Search results for: artificial skin
2381 Toxicity of Cry1ac Bacillus thuringiensis against Helicoverpa armigera (Hubner) on Artificial Diet under Laboratory Conditions
Authors: Tahammal Hussain, Khuram Zia, Mumammad Jalal Arif, Megha Parajulee, Abdul Hakeem
Abstract:
The Bioassay on neonate, 2nd and 3rd instar larvae of Helicoverpa armigera (Hubner) were conducted against Bacillus thuringiensis proteins Cry1Ac. Cry1Ac was incorporated into an artificial diet and was serially diluted with distilled water and then mixed with diet at an appropriate temperature of diet. Toxins incorporated prepared diet was poured into Petri-dishes. For controls, distilled water was mixed with the diet. Five toxin doses 0.25, 0.5, 1, 2, and 4 ug / ml and one control were used for each instars of H. armigera 20 larvae were used in each replication and each treatment is replicated four times. LC50 of Cry1Ac against neonate, 2nd and 3rd instar larvae of H. armigera were 0.34, 0.81 and 1.46 ug / ml. So Cry1Ac is more effective against neonate larvae of H .armigera as compared to 2nd and 3rd instar larvae under laboratory conditions.Keywords: B. thuringiensis, Cry1Ac, H. armigera, toxicity
Procedia PDF Downloads 4132380 Design Development, Fabrication, and Preliminary Specifications of Multi-Fingered Prosthetic Hand
Authors: Mogeeb A. El-Sheikh
Abstract:
The study has developed the previous design of an artificial anthropomorphic humanoid hand and accustomed it as a prosthetic hand. The main specifications of this design are determined. The development of our previous design involves the main artificial hand’s parts and subassemblies, palm, fingers, and thumb. In addition, the study presents an adaptable socket design for a transradial amputee. This hand has 3 fingers and thumb. It is more reliable, cosmetics, modularity, and ease of assembly. Its size and weight are almost as a natural hand. The socket cavity has the capability for different sizes of a transradial amputee. The study implements the developed design by using rapid prototype and specifies its main specifications by using a data glove and finite element method.Keywords: adaptable socket, prosthetic hand, transradial amputee, data glove
Procedia PDF Downloads 2622379 Use of Fish Gelatin Based-Films as Edible Pouch to Extend the Shelf-Life of Dried Chicken Powder and Chicken Oil
Authors: Soottawat Benjakul, Phakawat Tongnuanchan, Thummanoon Prodpran
Abstract:
Edible pouches made from fish gelatin film incorporated without and with palm oil (PO), basil essential oil (BEO) or oil mixture (M) were prepared and used to store chicken powder and chicken skin oil in comparison with nylon/low-density polyethylene (Nylon/LDPE) pouch during storage of 15 days. The moisture content of chicken powder packaged in pouches from fish gelatin films incorporated without and with various oils increased during 15 days of storage (p > 0.05). However, there was a non-significant change in moisture content of sample packaged in Nylon/LDPE pouch (p > 0.05). Samples packaged in pouches from fish gelatin films incorporated with oils had lower moisture content than those stored in pouch from gelatin film without oil added throughout the storage (p < 0.05). This coincided with the higher increases in darkness and yellowness for the latter. All samples packaged in pouches made from all films had the slight increase in PV, whereas a drastic increase in TBARS was observed for all samples during 15 days of storage. During 15 days of storage, chicken skin oil packaged in Nylon/LDPE pouch had higher TBARS and p-anisidine value than those stored in pouches made from fish gelatin, regardless of oil incorporated (p< 0.05). Therefore, pouches from gelatin film incorporated with oils could lower water migration and lipid oxidation in fat containing foods and oils.Keywords: edible pouch, fish gelatin, quality changes, storage stability
Procedia PDF Downloads 2482378 Artificial Neural Network in Ultra-High Precision Grinding of Borosilicate-Crown Glass
Authors: Goodness Onwuka, Khaled Abou-El-Hossein
Abstract:
Borosilicate-crown (BK7) glass has found broad application in the optic and automotive industries and the growing demands for nanometric surface finishes is becoming a necessity in such applications. Thus, it has become paramount to optimize the parameters influencing the surface roughness of this precision lens. The research was carried out on a 4-axes Nanoform 250 precision lathe machine with an ultra-high precision grinding spindle. The experiment varied the machining parameters of feed rate, wheel speed and depth of cut at three levels for different combinations using Box Behnken design of experiment and the resulting surface roughness values were measured using a Taylor Hobson Dimension XL optical profiler. Acoustic emission monitoring technique was applied at a high sampling rate to monitor the machining process while further signal processing and feature extraction methods were implemented to generate the input to a neural network algorithm. This paper highlights the training and development of a back propagation neural network prediction algorithm through careful selection of parameters and the result show a better classification accuracy when compared to a previously developed response surface model with very similar machining parameters. Hence artificial neural network algorithms provide better surface roughness prediction accuracy in the ultra-high precision grinding of BK7 glass.Keywords: acoustic emission technique, artificial neural network, surface roughness, ultra-high precision grinding
Procedia PDF Downloads 3052377 Dynamic Facades: A Literature Review on Double-Skin Façade with Lightweight Materials
Authors: Victor Mantilla, Romeu Vicente, António Figueiredo, Victor Ferreira, Sandra Sorte
Abstract:
Integrating dynamic facades into contemporary building design is shaping a new era of energy efficiency and user comfort. These innovative facades, often constructed using lightweight construction systems and materials, offer an opportunity to have a responsive and adaptive nature to the dynamic behavior of the outdoor climate. Therefore, in regions characterized by high fluctuations in daily temperatures, the ability to adapt to environmental changes is of paramount importance and a challenge. This paper presents a thorough review of the state of the art on double-skin facades (DSF), focusing on lightweight solutions for the external envelope. Dynamic facades featuring elements like movable shading devices, phase change materials, and advanced control systems have revolutionized the built environment. They offer a promising path for reducing energy consumption while enhancing occupant well-being. Lightweight construction systems are increasingly becoming the choice for the constitution of these facade solutions, offering benefits such as reduced structural loads and reduced construction waste, improving overall sustainability. However, the performance of dynamic facades based on low thermal inertia solutions in climatic contexts with high thermal amplitude is still in need of research since their ability to adapt is traduced in variability/manipulation of the thermal transmittance coefficient (U-value). Emerging technologies can enable such a dynamic thermal behavior through innovative materials, changes in geometry and control to optimize the facade performance. These innovations will allow a facade system to respond to shifting outdoor temperature, relative humidity, wind, and solar radiation conditions, ensuring that energy efficiency and occupant comfort are both met/coupled. This review addresses the potential configuration of double-skin facades, particularly concerning their responsiveness to seasonal variations in temperature, with a specific focus on addressing the challenges posed by winter and summer conditions. Notably, the design of a dynamic facade is significantly shaped by several pivotal factors, including the choice of materials, geometric considerations, and the implementation of effective monitoring systems. Within the realm of double skin facades, various configurations are explored, encompassing exhaust air, supply air, and thermal buffering mechanisms. According to the review places a specific emphasis on the thermal dynamics at play, closely examining the impact of factors such as the color of the facade, the slat angle's dimensions, and the positioning and type of shading devices employed in these innovative architectural structures.This paper will synthesize the current research trends in this field, with the presentation of case studies and technological innovations with a comprehensive understanding of the cutting-edge solutions propelling the evolution of building envelopes in the face of climate change, namely focusing on double-skin lightweight solutions to create sustainable, adaptable, and responsive building envelopes. As indicated in the review, flexible and lightweight systems have broad applicability across all building sectors, and there is a growing recognition that retrofitting existing buildings may emerge as the predominant approach.Keywords: adaptive, control systems, dynamic facades, energy efficiency, responsive, thermal comfort, thermal transmittance
Procedia PDF Downloads 802376 Testing Chat-GPT: An AI Application
Authors: Jana Ismail, Layla Fallatah, Maha Alshmaisi
Abstract:
ChatGPT, a cutting-edge language model built on the GPT-3.5 architecture, has garnered attention for its profound natural language processing capabilities, holding promise for transformative applications in customer service and content creation. This study delves into ChatGPT's architecture, aiming to comprehensively understand its strengths and potential limitations. Through systematic experiments across diverse domains, such as general knowledge and creative writing, we evaluated the model's coherence, context retention, and task-specific accuracy. While ChatGPT excels in generating human-like responses and demonstrates adaptability, occasional inaccuracies and sensitivity to input phrasing were observed. The study emphasizes the impact of prompt design on output quality, providing valuable insights for the nuanced deployment of ChatGPT in conversational AI and contributing to the ongoing discourse on the evolving landscape of natural language processing in artificial intelligence.Keywords: artificial Inelegance, chatGPT, open AI, NLP
Procedia PDF Downloads 772375 Mean Monthly Rainfall Prediction at Benina Station Using Artificial Neural Networks
Authors: Hasan G. Elmazoghi, Aisha I. Alzayani, Lubna S. Bentaher
Abstract:
Rainfall is a highly non-linear phenomena, which requires application of powerful supervised data mining techniques for its accurate prediction. In this study the Artificial Neural Network (ANN) technique is used to predict the mean monthly historical rainfall data collected from BENINA station in Benghazi for 31 years, the period of “1977-2006” and the results are compared against the observed values. The specific objective to achieve this goal was to determine the best combination of weather variables to be used as inputs for the ANN model. Several statistical parameters were calculated and an uncertainty analysis for the results is also presented. The best ANN model is then applied to the data of one year (2007) as a case study in order to evaluate the performance of the model. Simulation results reveal that application of ANN technique is promising and can provide reliable estimates of rainfall.Keywords: neural networks, rainfall, prediction, climatic variables
Procedia PDF Downloads 4882374 Cognition Technique for Developing a World Music
Authors: Haider Javed Uppal, Javed Yunas Uppal
Abstract:
In today's globalized world, it is necessary to develop a form of music that is able to evoke equal emotional responses among people from diverse cultural backgrounds. Indigenous cultures throughout history have developed their own music cognition, specifically in terms of the connections between music and mood. With the advancements in artificial intelligence technologies, it has become possible to analyze and categorize music features such as timbre, harmony, melody, and rhythm and relate them to the resulting mood effects experienced by listeners. This paper presents a model that utilizes a screenshot translator to convert music from different origins into waveforms, which are then analyzed using machine learning and information retrieval techniques. By connecting these waveforms with Thayer's matrix of moods, a mood classifier has been developed using fuzzy logic algorithms to determine the emotional impact of different types of music on listeners from various cultures.Keywords: cognition, world music, artificial intelligence, Thayer’s matrix
Procedia PDF Downloads 812373 Albinism in the South African Workplace: Reasonable Accommodation of a Black Person Living in a White Skin
Authors: Laetitia Fourie
Abstract:
Dangerous myths and stereotypes contribute to the fact that persons living with albinism are amongst the most vulnerable groups in society. The prevalence of albinism varies around the world and the World Health Organization estimates that around 1 in 5000 people in Sub-Saharan Africa are affected by this genetic disorder. Persons who are living with the condition usually experience a lack of melanin in their skin, eyes and hair that results in possible physical impairments such as poor eyesight and skin cancers. Being affected by such disorders and consequently classified as an albino, give way for unequal treatment which ultimately requires safeguarding these persons against unfair discrimination - not only on the basis of their race and color (or lack thereof), but also on the basis of their disability. The Constitution of the Republic of South Africa provides that everyone is equal before the law and prohibits unfair discrimination on the grounds of race, color and disability. This right is given effect to by the Employment Equity Act, which strives to eliminate unfair discrimination on similar grounds within any employment policy or practice. An essential non-discrimination measure that can be implemented in the labor market to achieve equality is the duty of reasonable accommodation that rests upon employers. However, reasonable accommodation is only introduced as an affirmative action measure in order to provide equal employment opportunities to the identified designated groups who include black people (defined to include Indians, Chinese and Colored), women and people with disabilities. Even though this duty exists, South African law does not elaborate on the scope of the duty, except for a Disability Code, which does not hold the force of law. Furthermore, in respect of applying affirmative action measures to people with disabilities, the law does not elaborate on the meaning of disability. Considering that persons living with albinism will find it difficult to show that they are black or disabled in order to be acknowledged as part of the designated groups, their access to reasonable accommodation will be limited to a great extent. This paper will aim to illustrate to which extent South African law currently fails to implement its international obligations as a State Party to the Conventions of the United Nations, and how these failures should be corrected in order to serve the needs of all South Africans, including albinos.Keywords: albinism, disability, equality, South Africa, United Nations
Procedia PDF Downloads 1882372 Corporate Digital Responsibility in Construction Engineering-Construction 4.0: Ethical Guidelines for Digitization and Artificial Intelligence
Authors: Weber-Lewerenz Bianca
Abstract:
Digitization is developing fast and has become a powerful tool for digital planning, construction, and operations. Its transformation bears high potentials for companies, is critical for success, and thus, requires responsible handling. This study provides an assessment of calls made in the sustainable development goals by the United Nations (SDGs), White Papers on AI by international institutions, EU-Commission and German Government requesting for the consideration and protection of values and fundamental rights, the careful demarcation between machine (artificial) and human intelligence and the careful use of such technologies. The study discusses digitization and the impacts of artificial intelligence (AI) in construction engineering from an ethical perspective by generating data via conducting case studies and interviewing experts as part of the qualitative method. This research evaluates critically opportunities and risks revolving around corporate digital responsibility (CDR) in the construction industry. To the author's knowledge, no study has set out to investigate how CDR in construction could be conceptualized, especially in relation to the digitization and AI, to mitigate digital transformation both in large, medium-sized, and small companies. No study addressed the key research question: Where can CDR be allocated, how shall its adequate ethical framework be designed to support digital innovations in order to make full use of the potentials of digitization and AI? Now is the right timing for constructive approaches and apply ethics-by-design in order to develop and implement a safe and efficient AI. This represents the first study in construction engineering applying a holistic, interdisciplinary, inclusive approach to provide guidelines for orientation, examine benefits of AI and define ethical principles as the key driver for success, resources-cost-time efficiency, and sustainability using digital technologies and AI in construction engineering to enhance digital transformation. Innovative corporate organizations starting new business models are more likely to succeed than those dominated by conservative, traditional attitudes.Keywords: construction engineering, digitization, digital transformation, artificial intelligence, ethics, corporate digital responsibility, digital innovation
Procedia PDF Downloads 2502371 Social and Educational AI for Diversity: Research on Democratic Values to Develop Artificial Intelligence Tools to Guarantee Access for all to Educational Tools and Public Services
Authors: Roberto Feltrero, Sara Osuna-Acedo
Abstract:
Responsible Research and Innovation have to accomplish one fundamental aim: everybody has to participate in the benefits of innovation, but also innovation has to be democratic; that is to say, everybody may have the possibility to participate in the decisions in the innovation process. Particularly, a democratic and inclusive model of social participation and innovation includes persons with disabilities and people at risk of discrimination. Innovations on Artificial Intelligence for social development have to accomplish the same dual goal: improving equality for accessing fields of public interest like education, training and public services, as well as improving civic and democratic participation in the process of developing such innovations for all. This research aims to develop innovations, policies and policy recommendations to apply and disseminate such artificial intelligence and social model for making educational and administrative processes more accessible. First, designing a citizen participation process to engage citizens in the designing and use of artificial intelligence tools for public services. This will result in improving trust in democratic institutions contributing to enhancing the transparency, effectiveness, accountability and legitimacy of public policy-making and allowing people to participate in the development of ethical standards for the use of such technologies. Second, improving educational tools for lifelong learning with AI models to improve accountability and educational data management. Dissemination, education and social participation will be integrated, measured and evaluated in innovative educational processes to make accessible all the educational technologies and content developed on AI about responsible and social innovation. A particular case will be presented regarding access for all to educational tools and public services. This accessibility requires cognitive adaptability because, many times, legal or administrative language is very complex. Not only for people with cognitive disabilities but also for old people or citizens at risk of educational or social discrimination. Artificial Intelligence natural language processing technologies can provide tools to translate legal, administrative, or educational texts to a more simple language that can be accessible to everybody. Despite technological advances in language processing and machine learning, this becomes a huge project if we really want to respect ethical and legal consequences because that kinds of consequences can only be achieved with civil and democratic engagement in two realms: 1) to democratically select texts that need and can be translated and 2) to involved citizens, experts and nonexperts, to produce and validate real examples of legal texts with cognitive adaptations to feed artificial intelligence algorithms for learning how to translate those texts to a more simple and accessible language, adapted to any kind of population.Keywords: responsible research and innovation, AI social innovations, cognitive accessibility, public participation
Procedia PDF Downloads 902370 Artificial Intelligence in Melanoma Prognosis: A Narrative Review
Authors: Shohreh Ghasemi
Abstract:
Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods.Keywords: artificial intelligence, melanoma, accuracy, prognosis prediction, image analysis, personalized medicine
Procedia PDF Downloads 812369 Optimization of a Flexible Thermoelectric Generator for Energy Harvesting from Human Skin to Power Wearable Electronics
Authors: Dessalegn Abera Waktole, Boru Jia, Zhengxing Zuo, Wei Wang, Nianling Kuang
Abstract:
A flexible thermoelectric generator is one method for recycling waste heat. This research provides the optimum performance of a flexible thermoelectric generator with optimal geometric parameters and a detailed structural design. In this research, a numerical simulation and experiment were carried out to develop an efficient, flexible thermoelectric generator for energy harvesting from human skin. Heteromorphic electrodes and a polyimide substrate with a copper-printed circuit board were introduced into the structural design of a flexible thermoelectric generator. The heteromorphic electrode was used as a heat sink and component of a flexible thermoelectric generator to enhance the temperature difference within the thermoelectric legs. Both N-type and P-type thermoelectric legs were made of bismuth selenium telluride (Bi1.7Te3.7Se0.3) and bismuth antimony telluride (Bi0.4Sb1.6Te3). The output power of the flexible thermoelectric generator was analyzed under different heat source temperatures and heat dissipation conditions. The COMSOL Multiphysics 5.6 software was used to conduct the simulation, which was validated by experiment. It is recorded that the maximum power output of 232.064μW was obtained by considering different wind speed conditions, the ambient temperature of 20℃, and the heat source temperature of 36℃ under various load resistance conditions, which range from 0.24Ω to 0. 91Ω. According to this finding, heteromorphic electrodes have a significant impact on the performance of the device.Keywords: flexible thermoelectric generator, optimization, performance, temperature gradient, waste heat recovery
Procedia PDF Downloads 1652368 Analysis of Moving Loads on Bridges Using Surrogate Models
Authors: Susmita Panda, Arnab Banerjee, Ajinkya Baxy, Bappaditya Manna
Abstract:
The design of short to medium-span high-speed bridges in critical locations is an essential aspect of vehicle-bridge interaction. Due to dynamic interaction between moving load and bridge, mathematical models or finite element modeling computations become time-consuming. Thus, to reduce the computational effort, a universal approximator using an artificial neural network (ANN) has been used to evaluate the dynamic response of the bridge. The data set generation and training of surrogate models have been conducted over the results obtained from mathematical modeling. Further, the robustness of the surrogate model has been investigated, which showed an error percentage of less than 10% with conventional methods. Additionally, the dependency of the dynamic response of the bridge on various load and bridge parameters has been highlighted through a parametric study.Keywords: artificial neural network, mode superposition method, moving load analysis, surrogate models
Procedia PDF Downloads 1002367 Comparison of Polyphonic Profile of a Berry from Two Different Sources, Using an Optimized Extraction Method
Authors: G. Torabian, A. Fathi, P. Valtchev, F. Dehghani
Abstract:
The superior polyphenol content of Sambucus nigra berries has high health potentials for the production of nutraceutical products. Numerous factors influence the polyphenol content of the final products including the berries’ source and the subsequent processing production steps. The aim of this study is to compare the polyphenol content of berries from two different sources and also to optimise the polyphenol extraction process from elderberries. Berries from source B obtained more acceptable physical properties than source A; a single berry from source B was double in size and weight (both wet and dry weight) compared with a source A berry. Despite the appropriate physical characteristics of source B berries, their polyphenolic profile was inferior; as source A berries had 2.3 fold higher total anthocyanin content, and nearly two times greater total phenolic content and total flavonoid content compared to source B. Moreover, the result of this study showed that almost 50 percent of the phenolic content of berries are entrapped within their skin and pulp that potentially cannot be extracted by press juicing. To address this challenge and to increase the total polyphenol yield of the extract, we used cold-shock blade grinding method to break the cell walls. The result of this study showed that using cultivars with higher phenolic content as well as using the whole fruit including juice, skin and pulp can increase polyphenol yield significantly; and thus, may boost the potential of using elderberries as therapeutic products.Keywords: different sources, elderberry, grinding, juicing, polyphenols
Procedia PDF Downloads 2942366 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction
Authors: C. S. Subhashini, H. L. Premaratne
Abstract:
Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.Keywords: landslides, influencing factors, neural network model, hidden markov model
Procedia PDF Downloads 3842365 Diagnosis, Treatment, and Prognosis in Cutaneous Anaplastic Lymphoma Kinase-Positive Anaplastic Large Cell Lymphoma: A Narrative Review Apropos of a Case
Authors: Laura Gleason, Sahithi Talasila, Lauren Banner, Ladan Afifi, Neda Nikbakht
Abstract:
Primary cutaneous anaplastic large cell lymphoma (pcALCL) accounts for 9% of all cutaneous T-cell lymphomas. pcALCL is classically characterized as a solitary papulonodule that often enlarges, ulcerates, and can be locally destructive, but overall exhibits an indolent course with overall 5-year survival estimated to be 90%. Distinguishing pcALCL from systemic ALCL (sALCL) is essential as sALCL confers a poorer prognosis with average 5-year survival being 40-50%. Although extremely rare, there have been several cases of ALK-positive ALCL diagnosed on skin biopsy without evidence of systemic involvement, which poses several challenges in the classification, prognostication, treatment, and follow-up of these patients. Objectives: We present a case of cutaneous ALK-positive ALCL without evidence of systemic involvement, and a narrative review of the literature to further characterize that ALK-positive ALCL limited to the skin is a distinct variant with a unique presentation, history, and prognosis. A 30-year-old woman presented for evaluation of an erythematous-violaceous papule present on her right chest for two months. With the development of multifocal disease and persistent lymphadenopathy, a bone marrow biopsy and lymph node excisional biopsy were performed to assess for systemic disease. Both biopsies were unrevealing. The patient was counseled on pursuing systemic therapy consisting of Brentuximab, Cyclophosphamide, Doxorubicin, and Prednisone given the concern for sALCL. Apropos of the patient we searched for clinically evident, cutaneous ALK-positive ALCL cases, with and without systemic involvement, in the English literature. Risk factors, such as tumor location, number, size, ALK localization, ALK translocations, and recurrence, were evaluated in cases of cutaneous ALK-positive ALCL. The majority of patients with cutaneous ALK-positive ALCL did not progress to systemic disease. The majority of cases that progressed to systemic disease in adults had recurring skin lesions and cytoplasmic localization of ALK. ALK translocations did not influence disease progression. Mean time to disease progression was 16.7 months, and significant mortality (50%) was observed in those cases that progressed to systemic disease. Pediatric cases did not exhibit a trend similar to adult cases. In both the adult and pediatric cases, a subset of cutaneous-limited ALK-positive ALCL were treated with chemotherapy. All cases treated with chemotherapy did not progress to systemic disease. Apropos of an ALK-positive ALCL patient with clinical cutaneous limited disease in the histologic presence of systemic markers, we discussed the literature data, highlighting the crucial issues related to developing a clinical strategy to approach this rare subtype of ALCL. Physicians need to be aware of the overall spectrum of ALCL, including cutaneous limited disease, systemic disease, disease with NPM-ALK translocation, disease with ALK and EMA positivity, and disease with skin recurrence.Keywords: anaplastic large cell lymphoma, systemic, cutaneous, anaplastic lymphoma kinase, ALK, ALCL, sALCL, pcALCL, cALCL
Procedia PDF Downloads 832364 The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm
Authors: P. Sawatnatee, S. Udomsuk, K-N. Areerak, K-L. Areerak, A. Srikaew
Abstract:
The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.Keywords: indirect vector control, induction motor, adaptive tabu search, control design, artificial intelligence
Procedia PDF Downloads 3982363 Chemometric Estimation of Inhibitory Activity of Benzimidazole Derivatives by Linear Least Squares and Artificial Neural Networks Modelling
Authors: Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić, Stela Jokić
Abstract:
The subject of this paper is to correlate antibacterial behavior of benzimidazole derivatives with their molecular characteristics using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on the inhibitory activity of benzimidazole derivatives against Staphylococcus aureus. The data were processed by linear least squares (LLS) and artificial neural network (ANN) procedures. The LLS mathematical models have been developed as a calibration models for prediction of the inhibitory activity. The quality of the models was validated by leave one out (LOO) technique and by using external data set. High agreement between experimental and predicted inhibitory acivities indicated the good quality of the derived models. These results are part of the CMST COST Action No. CM1306 "Understanding Movement and Mechanism in Molecular Machines".Keywords: Antibacterial, benzimidazoles, chemometric, QSAR.
Procedia PDF Downloads 3162362 The Urban Stray Animal Identification Management System Based on YOLOv5
Authors: Chen Xi, Kuan Sinman, LI Haofeng, Huang Hongming, Zeng Chengyu, Tong Zhiyuan
Abstract:
Stray animals are on the rise in mainland China's cities. There are legal reasons for this, namely the lack of protection for domestic pets in mainland China, where only wildlife protection laws exist. At a social level, the ease with which families adopt pets and the lack of a social view of animal nature has led to the frequent abandonment and loss of stray animals. If left unmanaged, conflicts between humans and stray animals can also increase. This project provides an inexpensive and widely applicable management tool for urban management by collecting videos and pictures of stray animals captured by surveillance or transmitted by humans and using artificial intelligence technology (mainly using YOLOv5 recognition technology) and recording and managing them in a database.Keywords: urban planning, urban governance, artificial intelligence, convolutional neural network
Procedia PDF Downloads 1042361 Artificial Insemination for Cattle and Carabaos in Bicol Region, Philippines: Its Implementation and Assessment
Authors: Lourdita Llanto
Abstract:
This study described and assessed the implementation of artificial insemination (AI) for cattle and carabaos in the Bicol Region, Philippines: Albay, Sorsogon and Camarines Sur. Three hundred respondents were interviewed. Results were analyzed using frequency counts, means, percentages and chi-square test. Semen samples from different stations were analyzed for motility, viability and morphology. T-test was used in semen quality evaluation. Provincial AI coordinators (PAIC) were male, averaging 59 years old, married, had college education, served in government service for 34 years, but as PAIC for 5.7 years. All had other designations. Mean AI operation was 11.33 years with annual support from the local government unit of Php76,666.67. AI technicians were males, married, with college education, and trained on AI. Problems were on mobility; inadequate knowledge of farmers in animal raising and AI; and lack of liquid nitrogen and frozen semen supply. There was 2.95 municipalities and breedable cattle/carabaos of 3,091.25 per AI technician. Mean number of artificially inseminated animals per AI technician for 2011 was 28.57 heads for carabaos and 8.64 heads for cattle. There was very low participation rate among farmers. Carabaos were 6.52 years with parity 1.53. Cattle were 5.61 years, with parity of 1.51. Semen quality significantly (p ≤ 0.05) deteriorated in normal and live sperm with storage and handling at the provincial and field stations. Breed, AI technicians practices and AI operation significantly affected conception rate. Mean conception rate was 57.62%.Keywords: artificial insemination, carabao, parity, mother tanks, frozen semen
Procedia PDF Downloads 4352360 Transdermal Delivery of Sodium Diclofenac from Palm Kernel Oil Esteres Nanoemulsions
Authors: Malahat Rezaee, Mahiran Basri, Abu Bakar Salleh, Raja Noor Zaliha Raja Abdul Rahman
Abstract:
Sodium diclofenac is one of the most commonly used drugs of nonsteroidal anti-inflammatory drugs (NSAIDs). It is especially effective in the controlling the severe conditions of inflammation and pain, musculoskeletal disorders, arthritis, and dysmenorrhea. Formulation as nanoemulsions is one of the nanoscience approaches that has been progressively considered in pharmaceutical science for transdermal delivery of the drug. Nanoemulsions are a type of emulsion with particle sizes ranging from 20 nm to 200 nm. An emulsion is formed by the dispersion of one liquid, usually the oil phase in another immiscible liquid, water phase that is stabilized using the surfactant. Palm kernel oil esters (PKOEs), in comparison to other oils, contain higher amounts of shorter chain esters, which suitable to be applied in micro and nanoemulsion systems as a carrier for actives, with excellent wetting behavior without the oily feeling. This research aimed to study the effect of terpene type and concentration on sodium diclofenac permeation from palm kernel oil esters nanoemulsions and physicochemical properties of the nanoemulsions systems. The effect of various terpenes of geraniol, menthone, menthol, cineol and nerolidol at different concentrations of 0.5, 1.0, 2.0, and 4.0% on permeation of sodium diclofenac were evaluated using Franz diffusion cells and rat skin as permeation membrane. The results of this part demonstrated that all terpenes showed promoting effect on sodium diclofenac penetration. However, menthol and menthone at all concentrations showed significant effects (<0.05) on drug permeation. The most outstanding terpene was menthol with the most significant effect for skin permeability of sodium diclofenac. The effect of terpenes on physicochemical properties of nanoemulsion systems was investigated on the parameters of particle size, zeta potential, pH, viscosity and electrical conductivity. The result showed that all terpenes had the significant effect on particle size and non-significant effects on the zeta potential of the nanoemulsion systems. The effect of terpenes was significant on pH, excluding the menthone at concentrations of 0.5 and 1.0%, and cineol and nerolidol at the concentration of 2.0%. Terpenes also had significant effect on viscosity of nanoemulsions exception of menthone and cineol at the concentration of 0.5%. The result of conductivity measurements showed that all terpenes at all concentration except cineol at the concentration of 0.5% represented significant effect on electrical conductivity.Keywords: nanoemulsions, palm kernel oil esters, sodium diclofenac, terpenes, skin permeation
Procedia PDF Downloads 4212359 Efficacy of Eutectic Mixture of Local Anaesthetics and Diclofenac Spray in Attenuating Intravenous Cannulation Pain- Paeallel Randomized Trial
Authors: Anju Rani, Geeta, Sudha Rani, Choudhary, Puhal
Abstract:
Method- A total of 300 patients were studied, with 100 patients in each group. Patients aged 16-60 years, ASA grade I and II undergoing elective general surgical, urology and orthopedic procedures were included in the study. The patients were randomly allocated to any of the three groups by Using Sealed envelopes. 1. Group A: EMLA (eutectic mixture of 2.5% lidocaine with 2.5% prilocaine) - Patients receiving eutectic Lidocaine/ Prilocaine cream (2gm/10cm2) of Prilox cream), for 60- 70 min under occlusive dressing. 2. Group B - Patients receiving topical diclofenac 4 % spray gel for 60- 70 min, covering an absorption area of 50 cm2 3. Group C: control – Direct cannulation was done without any intervention. Results - Group B showed significantly least number of patients complaining pain on IV cannulation in comparison to group A and group C. The Mean VAS scores were found to be maximum in GROUP C: control-8.76 ± 4.14, then in GROUP A: EMLA- 2.54 ± 4.21.and least in GROUP B: Diclofenac 4% spray-1.13 ± 3.05. Erythema, induration and edema were significantly reported to be higher for the control group. Also group A patients reported adverse skin reactions more than patients in group B. Conclusion - It can be concluded that diclofenac spray 4 % and EMLA cream are effective in reducing the incidence and severity of venous cannulation pain as compared to the control group. However, a higher incidence of skin blanching, erythema, and oedema associated with EMLA cream and a lower incidence of these adverse effects favours the use of diclofenac spray 4%. They are promising agents for the treatment of venous cannulation pain.Keywords: diclofenac spray, EMLA, intravenous, pain
Procedia PDF Downloads 1572358 Home Legacy Device Output Estimation Using Temperature and Humidity Information by Adaptive Neural Fuzzy Inference System
Authors: Sung Hyun Yoo, In Hwan Choi, Jun Ho Jung, Choon Ki Ahn, Myo Taeg Lim
Abstract:
Home energy management system (HEMS) has been issued to reduce the power consumption. The HEMS performs electric power control for the indoor electric device. However, HEMS commonly treats the smart devices. In this paper, we suggest the output estimation of home legacy device using the artificial neural fuzzy inference system (ANFIS). This paper discusses the overview and the architecture of the system. In addition, accurate performance of the output estimation using the ANFIS inference system is shown via a numerical example.Keywords: artificial neural fuzzy inference system (ANFIS), home energy management system (HEMS), smart device, legacy device
Procedia PDF Downloads 5452357 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network
Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala
Abstract:
There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.Keywords: artificial neural network, high performance concrete, rebound hammer, strength prediction
Procedia PDF Downloads 1552356 Its about Cortana, Microsoft’s Virtual Assistant
Authors: Aya Idriss, Esraa Othman, Lujain Malak
Abstract:
Artificial intelligence is the emulation of human intelligence processes by machines, particularly computer systems that act logically. Some of the specific applications of AI include natural language processing, speech recognition, and machine vision. Cortana is a virtual assistant and she’s an example of an AI Application. Microsoft made it possible for this app to be accessed not only on laptops and PCs but can be downloaded on mobile phones and used as a virtual assistant which was a huge success. Cortana can offer a lot apart from the basic orders such as setting alarms and marking the calendar. Its capabilities spread past that, for example, it provides us with listening to music and podcasts on the go, managing my to-do list and emails, connecting with my contacts hands-free by simply just telling the virtual assistant to call somebody, gives me instant answers and so on. A questionnaire was sent online to numerous friends and family members to perform the study, which is critical in evaluating Cortana's recognition capacity and the majority of the answers were in favor of Cortana’s capabilities. The results of the questionnaire assisted us in determining the level of Cortana's skills.Keywords: artificial intelligence, Cortana, AI, abstract
Procedia PDF Downloads 1772355 Integrating Artificial Intelligence in Social Work Education: An Exploratory Study
Authors: Nir Wittenberg, Moshe Farhi
Abstract:
This mixed-methods study examines the integration of artificial intelligence (AI) tools in a first-year social work course to assess their potential for enhancing professional knowledge and skills. The incorporation of digital technologies, such as AI, in social work interventions, training, and research has increased, with the expectation that AI will become as commonplace as email and mobile phones. However, policies and ethical guidelines regarding AI, as well as empirical evaluations of its usefulness, are lacking. As AI is gradually being adopted in the field, it is prudent to explore AI thoughtfully in alignment with pedagogical goals. The outcomes assessed include professional identity, course satisfaction, and motivation. AI offers unique reflective learning opportunities through personalized simulations, feedback, and queries to complement face-to-face lessons. For instance, AI simulations provide low-risk practices for situations such as client interactions, enabling students to build skills with less stress. However, it is essential to recognize that AI alone cannot ensure real-world competence or cultural sensitivity. Outcomes related to student learning, experience, and perceptions will help to elucidate the best practices for AI integration, guiding faculty, and advancing pedagogical innovation. This strategic integration of selected AI technologies is expected to diversify course methodology, improve learning outcomes, and generate new evidence on AI’s educational utility. The findings will inform faculty seeking to thoughtfully incorporate AI into teaching and learning.Keywords: artificial intelligence (AI), social work education, students, developing a professional identity, ethical considerations
Procedia PDF Downloads 792354 Harnessing Cutting-Edge Technologies and Innovative Ideas in the Design, Development, and Management of Hybrid Operating Rooms
Authors: Samir Hessas
Abstract:
Modern medicine is witnessing a profound transformation as advanced technology reshapes surgical environments. Hybrid operating rooms, where state-of-the-art medical equipment, advanced imaging solutions, and Artificial Intelligence (AI) converge, are at the forefront of this revolution. In this comprehensive exploration, we scrutinize the multifaceted facets of AI and delve into an array of groundbreaking technologies. We also discuss visionary concepts that hold the potential to revolutionize hybrid operating rooms, making them more efficient and patient-centered. These innovations encompass real-time imaging, surgical simulation, IoT and remote monitoring, 3D printing, telemedicine, quantum computing, and nanotechnology. The outcome of this fusion of technology and imagination is a promising future of surgical precision, individualized patient care, and unprecedented medical advances in hybrid operating rooms.Keywords: artificial intelligence, hybrid operating rooms, telemedicine, monitoring
Procedia PDF Downloads 862353 The Injection of a Freshly Manufactured Hyaluronan Fragment Promotes Healing of Chronic Wounds: A Clinical Study
Authors: Dylan Treger, Lujia Zhang, Xiaoxiao Jia, Jessica H. Hui, Munkh-Amgalan Gantumur, Mizhou Hui, Li Liu
Abstract:
Hyaluronic acid (HA) is involved in wound healing via inflammation, granulation, and re-epithelialization mechanisms. The poor physical properties of natural high-molecular-weight polymers limit their direct use in the medical field. In this clinical study, we investigated whether the local injection of a tissue-permeable 35 kDa HA fragment (HA35) could favor the healing process in patients with chronic wounds accompanied by neuropathic pain. The HA35 fragments were freshly manufactured by degradation of high-molecular-weight HA with bovine testis-derived hyaluronidase PH20. Twenty patients in this study had nonhealing wounds and wound-related pain for more than 3 months. Freshly produced HA35 was locally injected into healthy skin immediately surrounding chronic wounds once a day for 10 days. Wound-associated pain and the degree of wound healing were evaluated. The injection of HA35 relieved the pain associated with chronic wounds in 24 hours. HA35 treatment significantly promoted the healing of chronic wounds, including expanded fresh granulation tissue on the wounds; reduced darkness or redness, dryness, and damaged areas on the surface of the skin surrounding the wounds; and decreased the size of the wound area. It can be concluded that the topical injection of tissue-permeable HA35 around chronic wounds has great potential to promote wound healing.Keywords: 35 kDa hyaluronan fragment HA35, chronic wound, wound healing, tissue permeability
Procedia PDF Downloads 1672352 A Comprehensive Review of Artificial Intelligence Applications in Sustainable Building
Authors: Yazan Al-Kofahi, Jamal Alqawasmi.
Abstract:
In this study, a comprehensive literature review (SLR) was conducted, with the main goal of assessing the existing literature about how artificial intelligence (AI), machine learning (ML), deep learning (DL) models are used in sustainable architecture applications and issues including thermal comfort satisfaction, energy efficiency, cost prediction and many others issues. For this reason, the search strategy was initiated by using different databases, including Scopus, Springer and Google Scholar. The inclusion criteria were used by two research strings related to DL, ML and sustainable architecture. Moreover, the timeframe for the inclusion of the papers was open, even though most of the papers were conducted in the previous four years. As a paper filtration strategy, conferences and books were excluded from database search results. Using these inclusion and exclusion criteria, the search was conducted, and a sample of 59 papers was selected as the final included papers in the analysis. The data extraction phase was basically to extract the needed data from these papers, which were analyzed and correlated. The results of this SLR showed that there are many applications of ML and DL in Sustainable buildings, and that this topic is currently trendy. It was found that most of the papers focused their discussions on addressing Environmental Sustainability issues and factors using machine learning predictive models, with a particular emphasis on the use of Decision Tree algorithms. Moreover, it was found that the Random Forest repressor demonstrates strong performance across all feature selection groups in terms of cost prediction of the building as a machine-learning predictive model.Keywords: machine learning, deep learning, artificial intelligence, sustainable building
Procedia PDF Downloads 67