Search results for: DHA enzyme activity; labile carbon
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9346

Search results for: DHA enzyme activity; labile carbon

8596 The Source of Fibre and Roxazyme® G2 Interacted to Influence the Length of Villi in the Ileal Epithelium of Growing Pigs Fed Fibrous Maize-Soybean Diets

Authors: F. Fushai, M.Tekere, M. Masafu, F. Siebrits, A. Kanengoni, F. Nherera

Abstract:

The effects of dietary fibre source on the histomorphology of the ileal epithelium were examined in growing pigs fed high fibre (242-250 g total dietary fibre kg-1 dry matter) diets fortified with Roxazyme® G2. The control was a standard, low fibre (141 g total dietary fibre kg-1 dry matter) diet formulated from dehulled soybean (Glycine max), maize (Zea Mays) meal and hominy chop. Five fibrous diets were evaluated in which fibre was increased by partial substitution of the grains in the control diet with maize cobs, soybean hulls, barley (Hordeum vulgare L) brewer’s grains, Lucerne (Medicago sativa) hay or wheat (Triticum aestivum) bran. Each diet was duplicated and 220 mg Roxazyme® G2 kg-1 dry mater was added to one of the mixtures. Seventy-two intact Large White X Landrace male pigs of weight 32 ± 5.6 kg pigs were randomly allocated to the diets in a complete randomised design with a 2 (fibre source) X (enzyme) factorial arrangement of treatments. The pigs were fed ad libitum for 10 weeks. Ileal tissue samples were taken at slaughter, at a point 50cm above the ileal-caecal valve. Villi length and area, and crypt depth were measured by computerised image analyses. The villi length: crypt ratio was calculated. The diet and the supplemental enzyme cocktail did not affect (p>0.05) any of the measured parameters. Significant (p=0.016) diet X enzyme interaction was observed for villi length whereby the enzyme reduced the villi length of pigs on the soy-hulls, standard and wheat bran diets, with an opposite effect on pigs on the maize cob, brewer’s grain, Lucerne diets. The results suggested fibre-source dependent changes in the morphology of the ileal epithelium of pigs fed high fibre, maize-soybean diets fortified with Roxazyme® G2.

Keywords: fibre, growing pigs, histomorphology, ileum, Roxazyme® G2

Procedia PDF Downloads 462
8595 Soil Carbon Stock in Sub-Optimal Land for the Development of Cymbopogon Nardus L. At Simawang Village, West Sumatera, Indonesia

Authors: Juniarti, Yusniwati, Anwar. A, Armansyah, Febriamansyah, R.

Abstract:

Simawang area is one of the critical areas (sub-optimal) that experienced drought from climate changes. Potential dry land belonging to sub-optimal in Simawang, West Sumatera, Indonesia not been fully utilized for agricultural cultivation. Simawang village, West Sumatera, Indonesia is formerly known as the rice barn, due to the climate change area is experiencing a drought, so the rice fields that were once productive now a grazing paddock because of lack of water. This study aims to calculate the soil carbon stock in Simawang village, West Sumatera Indonesia. The study was conducted in Simawang village, Tanah Datar regency, West Sumatera from October 2014 until December 2017. The study was conducted on sub-optimal land to be planted with Cymbopogon nardus L. (Sereh wangi in Indonesian language). Composite soil sampling conducted at a depth of 0-20 cm, 20 – 40 cm. Based on the depth of soil carbon stocks gained higher ground 6473 t ha-1 at a depth of 0-20 cm at a depth of 20-40 cm. Efforts to increase soil carbon is expected to be cultivated through Cymbopogon nardus L. planting has been done.

Keywords: climate changes, sereh wangi (Cymbopogon nardus L.), soil carbon stock, sub optimal land

Procedia PDF Downloads 455
8594 Antibacterial Activity of Northern Algerian Honey

Authors: Messaouda Belaid, Salima Kebbouche-Gana, Djamila Benaziza

Abstract:

Our study focuses on determining the antibacterial activity of some honeys from northern Algeria. To test this activity, the agar well diffusion methods was employed. The bacterial strains tested were Staphylococcus aureus, Bacillus subtilis, Streptococcus faecalis, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeroginosae. The results showed that all the microbes tested were inhibited by all honey used in this study but Those bacteria that appear to be more sensitive to all honey tested are Staphylococcus aureus and Pseudomonas aeroginosae.

Keywords: honey, antibacterial activity, Northern Algeria, Staphylococcus aureus

Procedia PDF Downloads 379
8593 Study of the Microstructure and Mechanical Properties of Locally Developed Carbon Fibers-Silica Sand Nanoparticles Aluminium Based Hybrid Composites

Authors: Tahir Ahmad, M. Kamran, R. Ahmad, M. T. Z. Butt

Abstract:

Hybrid aluminum metal matrix composites with 1, 2, 3 and 4 wt. % of silica sand nanoparticles and electro-less nickel coated carbon fibers were successfully developed using sand casting technique. Epoxy coating of carbon fibers was removed and phosphorous-nickel coating was successfully applied via electro-less route. The developed hybrid composites were characterized using micro hardness tester, tensile testing, and optical microscopy. The gradual increase of reinforcing phases yielded improved mechanical properties such as hardness and tensile strength. The increase in hardness was attributed to the presence of silica sand nanoparticles whereas electro-less nickel coated carbon fibers enhanced the tensile properties of developed hybrid composites. The microstructure of the developed hybrid composites revealed the homogeneous distribution of both carbon fibers and silica sand nanoparticles in aluminum based hybrid composites. The formation of dendrite microstructure is the main cause of improving mechanical properties.

Keywords: aluminum based hybrid composites, mechanical properties, microstructure, microstructure and mechanical properties relationship

Procedia PDF Downloads 405
8592 The Molecule Preserve Environment: Effects of Inhibitor of the Angiotensin Converting Enzyme on Reproductive Potential and Composition Contents of the Mediterranean Flour Moth, Ephestia kuehniella Zeller

Authors: Yezli-Touiker Samira, Amrani-Kirane Leila, Soltani Mazouni Nadia

Abstract:

Due to secondary effects of conventional insecticides on the environment, the agrochemical research has resulted in the discovery of novel molecules. That research work will help in the development of a new group of pesticides that may be cheaper and less hazardous to the environment and non-target organisms which is the main desired outcome of the present work. Angiotensin-converting enzyme as a target for the development of novel insect growth regulators. Captopril is an inhibitor of angiotensin converting enzyme (ACE) it was tested in vivo by topical application on reproduction of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). The compound is diluted in acetone and applied topically to newly emerged pupae (10µg/ 2µl). The effects of this molecule was studied,on the biochemistry of ovary (on amounts nucleic acid, proteins, the qualitative analysis of the ovarian proteins and the reproductive potential (duration of the pre-oviposition, duration of the oviposition, number of eggs laid and hatching percentage). Captopril reduces significantly quantity of ovarian proteins and nucleic acid. The electrophoresis profile reveals the absence of tree bands at the treated series. This molecule reduced the duration of the oviposition period, the fecundity and the eggviability.

Keywords: environment, ephestia kuehniella, captopril, reproduction, the agrochemical research

Procedia PDF Downloads 280
8591 Functionalization of Carboxylated Single-Walled Carbon Nanotubes with 2-En 4-Hydroxy Cyclo 1-Octanon and Toxicity Investigation

Authors: D. ChobfroushKhoei, S. K. Heidari , Sh. Dariadel

Abstract:

Carbon nanotubes were used in medical sciences especially in drug delivery system and cancer therapy. In this study, we functionalized carboxylated single-wall carbon nanotubes (SWNT-COOH) with 2-en 4-hydroxy cyclo 1-octanon. Synthesized sample was characterized by FT-IR, Raman spectroscopy, SEM, TGA and cellular investigations. The results showed well formation of SWNT-Ester. Cell viability assay results and microscopic observations demonstrated that cancerous cells were killed in the sample. The synthesized sample can be used as a toxic material for cancer therapy.

Keywords: MWNT-COOH, functionalization, phenylisocyanate, phenylisothiocyanate, 1, 4-phenylendiamine, toxicity investigation

Procedia PDF Downloads 441
8590 Computational Material Modeling for Mechanical Properties Prediction of Nanoscale Carbon Based Cementitious Materials

Authors: Maryam Kiani, Abdul Basit Kiani

Abstract:

At larger scales, the performance of cementitious materials is impacted by processes occurring at the nanometer scale. These materials boast intricate hierarchical structures with random features that span from the nanometer to millimeter scale. It is fascinating to observe how the nanoscale processes influence the overall behavior and characteristics of these materials. By delving into and manipulating these processes, scientists and engineers can unlock the potential to create more durable and sustainable infrastructure and construction materials. It's like unraveling a hidden tapestry of secrets that hold the key to building stronger and more resilient structures. The present work employs simulations as the computational modeling methodology to predict mechanical properties for carbon/silica based cementitious materials at the molecular/nano scale level. Studies focused on understanding the effect of higher mechanical properties of cementitious materials with carbon silica nanoparticles via Material Studio materials modeling.

Keywords: nanomaterials, SiO₂, carbon black, mechanical properties

Procedia PDF Downloads 131
8589 High-Pressure CO₂ Adsorption Capacity of Selected Unusual Porous Materials and Rocks

Authors: Daniela Rimnacova, Maryna Vorokhta, Martina Svabova

Abstract:

CO₂ adsorption capacity of several materials - waste (power fly ash, slag, carbonized sewage sludge), rocks (Czech Silurian shale, black coal), and carbon (synthesized carbon, activated carbon as a reference material) - were measured on dry samples using a unique hand-made manometric sorption apparatus at a temperature of 45 °C and pressures of up to 7 MPa. The main aim was finding utilization of the waste materials and rocks for removal of the air or water pollutants caused by anthropogenic activities, as well as for the carbon dioxide storage. The equilibrium amount of the adsorbate depends on temperature, gas saturation pressure, porosity, surface area and volume of pores, and last but not least, on the composition of the adsorbents. Given experimental conditions can simulate in-situ situations in the rock bed and can be achieved just by a high-pressure apparatus. The CO₂ excess adsorption capacities ranged from 0.018 mmol/g (ash) to 13.55 mmol/g (synthesized carbon). The synthetized carbon had the highest adsorption capacity among all studied materials as well as the highest price. This material is usually used for the adsorption of specific pollutants. The excess adsorption capacity of activated carbon was 9.19 mmol/g. It is used for water and air cleaning. Ash can be used for chemisorption onto ash particle surfaces or capture of special pollutants. Shale is a potential material for enhanced gas recovery or CO₂ sequestration in-situ. Slag is a potential material for capture of gases with a possibility of the underground gas storage after the adsorption process. The carbonized sewage sludge is quite a good adsorbent for the removal and capture of pollutants, as well as shales or black coal which show an interesting relationship between the price and adsorption capacity.

Keywords: adsorption, CO₂, high pressure, porous materials

Procedia PDF Downloads 155
8588 Ionic Liquids as Corrosion Inhibitors in CO2 Capture Systems

Authors: A. Acidi, A. Abbaci

Abstract:

We present the viability of using thermally stable, practically non-volatile ionic liquids as corrosion inhibitors in aqueous monoethanolamine system. Carbon steel 1020, which widely used as construction material in CO2 capture plants, has been taken as a test material. Corrosion inhibition capacities of typical room-temperature ionic liquids constituting imidazolium cation in concentration range ≤ 3% by weight in CO2 capture applications were investigated. Electrochemical corrosion experiments using the potentiodynamic polarization technique for measuring corrosion current were carried out. The results show that ionic liquids possess ability to suppressing severe operational problems of corrosion in typical CO2 capture plants.

Keywords: carbon dioxide, carbon steel, monoethanolamine, corrosion rate, ionic liquids, tafel fit

Procedia PDF Downloads 317
8587 Raman Line Mapping on Melt Spun Polycarbonate/MWNT Fiber-Based Nanocomposites

Authors: Poonam Yadav, Dong Bok Lee

Abstract:

Raman spectroscopy was used for characterization of multi-wall carbon nanotube (MWNT) and Polycarbonate/multi-wall carbon nanotube (PC/MWNT) based fibers with 0.55% and 0.75% of MWNT (PC/MWNT55 and PC/MWNT75). PC/MWNT55 and PC/MWNT75 fibers was prepared by melt spinning device using nanocomposites made by two different route, viz., solvent casting and melt extrusion. Fibers prepared from melt extruded nanocomposites showed smooth and uniform morphology as compared to solvent casting based nanocomposites. The Raman mapping confirmed that the melt extruded based nanocomposites had better dispersion of MWNT in Polycarbonate (PC) than solvent casting carbon nanotube.

Keywords: dispersion, melt extrusion, multi-wall carbon nanotube, mapping

Procedia PDF Downloads 341
8586 Abatement of NO by CO on Pd Catalysts: Influence of the Support in Oxyfuel Combustion Conditions

Authors: Joudia Akil, Stephane Siffert, Laurence Pirault-Roy, Renaud Cousin, Christophe Poupin

Abstract:

The CO2 emitted from anthropic activities is perceived as a constraint in industrial activity due to taxes, stringent environmental regulations, impact on global warming… To limit these CO2 emissions, reuse of CO2 represents a promising alternative, with important applications in chemical industry and for power generation. However, CO2 valorization process requires a gas as pure as possible Oxyfuel-combustion that enables obtaining a CO2 rich stream, with water vapor (10%) is then interesting. Nevertheless to decrease the amount of the by-products found with the CO2 (especially CO and NOx which are harmful to the environment) a catalytic treatment must be applied. Nowadays three-way catalysts are well-developed material for simultaneous conversion of unburned hydrocarbons, carbon monoxide (CO) and nitrogen oxides (NOx). The use of Pd attracted considerable attention on the basis of economic factors (the high cost and scarcity of Pt and Rh). This explains the large number of studies concerning the CO-NO reaction on Pd in the recent years. In the present study, we will compare a series of Pd materials supported on different oxides for CO2 purification from the oxyfuel combustion system, by reducing NO with CO in an oxidizing environment containing CO2 rich stream and presence of 8.2% of water. Al2O3, CeO2, MgO, SiO2 and TiO2 were used as support materials of the catalysts. 1wt% Pd/Support catalysts were obtained by wet impregnation on supports with a precursor of palladium [Pd(acac)2]. The obtained samples were subsequently characterized by H2 chemisorption, BET surface area and TEM. Finally, their catalytic performances were evaluated in CO2 purification which is carried out in a fixed-bed flow reactor containing 150 mg of catalyst at atmospheric pressure. The flow of the reactant gases is composed of: 20% CO2, 10% O2, 0.5% CO, 0.02% NO and 8.2% H2O (He as eluent gas) with a total flow of 200mL.min−1, in the same GHSV. The catalytic performance of the Pd catalysts for CO2 purification revealed that: -The support material has a strong influence on the catalytic activity of 1wt.% Pd supported catalysts. depending of the nature of support, the Pd-based catalysts activity changes. -The highest reduction of NO with CO is obtained in the following ranking: TiO2>CeO2>Al2O3. -The supports SiO2 and MgO should be avoided for this reaction, -Total oxidation of CO occurred over different materials, -CO2 purification can reach 97%, -The presence of H2O has a positive effect on the NO reduction due to the production of the reductant H2 from WGS reaction H2O+CO → H2+CO2

Keywords: carbon dioxide, environmental chemistry, heterogeneous catalysis, oxyfuel combustion

Procedia PDF Downloads 251
8585 The Effect of Rice Husk Ash on the Mechanical and Durability Properties of Concrete

Authors: Binyamien Rasoul

Abstract:

Portland cement is one of the most widely used construction materials in the world today; however, manufacture of ordinary Portland cement (OPC) emission significant amount of CO2 resulting environmental impact. On the other hand, rice husk ash (RHA), which is produce as by product material is generally considered to be an environmental issue as a waste material. This material (RHA) consists of non-crystalline silicon dioxide with high specific surface area and high pozzolanic reactivity. These RHA properties can demonstrate a significant influence in improving the mechanical and durability properties of mortar and concrete. Furthermore, rice husk ash can provide a cost effective and give concrete more sustainability. In this paper, chemical composition, reactive silica and fineness effect was assessed by examining five different types of RHA. Mortars and concrete specimens were molded with 5% to 50% of ash, replacing the Portland cement, and measured their compressive and tensile strength behavior. Beyond it, another two parameters had been considered: the durability of concrete blended RHA, and effect of temperature on the transformed of amorphous structure to crystalline form. To obtain the rice husk ash properties, these different types were subjected to X-Ray fluorescence to determine the chemical composition, while pozzolanic activity obtained by using X-Ray diffraction test. On the other hand, finesses and specific surface area were obtained by used Malvern Mastersizer 2000 test. The measured parameters properties of fresh mortar and concrete obtained by used flow table and slump test. While, for hardened mortar and concrete the compressive and tensile strength determined pulse the chloride ions penetration for concrete using NT Build 492 (Nord Test) – non-steady state migration test (RMT Test). The obtained test results indicated that RHA can be used as a cement replacement material in concrete with considerable proportion up to 50% percentages without compromising concrete strength. The use of RHA in the concrete as blending materials improved the different characteristics of the concrete product. The paper concludes that to exhibits a good compressive strength of OPC mortar or concrete with increase RHA replacement ratio rice husk ash should be consist of high silica content with high pozzolanic activity. Furthermore, with high amount of carbon content (12%) could be improve the strength of concrete when the silica structure is totally amorphous. As well RHA with high amount of crystalline form (25%) can be used as cement replacement when the silica content over 90%. The workability and strength of concrete increased by used of superplasticizer and it depends on the silica structure and carbon content. This study therefore is an investigation of the effect of partially replacing Ordinary Portland cement (OPC) with Rice hush Ash (RHA) on the mechanical properties and durability of concrete. This paper gives satisfactory results to use RHA in sustainable construction in order to reduce the carbon footprint associated with cement industry.

Keywords: OPC, ordinary Portland cement, RHA rice husk ash, W/B water to binder ratio, CO2, carbon dioxide

Procedia PDF Downloads 188
8584 Soil Carbon Stock in Sub-Optimal Land due to Climate Change on Development Cymbopogon nardus L. at Simawang Village, West Sumatera, Indonesia

Authors: Juniarti Yuni

Abstract:

Simawang area is one of the critical areas (sub-optimal) that experienced drought from climate changes. Potential dry land belonging to sub-optimal in Simawang, West Sumatera, Indonesia not been fully utilized for agricultural cultivation. Simawang village, West Sumatera, Indonesia is formerly known as the rice barn, due to the climate change area is experiencing a drought, so the rice fields that were once productive now a grazing paddock because of lack of water. This study aims to calculate the soil carbon stock in Simawang village, West Sumatera Indonesia. The study was conducted in Simawang village, Tanah Datar regency, West Sumatera from October 2014 until December 2017. The study was conducted on sub-optimal land to be planted with Cymbopogon nardus L. (Sereh wangi in Indonesian language). Composite soil sampling conducted at a depth of 0-20 cm, 20–40 cm. Based on the depth of soil carbon stocks gained higher ground 6473 T/Ha at a depth of 0-20 cm at a depth of 20-40 cm. Efforts to increase soil carbon is expected to be cultivated through Cymbopogon nardus L. planting has been done.

Keywords: climate changes, sereh wangi (Cymbopogon nardus L.), soil carbon stock, sub optimal land

Procedia PDF Downloads 295
8583 On Strengthening Program of Sixty Years Old Dome Using Carbon Fiber

Authors: Humayun R. H. Kabir

Abstract:

A reinforced concrete dome-built 60 years ago- of circular shape of diameter of 30 m was in distressed conditions due to adverse weathering effects, such as high temperature, wind, and poor maintenance. It was decided to restore the dome to its full strength for future use. A full material strength and durability check including petrography test were conducted. It was observed that the concrete strength was in acceptable range, while bars were corroded more than 40% to their original configurations. Widespread cracks were almost in every meter square. A strengthening program with filling the cracks by injection method, and carbon fiber layup and wrap was considered. Ultra Sound Pulse Velocity (UPV) test was conducted to observe crack depth. Ground Penetration Radar (GPR) test was conducted to observe internal bar conditions and internal cracks. Finally, a load test was conducted to certify the carbon fiber effectiveness, injection method procedure and overall behavior of dome.

Keywords: dome, strengthening program, carbon fiber, load test

Procedia PDF Downloads 247
8582 The Effect of Carbon Nanofibers on the Electrical Resistance of Cementitious Composites

Authors: Reza Pourjafar, Morteza Sohrabi-Gilani, Mostafa Jamshidi Avanaki, Malek Mohammad Ranjbar

Abstract:

Cementitious composites like concrete, are the most widely used materials in civil infrastructures. Numerous investigations on fiber’s effect on the properties of cement-based composites have been conducted in the last few decades. The use of fibers such as carbon nanofibers (CNFs) and carbon nanotubes (CNTs) in these materials is an ongoing field and needs further researches and studies. Excellent mechanical, thermal, and electrical properties of carbon nanotubes and nanofibers have motivated the development of advanced nanocomposites with outstanding and multifunctional properties. In this study, the electrical resistance of CNF reinforced cement mortar was examined. Three different dosages of CNF were used, and the resistances were compared to plain cement mortar. One of the biggest challenges in this study is dispersing CNF particles in the mortar mixture. Therefore, polycarboxylate superplasticizer and ultrasonication of the mixture have been selected for the purpose of dispersing CNFs in the cement matrix. The obtained results indicated that the electrical resistance of the CNF reinforced mortar samples decreases with increasing CNF content, which would be the first step towards examining strain and damage monitoring ability of cementitious composites containing CNF for structural health monitoring purposes.

Keywords: carbon nanofiber, cement and concrete, CNF reinforced mortar, smart mater, strain monitoring, structural health monitoring

Procedia PDF Downloads 136
8581 Proteomic Analysis of 2,4-Epibrassinolide Alleviating Low Temperature Stress in Rice Seedling Leaves

Authors: Jiang Xu, Daoping Wang, Qun Li, Yinghong Pan

Abstract:

2,4-Epibrassinolide (EBR), which is a kind of plant hormone Brassinosteroids (BRs), is widely studied and applied in the global scale but the proteomic characteristics of EBR alleviating low temperature stress in rice seedling leaves are still not clear. In this study, seeding rice of Nipponbare were treated with EBR and distilled water, then stressed at 4℃ or 26 ℃, and analyzed by mass spectrometry analysis, verified by parallel reaction monitoring technique (PRM). The results showed that 5778 proteins were identified in total and 4834 proteins were identified with quantitative information. Among them, 401 up-regulated and 220 down-regulated proteins may be related to EBR alleviating low temperature stress in rice seedling leaves. The molecular functions of most of up-regulated proteins are RNA binding and hydrolase activity and are mainly enriched in the pathways of carbon metabolism, folic acid synthesis, and amino acid biosynthesis. The down-regulated proteins are mainly related to catalytic activity and oxidoreductase activity and are mainly enriched in the pathways of limonene and pinene degradation, riboflavin metabolism, porphyrin and chlorophyll metabolism, and other metabolic pathways. PRM validation and literature analysis showed that NADP-malic acidase, peroxidase, 3-phosphoglycerate dehydrogenase, enolase, glyceraldehyde-3- phosphate dehydrogenase and pyruvate kinase are closely related to the effect of EBR on low temperature stress. These results also suggested that BRs could relieve the effect of low temperature stress on rice seed germination in many ways.

Keywords: 2, 4-Epibrassinolid, low temperature stress, proteomic analysis, rice

Procedia PDF Downloads 153
8580 Microbial Activity and Greenhouse Gas (GHG) Emissions in Recovery Process in a Grassland of China

Authors: Qiushi Ning

Abstract:

The nitrogen (N) is an important limiting factor of various ecosystems, and the N deposition rate is increasing unprecedentedly due to anthropogenic activities. The N deposition altered the microbial growth and activity, and microbial mediated N cycling through changing soil pH, the availability of N and carbon (C). The CO2, CH4 and N2O are important greenhouse gas which threaten the sustainability and function of the ecosystem. With the prolonged and increasing N enrichment, the soil acidification and C limitation will be aggravated, and the microbial biomass will be further declined. The soil acidification and lack of C induced by N addition are argued as two important factors regulating the microbial activity and growth, and the studies combined soil acidification with lack of C on microbial community are scarce. In order to restore the ecosystem affected by chronic N loading, we determined the responses of microbial activity and GHG emssions to lime and glucose (control, 1‰ lime, 2‰ lime, glucose, 1‰ lime×glucose and 2‰ lime×glucose) addition which was used to alleviate the soil acidification and supply C resource into soils with N addition rates 0-50 g N m–2yr–1. The results showed no significant responses of soil respiration and microbial biomass (MBC and MBN) to lime addition, however, the glucose substantially improved the soil respiration and microbial biomass (MBC and MBN); the cumulative CO2 emission and microbial biomass of lime×glucose treatments were not significantly higher than those of only glucose treatment. The glucose and lime×glucose treatments reduced the net mineralization and nitrification rate, due to inspired microbial growth via C supply incorporating more inorganic N to the biomass, and mineralization of organic N was relatively reduced. The glucose addition also increased the CH4 and N2O emissions, CH4 emissions was regulated mainly by C resource as a substrate for methanogen. However, the N2O emissions were regulated by both C resources and soil pH, the C was important energy and the increased soil pH could benefit the nitrifiers and denitrifiers which were primary producers of N2O. The soil respiration and N2O emissions increased with increasing N addition rates in all glucose treatments, as the external C resource improved microbial N utilization. Compared with alleviated soil acidification, the improved availability of C substantially increased microbial activity, therefore, the C should be the main limiting factor in long-term N loading soils. The most important, when we use the organic C fertilization to improve the production of the ecosystems, the GHG emissions and consequent warming potentials should be carefully considered.

Keywords: acidification and C limitation, greenhouse gas emission, microbial activity, N deposition

Procedia PDF Downloads 297
8579 The Differences between Direct Examination and ELISA Test during the Diagnosis of Fasciolosis in Jaundiced Slaughtered Sheep in Iraq

Authors: Azad A. Meerkhan, Alaa Hani Razak, Bayan M. S. Younis

Abstract:

The efficiency of enzyme-linked immunosorbent assay (ELISA) in sheep infected with Fasciola hepatica was studied. 232 jaundiced sheep among 5208 sheep slaughter in the Duhok abattoir (regardless of the age and gender) between the period of May. 2012 to Oct. 2012 were examined by direct examination (Searching of adult flukes in the bile duct) and by Enzyme-linked immunosorbent assay (ELISA) to detect the prevalence of fascioliasis in the studied population which showed a high observed infection ratio in Sep. 2012 (12.2%) with the high (ELISA) result of infection in May. 2012 (25.36%). Significant differences were found between the two ways in all of the months with the highest difference in May. 2012 and the net deference between the both ways was 6.91%.

Keywords: fascioliasis, Fasciola hepatica, layers, liver fluk, ELISA, direct examination

Procedia PDF Downloads 316
8578 Analgesic and Antipyretic Activity of Thunbergia laurifolia Lindl. Extract

Authors: Nantawan Soonklang, Linda Chularojanamontri, Urarat Nanna

Abstract:

Ethnopharmacological relevance: Thunbergia laurifolia Lindl. belongs to the family Acanthaceae commonly known as Rang jeud in Thailand. This plant is traditionally used in Thailand for centuries as an antidote for several poisons and drug overdose. Aim of the study: This research aimed to study the analgesic and antipyretic activities of T. laurifolia water extract by using animal models. Materials and Methods: The analgesic activity was studied using 2 methods of pain induction including acetic acid and heat induced pain. And the antipyretic activity study was performed by yeast-induced hyperthermia. Results: The results showed that the administration of T. laurifolia extract possessed analgesic activity by reducing acetic acid-induced writhing response and heat-induced pain as well as showed antipyretic activity by decreasing body temperature of hyperthermic rats induced by brewer’s yeast. Conclusion: The study indicates that the T. laurifolia extract possesses analgesic and antipyretic activities in animals.

Keywords: Thunbergia laurifolia extract, analgesic activity, antipyretic activity, hyperthermia

Procedia PDF Downloads 383
8577 A Study of Secondary Particle Production from Carbon Ion Beam for Radiotherapy

Authors: Shaikah Alsubayae, Gianluigi Casse, Carlos Chavez, Jon Taylor, Alan Taylor, Mohammad Alsulimane

Abstract:

Achieving precise radiotherapy through carbon therapy necessitates the accurate monitoring of radiation dose distribution within the patient's body. This process is pivotal for targeted tumor treatment, minimizing harm to healthy tissues, and enhancing overall treatment effectiveness while reducing the risk of side effects. In our investigation, we adopted a methodological approach to monitor secondary proton doses in carbon therapy using Monte Carlo (MC) simulations. Initially, Geant4 simulations were employed to extract the initial positions of secondary particles generated during interactions between carbon ions and water, including protons, gamma rays, alpha particles, neutrons, and tritons. Subsequently, we explored the relationship between the carbon ion beam and these secondary particles. Interaction vertex imaging (IVI) proves valuable for monitoring dose distribution during carbon therapy, providing information about secondary particle locations and abundances, particularly protons. The IVI method relies on charged particles produced during ion fragmentation to gather range information by reconstructing particle trajectories back to their point of origin, known as the vertex. In the context of carbon ion therapy, our simulation results indicated a strong correlation between some secondary particles and the range of carbon ions. However, challenges arose due to the unique elongated geometry of the target, hindering the straightforward transmission of forward-generated protons. Consequently, the limited protons that did emerge predominantly originated from points close to the target entrance. Fragment (protons) trajectories were approximated as straight lines, and a beam back-projection algorithm, utilizing interaction positions recorded in Si detectors, was developed to reconstruct vertices. The analysis revealed a correlation between the reconstructed and actual positions.

Keywords: radiotherapy, carbon therapy, monitor secondary proton doses, interaction vertex imaging

Procedia PDF Downloads 69
8576 An Enzyme Technology - Metnin™ - Enables the Full Replacement of Fossil-Based Polymers by Lignin in Polymeric Composites

Authors: Joana Antunes, Thomas Levée, Barbara Radovani, Anu Suonpää, Paulina Saloranta, Liji Sobhana, Petri Ihalainen

Abstract:

Lignin is an important component in the exploitation of lignocellulosic biomass. It has been shown that within the next years, the yield of added-value lignin-based chemicals and materials will generate renewable alternatives to oil-based products (e.g. polymeric composites, resins and adhesives) and enhance the economic feasibility of biorefineries. In this paper, a novel technology for lignin valorisation (METNIN™) is presented. METNIN™ is based on the oxidative action of an alkaliphilic enzyme in aqueous alkaline conditions (pH 10-11) at mild temperature (40-50 °C) combined with a cascading membrane operation, yielding a collection of lignin fractions (from oligomeric down to mixture of tri-, di- and monomeric units) with distinct molecular weight distribution, low polydispersity and favourable physicochemical properties. The alkaline process conditions ensure the high processibility of crude lignin in an aqueous environment and the efficiency of the enzyme, yielding better compatibility of lignin towards targeted applications. The application of a selected lignin fraction produced by METNIN™ as a suitable lignopolyol to completely replace a commercial polyol in polyurethane rigid foam formulations is presented as a prototype. Liquid lignopolyols with a high lignin content were prepared by oxypropylation and their full utilization in the polyurethane rigid foam formulation was successfully demonstrated. Moreover, selected technical specifications of different foam demonstrators were determined, including closed cell count, water uptake and compression characteristics. These specifications are within industrial standards for rigid foam applications. The lignin loading in the lignopolyol was a major factor determining the properties of the foam. In addition to polyurethane foam demonstrators, other examples of lignin-based products related to resins and sizing applications will be presented.

Keywords: enzyme, lignin valorisation, polyol, polyurethane foam

Procedia PDF Downloads 146
8575 Evaluation of As-Cast U-Mo Alloys Processed in Graphite Crucible Coated with Boron Nitride

Authors: Kleiner Marques Marra, Tércio Pedrosa

Abstract:

This paper reports the production of uranium-molybdenum alloys, which have been considered promising fuel for test and research nuclear reactors. U-Mo alloys were produced in three molybdenum contents: 5 wt.%, 7 wt.%, and 10 wt.%, using an electric vacuum induction furnace. A boron nitride-coated graphite crucible was employed in the production of the alloys and, after melting, the material was immediately poured into a boron nitride-coated graphite mold. The incorporation of carbon was observed, but it happened in a lower intensity than in the case of the non-coated crucible/mold. It is observed that the carbon incorporation increased and alloys density decreased with Mo addition. It was also noticed that the increase in the carbon or molybdenum content did not seem to change the as-cast structure in terms of granulation. The three alloys presented body-centered cubic crystal structure (g phase), after solidification, besides a seeming negative microsegregation of molybdenum, from the center to the periphery of the grains. There were signs of macrosegregation, from the base to the top of the ingots.

Keywords: uranium-molybdenum alloys, incorporation of carbon, solidification, macrosegregation and microsegregation

Procedia PDF Downloads 138
8574 Examining Electroencephalographic Activity Differences Between Goalkeepers and Forwards in Professional Football Players

Authors: Ruhollah Basatnia, Ali Reza Aghababa, Mehrdad Anbarian, Sara Akbari, Mohammad Khazaee

Abstract:

Introduction: The investigation of brain activity in sports has become a subject of interest for researchers. Several studies have examined the patterns or differences in brain activity during different sports situations. Previous studies have suggested that the pattern of cortical activity may differ between different football positions, such as goalkeepers and other players. This study aims to investigate the differences in electroencephalographic (EEG) activity between the positions of goalkeeper and forward in professional football players. Methods: Fourteen goalkeepers and twelve forwards, all males between 19-28 years old, participated in the study. EEG activity was recorded while participants were sitting with their eyes closed for 5 minutes. The mean relative power of EEG activity for each frequency band was compared between the two groups using independent samples t-test. Findings: The study found significant differences in the relative power of EEG activity between different frequency bands and electrodes. Notably, significant differences were observed in the mean relative power of EEG activity between the two groups for certain frequency bands and electrodes. These findings suggest that EEG activity can serve as a sensory indicator for cognitive and performance differences between goalkeepers and forwards in football players. Discussion: The results of this study suggest that EEG activity can be used to identify cognitive and performance differences between goalkeepers and forwards in football players. However, further research is needed to establish the relationship between EEG activity and actual performance in the field. Future studies should investigate the potential influence of other factors, such as fatigue and stress, on the EEG activity of football players. Additionally, the use of real-time EEG feedback could be explored as a tool for training and performance optimization in football players. Further research is required to fully understand the potential of EEG activity as a sensory indicator for cognitive and performance differences between football player positions and to explore its potential applications for training and performance optimization in football and other sports.

Keywords: football, brain activity, EEG, goalkeepers, forwards

Procedia PDF Downloads 76
8573 Effect of Inhibitor of the Angiotensin Converting Enzyme in the Mediterranean Flour Moth: Structural Parametrs of Cuticule and Ecdysteroid Amounts

Authors: S. Yezli-Touiker, L. Kirane-Amrani, N. Soltani-Mazouni

Abstract:

Ephestia kuehniella Zeller Lepidoptera, Pyralidae commonly called Mediterranean flour moth, is serious cosmopolitan pest of stored grain products, particularly flour Month. This species is also a source of allergen that causes asthma and rhinitis. Captopril is an inhibitor of angiotensin converting enzyme (ACE) it was tested in vivo by topical application on development of E. kuehniella. The compound is diluted in acetone and applied topically to newly emerged pupae (10mg/2ml). Report chitin protein of cuticule and ecdysteroid Amounts were determined in vivo. Results show that the captopril does not affect chitin protein of cuticule but traitment with captopril increase the hormonal production, the quantitative analysis reveals the presence of two peaks one at third and another at fifth day.

Keywords: Ephestia kuehniella, cuticule, hormone, captopril

Procedia PDF Downloads 353
8572 BaFe12O19/Polythiophene Nanocomposite as Electrochemical Supercapacitor Electrode

Authors: H. Farokhi, A. Bahadoran

Abstract:

This paper is focused on the absorbance and magnetic properties of a novel nanocomposite based on conducting polymer, carbon black and barium hexaferrite in epoxy resin on the E-glass fibre substrate. The highly conductive nanocomposite was provided by in-situ polymerization of aniline in the presence of carbon black (C) and barium hexaferrite (BaFe12O19) as electromagnetic absorbance material. The structure, morphology, and magnetic properties of samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). SEM images showed the uniformly coated PAni on the surface of carbon black and barium hexaferrite. XRD peaks also verified the presence of carbon black and barium hexaferrite in the nanocomposite. The microwave characteristics determined from the magnetic and dielectric properties of the elastomeric composites obtained from scattering data by fitting the samples in a waveguide, where measured in the frequency in X-band frequency range, the range of 8 to 12 GHz. The reflection losses were evaluated to be less than −5dB over the whole X-band frequency (8–12 GHz) for the thickness of 1.4mm.

Keywords: conductive polymer, magnetic materials, capacitance, electrochemical cell

Procedia PDF Downloads 243
8571 Porous Carbon Nanoparticels Co-Doped with Nitrogen and Iron as an Efficient Catalyst for Oxygen Reduction Reaction

Authors: Bita Bayatsarmadi, Shi-Zhang Qiao

Abstract:

Oxygen reduction reaction (ORR) performance of iron and nitrogen co-doped porous carbon nanoparticles (Fe-NPC) with various physical and (electro) chemical properties have been investigated. Fe-NPC nanoparticles are synthesized via a facile soft-templating procedure by using Iron (III) chloride hexa-hydrate as iron precursor and aminophenol-formaldehyde resin as both carbon and nitrogen precursor. Fe-NPC nanoparticles shows high surface area (443.83 m2g-1), high pore volume (0.52 m3g-1), narrow mesopore size distribution (ca. 3.8 nm), high conductivity (IG/ID=1.04), high kinetic limiting current (11.71 mAcm-2) and more positive onset potential (-0.106 V) compared to metal-free NPC nanoparticles (-0.295V) which make it high efficient ORR metal-free catalysts in alkaline solution. This study may pave the way of feasibly designing iron and nitrogen containing carbon materials (Fe-N-C) for highly efficient oxygen reduction electro-catalysis.

Keywords: electro-catalyst, mesopore structure, oxygen reduction reaction, soft-template

Procedia PDF Downloads 372
8570 Kinetics and Toxicological Effects of Kickxia elatine Extract-Based Silver Nanoparticles on Rat Brain Acetylcholinesterase

Authors: Noor Ul Huda, Mushtaq Ahmed, Nadia Mushtaq, Naila Sher, Rahmat Ali Khan

Abstract:

Purpose: The green synthesis of AgNPs has been favored over chemical synthesis due to their distinctive properties such as high dispersion, surface-to-volume ratio, low toxicity, and easy preparation. In the present work, the biosynthesis of AgNPs (KE-AgNPs) was carried out in one step by using the traditionally used plant Kickxia elatine (KE) extract and then investigated its enzyme inhibiting activity against rat’s brain acetylcholinesterase (AChE) in vitro. Methods: KE-AgNPs were synthesized from 1mM AgNO₃ using KE extract and characterized by UV–spectroscopy, SEM, EDX, XRD, and FTIR analysis. Rat’s brain acetylcholinesterase (AChE) inhibition activity was evaluated by the standard protocol. Results: UV–spectrum at 416 nm confirmed the formation of KE-AgNPs. X-ray diffraction (XRD) pattern presented 2θ values corresponding to the crystalline nature of KE-AgNPs with an average size of 42.47nm. The scanning electron microscope (SEM) analysis confirmed the presence of spherical-shaped and huge density KE-AgNPs with a size of 50nm. Fourier transform infrared spectroscopy (FT-IR) suggested that the functional groups present in KE extract and on the surface of KE-AgNPs are responsible for the stability of biosynthesized NPs. Energy dispersive X-ray (EDX) displayed an intense sharp peak at 3.2 keV, presenting that Ag was the chief element with 61.67%. Both KE extract and KE-AgNPs showed good and potent anti-AChE activity, with higher inhibition potential at a concentration of 175 µg/ml. Statistical analysis showed that both KEE and AgNPs exhibited non-competitive type inhibition against AChE, i.e., Vmax decreased (34.17-68.64% and 22.29- 62.10%) in the concentration-dependent mode for KEE and KE-AgNPs respectively and while Km values remained constant. Conclusions: KEE and KE-AgNPs can be considered an inhibitor of rats’ brain AChE, and the synthesis of KE-AgNPs-based drugs can be used as a cheaper and alternative option against diseases such as Alzheimer’s disease.

Keywords: Kickxia elatine, AgNPs, brain homogenate, acetylcholinesterase, kinetics

Procedia PDF Downloads 115
8569 Physiological and Molecular Characterizations of Ricinus Communis Genotypes under Cadmium Stress

Authors: Rini Rahul, Manoj Kumar

Abstract:

Cadmium (Cd) is a poisonous trace metal, which is responsible for excess reactive oxygen species generation (ROS) in plants, thereby adversely affecting their productivity and commercial potential. Ricinus communis (castor) is an industry-efficient non-edible bioenergy crop used for phytoremediation and re-vegetation. We have determined the total Cd content in castor genotypes and established a relationship between the Cd tolerance mechanism and physiological parameters like chlorophyll fluorescence, the total photosynthetic activity, chlorophyll and carotenoid content as well as ROS generation and malondialdehyde content. This study is an effort to comprehend the interrelation between Cd toxicity (control, 250 µM and 500 µM), proline, various ROS scavenging enzymes (anti-oxidative in nature), nicotianamine synthase (NAS) and Natural resistance-associated macrophage protein (NRAMP) gene. The antioxidant enzyme activity increased for WM hence conferring Cd toxicity in this genotype. RcNRAMP genes showed differential expression in GCH2 and WM genotypes; this can also be one of the reasons for Cd toxicity and sensitivity in WM and GCH2, respectively. The cause of pronounced Cd tolerance in WM leaves can be because of enhanced expression of RcNAS1, RcNAS2 and RcNAS3 genes. Our results demonstrate that there is an interrelation between Cd toxicity (control, 250 µM and 500 µM), proline, various ROS scavenging enzymes (anti-oxidative in nature), NAS and NRAMP gene.

Keywords: ricinus communis, cadmium, reactive oxygen species, nicotianamine synthase, NRAMP, malondialdehyde

Procedia PDF Downloads 70
8568 Retrofitting Cement Plants with Oxyfuel Technology for Carbon Capture

Authors: Peloriadi Konstantina, Fakis Dimitris, Grammelis Panagiotis

Abstract:

Methods for carbon capture and storage (CCS) can play a key role in the reduction of industrial CO₂ emissions, especially in the cement industry, which accounts for 7% of global emissions. Cement industries around the world have committed to address this problem by reaching carbon neutrality by the year 2050. The aim of the work to be presented was to contribute to the decarbonization strategy by integrating the 1st generation oxyfuel technology in cement production plants. This technology has been shown to improve fuel efficiency while providing one of the most cost-effective solutions when compared to other capture methods. A validated simulation of the cement plant was thus used as a basis to develop an oxyfuel retrofitted cement process. The process model for the oxyfuel technology is developed on the ASPEN (Advanced System for Process Engineering) PLUSTM simulation software. This process consists of an Air Separation Unit (ASU), an oxyfuel cement plant with coal and alternative solid fuel (ASF) as feedstock, and a carbon dioxide processing unit (CPU). A detailed description and analysis of the CPU will be presented, including the findings of a literature review and simulation results, regarding the effects of flue gas impurities during operation. Acknowledgment: This research has been conducted in the framework of the EU funded AC2OCEM project, which investigates first and the second generation oxyfuel concepts.

Keywords: oxyfuel technology, carbon capture and storage, CO₂ processing unit, cement, aspen plus

Procedia PDF Downloads 181
8567 Formaldehyde Degradation from Indoor Air by Encapsulated Microbial Cells

Authors: C. C. Castro, T. Senechal, D. Lahem, A. L. Hantson

Abstract:

Formaldehyde is one of the most representative volatile organic compounds present in the indoor air of residential units and workplaces. Increased attention has been given to this toxic compound because of its carcinogenic effect in health. Biological or enzymatic transformation is being explored to degrade this pollutant. Pseudomonas putida is a bacteria able to synthesize formaldehyde dehydrogenase, an enzyme known to use formaldehyde as a substrate and transform it into less toxic compounds. The immobilization of bacterial cells in the surface of different supports through spraying or dip-coating is herein proposed. The determination of the enzymatic activity on the coated surfaces was performed as well as the study of its effect on formaldehyde degradation in an isolated chamber. Results show that the incorporation of microbial cells able to synthesize depolluting enzymes can be an innovative, low-cost, effective and environmentally friendly solution for indoor air depollution.

Keywords: cells encapsulation, formaldehyde, formaldehyde dehydrogenase, indoor air depollution

Procedia PDF Downloads 166