)n, THRAP2-2 (AC)n and THRAP2-3 (AC)n]. Our study population concerned 12 patients affected with AITDs belonging to a multiplex Tunisian family with high prevalence of AITDs. Fluorescent genotyping was carried out on ABI 3100 sequencers (Applied Biosystems USA) with the use of GENESCAN for semi-automated fragment sizing and GENOTYPER peak-calling software. Statistical analysis was performed using the non parametric Lod score (NPL) by Merlin software. Merlin outputs non-parametric NPLall (Z) and LOD scores and their corresponding asymptotic P values. The analysis for three intragenic markers in the THRAP2 gene revealed strong evidence for linkage (NPL=3.68, P=0.00012). Our results suggested the possible role of THRAP2 gene in AITDs susceptibility in this family.Keywords: autoimmunity, autoimmune disease, genetic, linkage analysis
Procedia PDF Downloads 126388 Selective and Highly Sensitive Measurement of ¹⁵NH₃ Using Photoacoustic Spectroscopy for Environmental Applications
Authors: Emily Awuor, Helga Huszar, Zoltan Bozoki
Abstract:
Isotope analysis has found numerous applications in the environmental science discipline, most common being the tracing of environmental contaminants on both regional and global scales. Many environmental contaminants contain ammonia (NH₃) since it is the most abundant gas in the atmosphere and its largest sources are from agricultural and industrial activities. NH₃ isotopes (¹⁴NH₃ and ¹⁵NH₃) are therefore important and can be used in the traceability studies of these atmospheric pollutants. The goal of the project is the construction of a photoacoustic spectroscopy system that is capable of measuring ¹⁵NH₃ isotope selectively in terms of its concentration. A further objective is for the system to be robust, easy-to-use, and automated. This is provided by using two telecommunication type near-infrared distributed feedback (DFB) diode lasers and a laser coupler as the light source in the photoacoustic measurement system. The central wavelength of the lasers in use was 1532 nm, with the tuning range of ± 1 nm. In this range, strong absorption lines can be found for both ¹⁴NH₃ and ¹⁵NH₃. For the selective measurement of ¹⁵NH₃, wavelengths were chosen where the cross effect of ¹⁴NH₃ and water vapor is negligible. We completed the calibration of the photoacoustic system, and as a result, the lowest detectable concentration was 3.32 ppm (3Ϭ) in the case of ¹⁵NH₃ and 0.44 ppm (3Ϭ) in the case of ¹⁴NH₃. The results are most useful in the environmental pollution measurement and analysis.Keywords: ammonia isotope, near-infrared DFB diode laser, photoacoustic spectroscopy, environmental monitoring
Procedia PDF Downloads 148387 Intelligent Building as a Pragmatic Approach towards Achieving a Sustainable Environment
Authors: Zahra Hamedani
Abstract:
Many wonderful technological developments in recent years has opened up the possibility of using intelligent buildings for a number of important applications, ranging from minimizing resource usage as well as increasing building efficiency to maximizing comfort, adaption to inhabitants and responsiveness to environmental changes. The concept of an intelligent building refers to the highly embedded, interactive environment within which by exploiting the use of artificial intelligence provides the ability to know its configuration, anticipate the optimum dynamic response to prevailing environmental stimuli, and actuate the appropriate physical reaction to provide comfort and efficiency. This paper contains a general identification of the intelligence paradigm and its impacts on the architecture arena, that with examining the performance of artificial intelligence, a mechanism to analyze and finally for decision-making to control the environment will be described. This mechanism would be a hierarchy of the rational agents which includes decision-making, information, communication and physical layers. This multi-agent system relies upon machine learning techniques for automated discovery, prediction and decision-making. Then, the application of this mechanism regarding adaptation and responsiveness of intelligent building will be provided in two scales of environmental and user. Finally, we review the identifications of sustainability and evaluate the potentials of intelligent building systems in the creation of sustainable architecture and environment.Keywords: artificial intelligence, intelligent building, responsiveness, adaption, sustainability
Procedia PDF Downloads 410386 Applicability of Fuzzy Logic for Intrusion Detection in Mobile Adhoc Networks
Authors: Ruchi Makani, B. V. R. Reddy
Abstract:
Mobile Adhoc Networks (MANETs) are gaining popularity due to their potential of providing low-cost mobile connectivity solutions to real-world communication problems. Integrating Intrusion Detection Systems (IDS) in MANETs is a tedious task by reason of its distinctive features such as dynamic topology, de-centralized authority and highly controlled/limited resource environment. IDS primarily use automated soft-computing techniques to monitor the inflow/outflow of traffic packets in a given network to detect intrusion. Use of machine learning techniques in IDS enables system to make decisions on intrusion while continuous keep learning about their dynamic environment. An appropriate IDS model is essential to be selected to expedite this application challenges. Thus, this paper focused on fuzzy-logic based machine learning IDS technique for MANETs and presented their applicability for achieving effectiveness in identifying the intrusions. Further, the selection of appropriate protocol attributes and fuzzy rules generation plays significant role for accuracy of the fuzzy-logic based IDS, have been discussed. This paper also presents the critical attributes of MANET’s routing protocol and its applicability in fuzzy logic based IDS.Keywords: AODV, mobile adhoc networks, intrusion detection, anomaly detection, fuzzy logic, fuzzy membership function, fuzzy inference system
Procedia PDF Downloads 178385 Seismic Active Earth Pressure on Retaining Walls with Reinforced Backfill
Authors: Jagdish Prasad Sahoo
Abstract:
The increase in active earth pressure during the event of an earthquake results sliding, overturning and tilting of earth retaining structures. In order to improve upon the stability of structures, the soil mass is often reinforced with various types of reinforcements such as metal strips, geotextiles, and geogrids etc. The stresses generated in the soil mass are transferred to the reinforcements through the interface friction between the earth and the reinforcement, which in turn reduces the lateral earth pressure on the retaining walls. Hence, the evaluation of earth pressure in the presence of seismic forces with an inclusion of reinforcements is important for the design retaining walls in the seismically active zones. In the present analysis, the effect of reinforcing horizontal layers of reinforcements in the form of sheets (Geotextiles and Geogrids) in sand used as backfill, on reducing the active earth pressure due to earthquake body forces has been studied. For carrying out the analysis, pseudo-static approach has been adopted by employing upper bound theorem of limit analysis in combination with finite elements and linear optimization. The computations have been performed with and out reinforcements for different internal friction angle of sand varying from 30 ° to 45 °. The effectiveness of the reinforcement in reducing the active earth pressure on the retaining walls is examined in terms of active earth pressure coefficient for presenting the solutions in a non-dimensional form. The active earth pressure coefficient is expressed as functions of internal friction angle of sand, interface friction angle between sand and reinforcement, soil-wall interface roughness conditions, and coefficient of horizontal seismic acceleration. It has been found that (i) there always exists a certain optimum depth of the reinforcement layers corresponding to which the value of active earth pressure coefficient becomes always the minimum, and (ii) the active earth pressure coefficient decreases significantly with an increase in length of reinforcements only up to a certain length beyond which a further increase in length hardly causes any reduction in the values active earth pressure. The optimum depth of the reinforcement layers and the required length of reinforcements corresponding to the optimum depth of reinforcements have been established. The numerical results developed in this analysis are expected to be useful for purpose of design of retaining walls.Keywords: active, finite elements, limit analysis, presudo-static, reinforcement
Procedia PDF Downloads 365