Search results for: flow stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8157

Search results for: flow stress

417 Innovative Fabric Integrated Thermal Storage Systems and Applications

Authors: Ahmed Elsayed, Andrew Shea, Nicolas Kelly, John Allison

Abstract:

In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.

Keywords: fabric integrated thermal storage, FITS, demand side management, energy storage, load shifting, renewable energy integration

Procedia PDF Downloads 146
416 Erosion Modeling of Surface Water Systems for Long Term Simulations

Authors: Devika Nair, Sean Bellairs, Ken Evans

Abstract:

Flow and erosion modeling provides an avenue for simulating the fine suspended sediment in surface water systems like streams and creeks. Fine suspended sediment is highly mobile, and many contaminants that may have been released by any sort of catchment disturbance attach themselves to these sediments. Therefore, a knowledge of fine suspended sediment transport is important in assessing contaminant transport. The CAESAR-Lisflood Landform Evolution Model, which includes a hydrologic model (TOPMODEL) and a hydraulic model (Lisflood), is being used to assess the sediment movement in tropical streams on account of a disturbance in the catchment of the creek and to determine the dynamics of sediment quantity in the creek through the years by simulating the model for future years. The accuracy of future simulations depends on the calibration and validation of the model to the past and present events. Calibration and validation of the model involve finding a combination of parameters of the model, which, when applied and simulated, gives model outputs similar to those observed for the real site scenario for corresponding input data. Calibrating the sediment output of the CAESAR-Lisflood model at the catchment level and using it for studying the equilibrium conditions of the landform is an area yet to be explored. Therefore, the aim of the study was to calibrate the CAESAR-Lisflood model and then validate it so that it could be run for future simulations to study how the landform evolves over time. To achieve this, the model was run for a rainfall event with a set of parameters, plus discharge and sediment data for the input point of the catchment, to analyze how similar the model output would behave when compared with the discharge and sediment data for the output point of the catchment. The model parameters were then adjusted until the model closely approximated the real site values of the catchment. It was then validated by running the model for a different set of events and checking that the model gave similar results to the real site values. The outcomes demonstrated that while the model can be calibrated to a greater extent for hydrology (discharge output) throughout the year, the sediment output calibration may be slightly improved by having the ability to change parameters to take into account the seasonal vegetation growth during the start and end of the wet season. This study is important to assess hydrology and sediment movement in seasonal biomes. The understanding of sediment-associated metal dispersion processes in rivers can be used in a practical way to help river basin managers more effectively control and remediate catchments affected by present and historical metal mining.

Keywords: erosion modelling, fine suspended sediments, hydrology, surface water systems

Procedia PDF Downloads 58
415 Pulsed-Wave Doppler Ultrasonographic Assessment of the Maximum Blood Velocity in Common Carotid Artery in Horses after Administration of Ketamine and Acepromazine

Authors: Saman Ahani, Aboozar Dehghan, Roham Vali, Hamid Salehian, Amin Ebrahimi

Abstract:

Pulsed-wave (PW) doppler ultrasonography is a non-invasive, relatively accurate imaging technique that can measure blood speed. The imaging could be obtained via the common carotid artery, as one of the main vessels supplying the blood of vital organs. In horses, factors such as susceptibility to depression of the cardiovascular system and their large muscular mass have rendered them vulnerable to changes in blood speed. One of the most important factors causing blood velocity changes is the administration of anesthetic drugs, including Ketamine and Acepromazine. Thus, in this study, the Pulsed-wave doppler technique was performed to assess the highest blood velocity in the common carotid artery following administration of Ketamine and Acepromazine. Six male and six female healthy Kurdish horses weighing 351 ± 46 kg (mean ± SD) and aged 9.2 ± 1.7 years (mean ± SD) were housed under animal welfare guidelines. After fasting for six hours, the normal blood flow velocity in the common carotid artery was measured using a Pulsed-wave doppler ultrasonography machine (BK Medical, Denmark), and a high-frequency linear transducer (12 MHz) without applying any sedative drugs as a control group. The same procedure was repeated after each individual received the following medications: 1.1, 2.2 mg/kg Ketamine (Pfizer, USA), and 0.5, 1 mg/kg Acepromizine (RACEHORSE MEDS, Ukraine), with an interval of 21 days between the administration of each dose and/or drug. The ultrasonographic study was done five (T5) and fifteen (T15) minutes after injecting each dose intravenously. Lastly, the statistical analysis was performed using SPSS software version 22 for Windows and a P value less than 0.05 was considered to be statistically significant. Five minutes after administration of Ketamine (1.1, 2.2 mg/kg) in both male and female horses, the blood velocity decreased to 38.44, 34.53 cm/s in males, and 39.06, 34.10 cm/s in females in comparison to the control group (39.59 and 40.39 cm/s in males and females respectively) while administration of 0.5 mg/kg Acepromazine led to a significant rise (73.15 and 55.80 cm/s in males and females respectively) (p<0.05). It means that the most drastic change in blood velocity, regardless of gender, refers to the latter dose/drug. In both medications and both genders, the increase in doses led to a decrease in blood velocity compared to the lower dose of the same drug. In all experiments in this study, the blood velocity approached its normal value at T15. In another study comparing the blood velocity changes affected by Ketamine and Acepromazine through femoral arteries, the most drastic changes were attributed to Ketamine; however, in this experiment, the maximum blood velocity was observed following administration of Acepromazine via the common carotid artery. Therefore, further experiments using the same medications are suggested using Pulsed-wave doppler measuring the blood velocity changes in both femoral and common carotid arteries simultaneously.

Keywords: Acepromazine, common carotid artery, horse, ketamine, pulsed-wave doppler ultrasonography

Procedia PDF Downloads 103
414 Targeting Apoptosis by Novel Adamantane Analogs as an Emerging Therapy for the Treatment of Hepatocellular Carcinoma Through EGFR, Bcl-2/BAX Cascade

Authors: Hanan M. Hassan, Laila Abouzeid, Lamya H. Al-Wahaibi, George S. G. Shehatou, Ali A. El-Emam

Abstract:

Cancer is a major public health problem and the second leading cause of death worldwide. In 2020, cancer diagnosis and treatment have been negatively affected by the coronavirus 2019 (COVID-19) pandemic. During the quarantine, because of the limited access to healthcare and avoiding exposure to COVID-19 as a contagious disease; patients of cancer suffered deferments in follow-up and treatment regimens leading to substantial worsening of disease, death, and increased healthcare costs. Thus, this study is designed to investigate the molecular mechanisms by which adamantne derivatives attenuate hepatocllular carcinoma experimentally and theoretically. There is a close association between increased resistance to anticancer drugs and defective apoptosis that considered a causative factor for oncogenesis. Cancer cells use different molecular pathways to inhibit apoptosis, BAX and Bcl-2 proteins have essential roles in the progression or inhibition of intrinsic apoptotic pathways triggered by mitochondrial dysfunction. Therefore, their balance ratio can promote the cellular apoptotic fate. In this study, the in vitro cytotoxic effects of seven synthetic adamantyl isothiorea derivatives were evaluated against five human tumor cell lines by MTT assay. Compounds 5 and 6 showed the best results, mostly against hepatocellular carcinoma (HCC). Hence, in vivo studies were performed in male Sprague-Dawley (SD) rats in which experimental hepatocellular carcinoma was induced with thioacetamide (TAA) (200 mg/kg, i.p., twice weekly) for 16 weeks. The most promising compounds, 5 and 6, were administered to treat liver cancer rats at a dose of 10 mg/kg/day for an additional two weeks, and the effects were compared with doxorubicin (DR), the anticancer drug. Hepatocellular carcinoma was evidenced by a dramatic increase in liver indices, oxidative stress markers, and immunohistochemical studies that were accompanied by a plethora of inflammatory mediators and alterations in the apoptotic cascade. Our results showed that treatment with adamantane derivatives 5 and 6 significantly suppressed fibrosis, inflammation, and other histopathological insults resulting in the diminished formation of hepatocyte tumorigenesis. Moreover, administration of the tested compounds resulted in amelioration of EGFR protein expression, upregulation of BAX, and lessening down of Bcl-2 levels that prove their role as apoptosis inducers. Also, the docking simulations performed for adamantane showed good fit and binding to the EGFR protein through hydrogen bond formation with conservative amino acids, which gives a shred of strong evidence for its hepatoprotective effect. In most analyses, the effects of compound 6 were more comparable to DR than compound 5. Our findings suggest that adamantane derivatives 5 and 6 are shown to have cytotoxic activity against HCC in vitro and in vivo, by more than one mechanism, possibly by inhibiting the TLR4-MyD88-NF-κB pathway and targeting EGFR signaling.

Keywords: adamantane, EGFR, HCC, apoptosis

Procedia PDF Downloads 128
413 Prediction of Coronary Artery Stenosis Severity Based on Machine Learning Algorithms

Authors: Yu-Jia Jian, Emily Chia-Yu Su, Hui-Ling Hsu, Jian-Jhih Chen

Abstract:

Coronary artery is the major supplier of myocardial blood flow. When fat and cholesterol are deposit in the coronary arterial wall, narrowing and stenosis of the artery occurs, which may lead to myocardial ischemia and eventually infarction. According to the World Health Organization (WHO), estimated 740 million people have died of coronary heart disease in 2015. According to Statistics from Ministry of Health and Welfare in Taiwan, heart disease (except for hypertensive diseases) ranked the second among the top 10 causes of death from 2013 to 2016, and it still shows a growing trend. According to American Heart Association (AHA), the risk factors for coronary heart disease including: age (> 65 years), sex (men to women with 2:1 ratio), obesity, diabetes, hypertension, hyperlipidemia, smoking, family history, lack of exercise and more. We have collected a dataset of 421 patients from a hospital located in northern Taiwan who received coronary computed tomography (CT) angiography. There were 300 males (71.26%) and 121 females (28.74%), with age ranging from 24 to 92 years, and a mean age of 56.3 years. Prior to coronary CT angiography, basic data of the patients, including age, gender, obesity index (BMI), diastolic blood pressure, systolic blood pressure, diabetes, hypertension, hyperlipidemia, smoking, family history of coronary heart disease and exercise habits, were collected and used as input variables. The output variable of the prediction module is the degree of coronary artery stenosis. The output variable of the prediction module is the narrow constriction of the coronary artery. In this study, the dataset was randomly divided into 80% as training set and 20% as test set. Four machine learning algorithms, including logistic regression, stepwise regression, neural network and decision tree, were incorporated to generate prediction results. We used area under curve (AUC) / accuracy (Acc.) to compare the four models, the best model is neural network, followed by stepwise logistic regression, decision tree, and logistic regression, with 0.68 / 79 %, 0.68 / 74%, 0.65 / 78%, and 0.65 / 74%, respectively. Sensitivity of neural network was 27.3%, specificity was 90.8%, stepwise Logistic regression sensitivity was 18.2%, specificity was 92.3%, decision tree sensitivity was 13.6%, specificity was 100%, logistic regression sensitivity was 27.3%, specificity 89.2%. From the result of this study, we hope to improve the accuracy by improving the module parameters or other methods in the future and we hope to solve the problem of low sensitivity by adjusting the imbalanced proportion of positive and negative data.

Keywords: decision support, computed tomography, coronary artery, machine learning

Procedia PDF Downloads 207
412 Experimental Study of Impregnated Diamond Bit Wear During Sharpening

Authors: Rui Huang, Thomas Richard, Masood Mostofi

Abstract:

The lifetime of impregnated diamond bits and their drilling efficiency are in part governed by the bit wear conditions, not only the extent of the diamonds’ wear but also their exposure or protrusion out of the matrix bonding. As much as individual diamonds wear, the bonding matrix does also wear through two-body abrasion (direct matrix-rock contact) and three-body erosion (cuttings trapped in the space between rock and matrix). Although there is some work dedicated to the study of diamond bit wear, there is still a lack of understanding on how matrix erosion and diamond exposure relate to the bit drilling response and drilling efficiency, as well as no literature on the process that governs bit sharpening a procedure commonly implemented by drillers when the extent of diamond polishing yield extremely low rate of penetration. The aim of this research is (i) to derive a correlation between the wear state of the bit and the drilling performance but also (ii) to gain a better understanding of the process associated with tool sharpening. The research effort combines specific drilling experiments and precise mapping of the tool-cutting face (impregnated diamond bits and segments). Bit wear is produced by drilling through a rock sample at a fixed rate of penetration for a given period of time. Before and after each wear test, the bit drilling response and thus efficiency is mapped out using a tailored design experimental protocol. After each drilling test, the bit or segment cutting face is scanned with an optical microscope. The test results show that, under the fixed rate of penetration, diamond exposure increases with drilling distance but at a decreasing rate, up to a threshold exposure that corresponds to the optimum drilling condition for this feed rate. The data further shows that the threshold exposure scale with the rate of penetration up to a point where exposure reaches a maximum beyond which no more matrix can be eroded under normal drilling conditions. The second phase of this research focuses on the wear process referred as bit sharpening. Drillers rely on different approaches (increase feed rate or decrease flow rate) with the aim of tearing worn diamonds away from the bit matrix, wearing out some of the matrix, and thus exposing fresh sharp diamonds and recovering a higher rate of penetration. Although a common procedure, there is no rigorous methodology to sharpen the bit and avoid excessive wear or bit damage. This paper aims to gain some insight into the mechanisms that accompany bit sharpening by carefully tracking diamond fracturing, matrix wear, and erosion and how they relate to drilling parameters recorded while sharpening the tool. The results show that there exist optimal conditions (operating parameters and duration of the procedure) for sharpening that minimize overall bit wear and that the extent of bit sharpening can be monitored in real-time.

Keywords: bit sharpening, diamond exposure, drilling response, impregnated diamond bit, matrix erosion, wear rate

Procedia PDF Downloads 71
411 Numerical Investigation of Phase Change Materials (PCM) Solidification in a Finned Rectangular Heat Exchanger

Authors: Mounir Baccar, Imen Jmal

Abstract:

Because of the rise in energy costs, thermal storage systems designed for the heating and cooling of buildings are becoming increasingly important. Energy storage can not only reduce the time or rate mismatch between energy supply and demand but also plays an important role in energy conservation. One of the most preferable storage techniques is the Latent Heat Thermal Energy Storage (LHTES) by Phase Change Materials (PCM) due to its important energy storage density and isothermal storage process. This paper presents a numerical study of the solidification of a PCM (paraffin RT27) in a rectangular thermal storage exchanger for air conditioning systems taking into account the presence of natural convection. Resolution of continuity, momentum and thermal energy equations are treated by the finite volume method. The main objective of this numerical approach is to study the effect of natural convection on the PCM solidification time and the impact of fins number on heat transfer enhancement. It also aims at investigating the temporal evolution of PCM solidification, as well as the longitudinal profiles of the HTF circling in the duct. The present research undertakes the study of two cases: the first one treats the solidification of PCM in a PCM-air heat exchanger without fins, while the second focuses on the solidification of PCM in a heat exchanger of the same type with the addition of fins (3 fins, 5 fins, and 9 fins). Without fins, the stratification of the PCM from colder to hotter during the heat transfer process has been noted. This behavior prevents the formation of thermo-convective cells in PCM area and then makes transferring almost conductive. In the presence of fins, energy extraction from PCM to airflow occurs at a faster rate, which contributes to the reduction of the discharging time and the increase of the outlet air temperature (HTF). However, for a great number of fins (9 fins), the enhancement of the solidification process is not significant because of the effect of confinement of PCM liquid spaces for the development of thermo-convective flow. Hence, it can be concluded that the effect of natural convection is not very significant for a high number of fins. In the optimum case, using 3 fins, the increasing temperature of the HTF exceeds approximately 10°C during the first 30 minutes. When solidification progresses from the surfaces of the PCM-container and propagates to the central liquid phase, an insulating layer will be created in the vicinity of the container surfaces and the fins, causing a low heat exchange rate between PCM and air. As the solid PCM layer gets thicker, a progressive regression of the field of movements is induced in the liquid phase, thus leading to the inhibition of heat extraction process. After about 2 hours, 68% of the PCM became solid, and heat transfer was almost dominated by conduction mechanism.

Keywords: heat transfer enhancement, front solidification, PCM, natural convection

Procedia PDF Downloads 165
410 Achieving Them Both: Business and Wellness Outcomes in Health Organizations – the 'Tip' Laser Intervention

Authors: Shosh Kazaz, Shmuel Banai, Vered Zilberberg

Abstract:

Optimizing high business performance and employee's well-being simultaneously often challenges organizations. 'TIP' intervention enables achieving them both as the given project demonstrates. Increasing outcomes and improving performance were the initial motivators for this explorative project, followed by a request of the head of the Cardiology department: 'I know we are the best at our clinical practice, but we need to take it further and break our own glass ceiling.' Two guided interventions were conducted in two different units within the department, designed to implement advanced managerial and business-oriented tools, along with 'soft tools' based on coaching psychology and particularly wellness coaching. The organ department multi-disciplinary teams were assembled, aiming to manage and lead the process: mapping the patients' flow, creating solutions, implementing, assessing, improving and assimilating them. Approximately four months later, without additional external resources, meaningful results emerged by the teams in terms of business and performance: shortening the hospitalization length at a given procedure (from 7 to 2.1 days); increasing the availability of Catheterization laboratory by 16% daily – resulting profitability raise; improving patients' journey and experience. A year later, those results are maintained. Furthermore, interviews with the participants revealed positive perceptions regarding the department; a higher sense of joyfulness, connectedness, belonging and a better department climate were reported. Additionally, participants reported a higher sense of fulfillment as opposed to their earliest skepticism and cynicism about their ability to enhance outcomes without more resources (budget and/or manpower), experiencing a mindset change toward the possibility of leading personal and professional growth processes. These reports were supported by analyzing a set of questionnaires that the participants completed, parallel to a control group of non-participating colleagues. Although the assessment was taken a year after the completion of the project and during 'covid-19th-3rd national quarantine, the results indicated a significant impact on several personal parameters associated with wellness, compared to the control group. The participants were higher in self-efficacy and organizational commitment; men were higher in resilience and optimism and women were higher in well-being. In conclusion, the 'TIP' relatively short intervention integrates advanced managerial and wellness coaching tools, empowers organizational resources: Team, Individual and Process and by that generates multi-impact measurable results in terms of employee's wellness parameters along with business performance and patient care.

Keywords: coaching, health and wellness, health management, leadership and well-being

Procedia PDF Downloads 165
409 Modelling and Assessment of an Off-Grid Biogas Powered Mini-Scale Trigeneration Plant with Prioritized Loads Supported by Photovoltaic and Thermal Panels

Authors: Lorenzo Petrucci

Abstract:

This paper is intended to give insight into the potential use of small-scale off-grid trigeneration systems powered by biogas generated in a dairy farm. The off-grid plant object of analysis comprises a dual-fuel Genset as well as electrical and thermal storage equipment and an adsorption machine. The loads are the different apparatus used in the dairy farm, a household where the workers live and a small electric vehicle whose batteries can also be used as a power source in case of emergency. The insertion in the plant of an adsorption machine is mainly justified by the abundance of thermal energy and the simultaneous high cooling demand associated with the milk-chilling process. In the evaluated operational scenario, our research highlights the importance of prioritizing specific small loads which cannot sustain an interrupted supply of power over time. As a consequence, a photovoltaic and thermal panel is included in the plant and is tasked with providing energy independently of potentially disruptive events such as engine malfunctioning or scarce and unstable supplies of fuels. To efficiently manage the plant an energy dispatch strategy is created in order to control the flow of energy between the power sources and the thermal and electric storages. In this article we elaborate on models of the equipment and from these models, we extract parameters useful to build load-dependent profiles of the prime movers and storage efficiencies. We show that under reasonable assumptions the analysis provides a sensible estimate of the generated energy. The simulations indicate that a Diesel Generator sized to a value 25% higher than the total electrical peak demand operates 65% of the time below the minimum acceptable load threshold. To circumvent such a critical operating mode, dump loads are added through the activation and deactivation of small resistors. In this way, the excess of electric energy generated can be transformed into useful heat. The combination of PVT and electrical storage to support the prioritized load in an emergency scenario is evaluated in two different days of the year having the lowest and highest irradiation values, respectively. The results show that the renewable energy component of the plant can successfully sustain the prioritized loads and only during a day with very low irradiation levels it also needs the support of the EVs’ battery. Finally, we show that the adsorption machine can reduce the ice builder and the air conditioning energy consumption by 40%.

Keywords: hybrid power plants, mathematical modeling, off-grid plants, renewable energy, trigeneration

Procedia PDF Downloads 154
408 Need and Willingness to Use ‘Meditation on Twin Hearts’ for Management of Anxiety and Depression for the Transgender Community: A Pilot Study

Authors: Neha Joshi, Srikanth Jois, Hector J. Peughero, Poornima Jayakrishna, Moulya R., Purnima Madivanan, Kiran Kumar K. Salagame

Abstract:

Transgenders are a marginalized section of the community, who are at high risk of mental health problems due to their stigmatization, abandonment by family, prejudice, discrimination by society at large, and the physical, emotional, and sexual abuse from both within and outside their community. Their mental healthcare needs remain largely unaddressed due to lack of access, discrimination by healthcare professions, and lack of resources, including time and money, to seek conventional medical and psychotherapeutic treatments. Meditation is increasingly receiving acceptance as a tool for managing stress and anxiety by the patients as well as mental healthcare professionals. “Meditation on Twin Hearts” is a no cost, self-administered intervention that a person can practice anywhere and at any time of the day. This pilot study evaluates the need for alternate traditional and ingenious interventions like “Meditation of Twin Hearts” to address the mental healthcare needs of the transgender community and acceptance of such an intervention by the community. Thirteen individuals identifying themselves as transgender were invited to participate in one (Hunsur Taluk) of the five scheduled free meditation camps in Mysore. After obtaining informed consent for participation in the study, their mental health status is captured using an anonymous survey using standard, validated, self-reported questionnaires Generalised Anxiety Disorders (GAD)-7 for anxiety, Patient Health Questionnaire (PHQ-9) for depression, and Suicidal Behavior Questionnaire-Revised for suicidality. Then, they were requested to attend a session on “Meditation on Twin Hearts.” After the session, their feedback on willingness to further explore the meditation technique for managing their mental healthcare need was assessed through another survey form. Out of the 13 participants, 92% scored for anxiety (4 mild, and 8 moderate anxiety). In the depression scale, 5 scored for mild and 5 for moderate depression, with a total of 77% (10/13) scoring positively on depression scale. Nearly 70% of participants (9/13), scored greater than the clinical cutoff for the need for clinical intervention. The proportion of individuals at risk for suicide was particularly high in this group, with 8/ 13 (61.5%) participants scoring the clinical cutoff score of ≥ 7. Surprisingly, none of the participants had ever consulted a mental healthcare professional. All the participants (13/13; 100%) responded in affirmative to the question, “Will you be willing to continue meditation for management of your anxiety?” Six out of 13 participants described their experience of meditation as “happy” and 3 described it as “peaceful”. None of the participants reported any negative beliefs or experience regarding the meditation. The study provides evidence for the urgent yet unmet mental healthcare need of the transgender community. The findings of the study also supports the rationale of conducting future systematic research to evaluate and explore ingenious and traditional practices, such as meditation, to meet the healthcare needs, especially in marginalized populations in a low income setting such as Lower and Middle Income countries. Based on these preliminary findings, the Principal Investigator (PI) is planning to cover 4 more areas of Mysore district.

Keywords: anxiety, depression, meditation on twin heart, suicidality, transgender

Procedia PDF Downloads 169
407 Operation Cycle Model of ASz62IR Radial Aircraft Engine

Authors: M. Duk, L. Grabowski, P. Magryta

Abstract:

Today's very important element relating to air transport is the environment impact issues. Nowadays there are no emissions standards for turbine and piston engines used in air transport. However, it should be noticed that the environmental effect in the form of exhaust gases from aircraft engines should be as small as possible. For this purpose, R&D centers often use special software to simulate and to estimate the negative effect of engine working process. For cooperation between the Lublin University of Technology and the Polish aviation company WSK "PZL-KALISZ" S.A., to achieve more effective operation of the ASz62IR engine, one of such tools have been used. The AVL Boost software allows to perform 1D simulations of combustion process of piston engines. ASz62IR is a nine-cylinder aircraft engine in a radial configuration. In order to analyze the impact of its working process on the environment, the mathematical model in the AVL Boost software have been made. This model contains, among others, model of the operation cycle of the cylinders. This model was based on a volume change in combustion chamber according to the reciprocating movement of a piston. The simplifications that all of the pistons move identically was assumed. The changes in cylinder volume during an operating cycle were specified. Those changes were important to determine the energy balance of a cylinder in an internal combustion engine which is fundamental for a model of the operating cycle. The calculations for cylinder thermodynamic state were based on the first law of thermodynamics. The change in the mass in the cylinder was calculated from the sum of inflowing and outflowing masses including: cylinder internal energy, heat from the fuel, heat losses, mass in cylinder, cylinder pressure and volume, blowdown enthalpy, evaporation heat etc. The model assumed that the amount of heat released in combustion process was calculated from the pace of combustion, using Vibe model. For gas exchange, it was also important to consider heat transfer in inlet and outlet channels because of much higher values there than for flow in a straight pipe. This results from high values of heat exchange coefficients and temperature coefficients near valves and valve seats. A Zapf modified model of heat exchange was used. To use the model with the flight scenarios, the impact of flight altitude on engine performance has been analyze. It was assumed that the pressure and temperature at the inlet and outlet correspond to the values resulting from the model for International Standard Atmosphere (ISA). Comparing this model of operation cycle with the others submodels of the ASz62IR engine, it could be noticed, that a full analysis of the performance of the engine, according to the ISA conditions, can be made. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under

Keywords: aviation propulsion, AVL Boost, engine model, operation cycle, aircraft engine

Procedia PDF Downloads 265
406 Through Additive Manufacturing. A New Perspective for the Mass Production of Made in Italy Products

Authors: Elisabetta Cianfanelli, Paolo Pupparo, Maria Claudia Coppola

Abstract:

The recent evolutions in the innovation processes and in the intrinsic tendencies of the product development process, lead to new considerations on the design flow. The instability and complexity that contemporary life describes, defines new problems in the production of products, stimulating at the same time the adoption of new solutions across the entire design process. The advent of Additive Manufacturing, but also of IOT and AI technologies, continuously puts us in front of new paradigms regarding design as a social activity. The totality of these technologies from the point of view of application describes a whole series of problems and considerations immanent to design thinking. Addressing these problems may require some initial intuition and the use of some provisional set of rules or plausible strategies, i.e., heuristic reasoning. At the same time, however, the evolution of digital technology and the computational speed of new design tools describe a new and contrary design framework in which to operate. It is therefore interesting to understand the opportunities and boundaries of the new man-algorithm relationship. The contribution investigates the man-algorithm relationship starting from the state of the art of the Made in Italy model, the most known fields of application are described and then focus on specific cases in which the mutual relationship between man and AI becomes a new driving force of innovation for entire production chains. On the other hand, the use of algorithms could engulf many design phases, such as the definition of shape, dimensions, proportions, materials, static verifications, and simulations. Operating in this context, therefore, becomes a strategic action, capable of defining fundamental choices for the design of product systems in the near future. If there is a human-algorithm combination within a new integrated system, quantitative values can be controlled in relation to qualitative and material values. The trajectory that is described therefore becomes a new design horizon in which to operate, where it is interesting to highlight the good practices that already exist. In this context, the designer developing new forms can experiment with ways still unexpressed in the project and can define a new synthesis and simplification of algorithms, so that each artifact has a signature in order to define in all its parts, emotional and structural. This signature of the designer, a combination of values and design culture, will be internal to the algorithms and able to relate to digital technologies, creating a generative dialogue for design purposes. The result that is envisaged indicates a new vision of digital technologies, no longer understood only as of the custodians of vast quantities of information, but also as a valid integrated tool in close relationship with the design culture.

Keywords: decision making, design euristics, product design, product design process, design paradigms

Procedia PDF Downloads 88
405 Effect Of Selected Food And Nutrition Environments On Prevalence Of Cardio-Metabolic Risk Factors With Emphasis On Worksite Environment In Urban Delhi

Authors: Deepa Shokeen, Bani Tamber Aeri

Abstract:

Food choice is a complex process influenced by the interplay of multiple factors, including physical, socio-cultural and economic factors comprising macro or micro level food environments. While a clear understanding of the relationship between what we eat and the environmental context in which these food choices are made is still needed; it has however now been shown that food environments do play a significant role in the obesity epidemic and increasing cardio-metabolic risk factors. Evidence in other countries indicates that the food environment may strongly influence the prevalence of obesity and cardio-metabolic risk factors among young adults. Although in the Indian context, data does indicate the associations between sedentary lifestyle, stress, faulty diets but very little evidence supports the role of food environment in influencing cardio-metabolic health among employed adults. Thus, this research is required to establish how different environments affect different individuals as individuals interact with the environment on a number of levels. Methodology: The objective of the present study is to assess the effect of selected food and nutrition environments with emphasis on worksite environment and to analyse its impact on the food choices and dietary behaviour of the employees (25-45 years of age) of the organizations under study. In the proposed study an attempt will be made to randomly select various worksite environments from Delhi and NCR. The study will be conducted in two phases. In phase I, Information will be obtained on their socio-demographic profile and various factors influencing their food choices including most commonly consumed foods and most frequently visited eating outlets in and around the work place. Data will also be gathered on anthropometry (height, weight, waist circumference), biochemical parameters (lipid profile and fasting glucose), blood pressure and dietary intake. Based on the findings of phase I, a list of the most frequently visited eating outlets in and around the workplace will be prepared in Phase II. These outlets will then be subjected to nutrition environment assessment survey (NEMS). On the basis of the information gathered from phase I and phase II, influence of selected food and nutrition environments on food choice, dietary behaviour and prevalence of cardio-metabolic risk factors among employed adults will be assessed. Expected outcomes: The proposed study will try to ascertain the impact of selected food and nutrition environments on food choice and dietary intake of the working adults as it is important to learn how these food environments influence the eating perceptions and health behavior of the adults. In addition to this, anthropometry blood pressure and biochemical assessment of the subjects will be done to assess the prevalence of cardio-metabolic risk factors. If the findings indicate that the work environment, where most of these young adults spend their productive hours of the day, influence their health, than perhaps steps maybe needed to make these environments more conducive to health.

Keywords: food and nutrition environment, cardio-metabolic risk factors, India, worksite environment

Procedia PDF Downloads 263
404 Using Lysosomal Immunogenic Cell Death to Target Breast Cancer via Xanthine Oxidase/Micro-Antibody Fusion Protein

Authors: Iulianna Taritsa, Kuldeep Neote, Eric Fossel

Abstract:

Lysosome-induced immunogenic cell death (LIICD) is a powerful mechanism of targeting cancer cells that kills circulating malignant cells and primes the host’s immune cells against future remission. Current immunotherapies for cancer are limited in preventing recurrence – a gap that can be bridged by training the immune system to recognize cancer neoantigens. Lysosomal leakage can be induced therapeutically to traffic antigens from dying cells to dendritic cells, which can later present those tumorigenic antigens to T cells. Previous research has shown that oxidative agents administered in the tumor microenvironment can initiate LIICD. We generated a fusion protein between an oxidative agent known as xanthine oxidase (XO) and a mini-antibody specific for EGFR/HER2-sensitive breast tumor cells. The anti-EGFR single domain antibody fragment is uniquely sourced from llama, which is functional without the presence of a light chain. These llama micro-antibodies have been shown to be better able to penetrate tissues and have improved physicochemical stability as compared to traditional monoclonal antibodies. We demonstrate that the fusion protein created is stable and can induce early markers of immunogenic cell death in an in vitro human breast cancer cell line (SkBr3). Specifically, we measured overall cell death, as well as surface-expressed calreticulin, extracellular ATP release, and HMGB1 production. These markers are consensus indicators of ICD. Flow cytometry, luminescence assays, and ELISA were used respectively to quantify biomarker levels between treated versus untreated cells. We also included a positive control group of SkBr3 cells dosed with doxorubicin (a known inducer of LIICD) and a negative control dosed with cisplatin (a known inducer of cell death, but not of the immunogenic variety). We looked at each marker at various time points after cancer cells were treated with the XO/antibody fusion protein, doxorubicin, and cisplatin. Upregulated biomarkers after treatment with the fusion protein indicate an immunogenic response. We thus show the potential for this fusion protein to induce an anticancer effect paired with an adaptive immune response against EGFR/HER2+ cells. Our research in human cell lines here provides evidence for the success of the same therapeutic method for patients and serves as the gateway to developing a new treatment approach against breast cancer.

Keywords: apoptosis, breast cancer, immunogenic cell death, lysosome

Procedia PDF Downloads 177
403 A Qualitative Study of Experienced Early Childhood Teachers Resolving Workplace Challenges with Character Strengths

Authors: Michael J. Haslip

Abstract:

Character strength application improves performance and well-being in adults across industries, but the potential impact of character strength training among early childhood educators is mostly unknown. To explore how character strengths are applied by early childhood educators at work, a qualitative study was completed alongside professional development provided to a group of in-service teachers of children ages 0-5 in Philadelphia, Pennsylvania, United States. Study participants (n=17) were all female. The majority of participants were non-white, in full-time lead or assistant teacher roles, had at least ten years of experience and a bachelor’s degree. Teachers were attending professional development weekly for 2 hours over a 10-week period on the topic of social and emotional learning and child guidance. Related to this training were modules and sessions on identifying a teacher’s character strength profile using the Values in Action classification of 24 strengths (e.g., humility, perseverance) that have a scientific basis. Teachers were then asked to apply their character strengths to help resolve current workplace challenges. This study identifies which character strengths the teachers reported using most frequently and the nature of the workplace challenges being resolved in this context. The study also reports how difficult these challenges were to the teachers and their success rate at resolving workplace challenges using a character strength application plan. The study also documents how teachers’ own use of character strengths relates to their modeling of these same traits (e.g., kindness, teamwork) for children, especially when the nature of the workplace challenge directly involves the children, such as when addressing issues of classroom management and behavior. Data were collected on action plans (reflective templates) which teachers wrote to explain the work challenge they were facing, the character strengths they used to address the challenge, their plan for applying strengths to the challenge, and subsequent results. Content analysis and thematic analysis were used to investigate the research questions using approaches that included classifying, connecting, describing, and interpreting data reported by educators. Findings reveal that teachers most frequently use kindness, leadership, fairness, hope, and love to address a range of workplace challenges, ranging from low to high difficulty, involving children, coworkers, parents, and for self-management. Teachers reported a 71% success rate at fully or mostly resolving workplace challenges using the action plan method introduced during professional development. Teachers matched character strengths to challenges in different ways, with certain strengths being used mostly when the challenge involved children (love, forgiveness), others mostly with adults (bravery, teamwork), and others universally (leadership, kindness). Furthermore, teacher’s application of character strengths at work involved directly modeling character for children in 31% of reported cases. The application of character strengths among early childhood educators may play a significant role in improving teacher well-being, reducing job stress, and improving efforts to model character for young children.

Keywords: character strengths, positive psychology, professional development, social-emotional learning

Procedia PDF Downloads 76
402 The Correspondence between Self-regulated Learning, Learning Efficiency and Frequency of ICT Use

Authors: Maria David, Tunde A. Tasko, Katalin Hejja-Nagy, Laszlo Dorner

Abstract:

The authors have been concerned with research on learning since 1998. Recently, the focus of our interest is how prevalent use of information and communication technology (ICT) influences students' learning abilities, skills of self-regulated learning and learning efficiency. Nowadays, there are three dominant theories about the psychic effects of ICT use: According to social optimists, modern ICT devices have a positive effect on thinking. As to social pessimists, this effect is rather negative. And, regarding the views of biological optimists, the change is obvious, but these changes can fit into the mankind's evolved neurological system as did writing long ago. Mentality of 'digital natives' differ from that of elder people. They process information coming from the outside world in an other way, and different experiences result in different cerebral conformation. In this regard, researchers report about both positive and negative effects of ICT use. According to several studies, it has a positive effect on cognitive skills, intelligence, school efficiency, development of self-regulated learning, and self-esteem regarding learning. It is also proven, that computers improve skills of visual intelligence such as spacial orientation, iconic skills and visual attention. Among negative effects of frequent ICT use, researchers mention the decrease of critical thinking, as permanent flow of information does not give scope for deeper cognitive processing. Aims of our present study were to uncover developmental characteristics of self-regulated learning in different age groups and to study correlations of learning efficiency, the level of self-regulated learning and frequency of use of computers. Our subjects (N=1600) were primary and secondary school students and university students. We studied four age groups (age 10, 14, 18, 22), 400 subjects of each. We used the following methods: the research team developed a questionnaire for measuring level of self-regulated learning and a questionnaire for measuring ICT use, and we used documentary analysis to gain information about grade point average (GPA) and results of competence-measures. Finally, we used computer tasks to measure cognitive abilities. Data is currently under analysis, but as to our preliminary results, frequent use of computers results in shorter response time regarding every age groups. Our results show that an ordinary extent of ICT use tend to increase reading competence, and had a positive effect on students' abilities, though it didn't show relationship with school marks (GPA). As time passes, GPA gets worse along with the learning material getting more and more difficult. This phenomenon draws attention to the fact that students are unable to switch from guided to independent learning, so it is important to consciously develop skills of self-regulated learning.

Keywords: digital natives, ICT, learning efficiency, reading competence, self-regulated learning

Procedia PDF Downloads 340
401 Validating Quantitative Stormwater Simulations in Edmonton Using MIKE URBAN

Authors: Mohamed Gaafar, Evan Davies

Abstract:

Many municipalities within Canada and abroad use chloramination to disinfect drinking water so as to avert the production of the disinfection by-products (DBPs) that result from conventional chlorination processes and their consequential public health risks. However, the long-lasting monochloramine disinfectant (NH2Cl) can pose a significant risk to the environment. As, it can be introduced into stormwater sewers, from different water uses, and thus freshwater sources. Little research has been undertaken to monitor and characterize the decay of NH2Cl and to study the parameters affecting its decomposition in stormwater networks. Therefore, the current study was intended to investigate this decay starting by building a stormwater model and validating its hydraulic and hydrologic computations, and then modelling water quality in the storm sewers and examining the effects of different parameters on chloramine decay. The presented work here is only the first stage of this study. The 30th Avenue basin in Southern Edmonton was chosen as a case study, because the well-developed basin has various land-use types including commercial, industrial, residential, parks and recreational. The City of Edmonton has already built a MIKE-URBAN stormwater model for modelling floods. Nevertheless, this model was built to the trunk level which means that only the main drainage features were presented. Additionally, this model was not calibrated and known to consistently compute pipe flows higher than the observed values; not to the benefit of studying water quality. So the first goal was to complete modelling and updating all stormwater network components. Then, available GIS Data was used to calculate different catchment properties such as slope, length and imperviousness. In order to calibrate and validate this model, data of two temporary pipe flow monitoring stations, collected during last summer, was used along with records of two other permanent stations available for eight consecutive summer seasons. The effect of various hydrological parameters on model results was investigated. It was found that model results were affected by the ratio of impervious areas. The catchment length was tested, however calculated, because it is approximate representation of the catchment shape. Surface roughness coefficients were calibrated using. Consequently, computed flows at the two temporary locations had correlation coefficients of values 0.846 and 0.815, where the lower value pertained to the larger attached catchment area. Other statistical measures, such as peak error of 0.65%, volume error of 5.6%, maximum positive and negative differences of 2.17 and -1.63 respectively, were all found in acceptable ranges.

Keywords: stormwater, urban drainage, simulation, validation, MIKE URBAN

Procedia PDF Downloads 273
400 Identity and Mental Adaptation of Deaf and Hard-of-Hearing Students

Authors: N. F. Mikhailova, M. E. Fattakhova, M. A. Mironova, E. V. Vyacheslavova

Abstract:

For the mental and social adaptation of the deaf and hard-of-hearing people, cultural and social aspects - the formation of identity (acculturation) and educational conditions – are highly significant. We studied 137 deaf and hard-of-hearing students in different educational situations. We used these methods: Big Five (Costa & McCrae, 1997), TRF (Becker, 1989), WCQ (Lazarus & Folkman, 1988), self-esteem, and coping strategies (Jambor & Elliott, 2005), self-stigma scale (Mikhailov, 2008). Type of self-identification of students depended on the degree of deafness, type of education, method of communication in the family: large hearing loss, education in schools for deaf, and gesture communication increased the likelihood of a 'deaf' acculturation. Less hearing loss, inclusive education in public school or school for the hearing-impaired, mixed communication in the family contributed to the formation of 'hearing' acculturation. The choice of specific coping depended on the degree of deafness: a large hearing loss increased coping 'withdrawal into the deaf world' and decreased 'bicultural skills' coping. People with mild hearing loss tended to cover-up it. In the context of ongoing discussion, we researched personality characteristics in deaf and hard on-hearing students, coping and other deafness associated factors depending on their acculturation type. Students who identified themselves with the 'hearing world' had a high self-esteem, a higher level of extraversion, self-awareness, personal resources, willingness to cooperate, better psychological health, emotional stability, higher ability to empathy, a greater satiety of life with feelings and sense and high sense of self-worth. They also actively used strategies, problem-solving, acceptance of responsibility, positive revaluation. Student who limited themselves within the culture of deaf people had more severe hearing loss and accordingly had more communication barriers. Lack of use or seldom use of coping strategies by these students point at decreased level of stress in their life. Their self-esteem have not been challenged in the specific social environment of the students with the same severity of defect, and thus this environment provided sense of comfort (we can assume that from the high scores on psychological health, personality resources, and emotional stability). Students with bicultural acculturation had higher level of psychological resources - they used Positive Reappraisal coping more often and had a higher level of psychological health. Lack of belonging to certain culture (marginality) leads to personality disintegration, social and psychological disadaptation: deaf and hard-of-hearing students with marginal identification had a lower self-estimation level, worse psychological health and personal resources, lower level of extroversion, self-confidence and life satisfaction. They, in fact, become 'risk group' (many of them dropped out of universities, divorced, and one even ended up in the ranks of ISIS). All these data argue the importance of cultural 'anchor' for people with hearing deprivation. Supported by the RFBR No 19-013-00406.

Keywords: acculturation, coping, deafness, marginality

Procedia PDF Downloads 173
399 Fly ash Contamination in Groundwater and its Implications on Local Climate Change

Authors: Rajkumar Ghosh

Abstract:

Fly ash, a byproduct of coal combustion, has become a prevalent environmental concern due to its potential impact on both groundwater quality and local climate change. This study aims to provide an in-depth analysis of the various mechanisms through which fly ash contaminates groundwater, as well as the possible consequences of this contamination on local climate change. The presence of fly ash in groundwater not only poses a risk to human health but also has the potential to influence local climate change through complex interactions. Although fly ash has various applications in construction and other industries, improper disposal and lack of containment measures have led to its infiltration into groundwater systems. Through a comprehensive review of existing literature and case studies, the interactions between fly ash and groundwater systems, assess the effects on hydrology, and discuss the implications for the broader climate. This section reviews the pathways through which fly ash enters groundwater, including leaching from disposal sites, infiltration through soil, and migration from surface water bodies. The physical and chemical characteristics of fly ash that contribute to its mobility and persistence in groundwater. The introduction of fly ash into groundwater can alter its chemical composition, leading to an increase in the concentration of heavy metals, metalloids, and other potentially toxic elements. The mechanisms of contaminant transport and highlight the potential risks to human health and ecosystems. Fly ash contamination in groundwater may influence the hydrological cycle through changes in groundwater recharge, discharge, and flow dynamics. This section examines the implications of altered hydrology on local water availability, aquatic habitats, and overall ecosystem health. The presence of fly ash in groundwater may have direct and indirect effects on local climate change. The role of fly ash as a potent greenhouse gas absorber and its contribution to radiative forcing. Additionally, investigation of the possible feedback mechanisms between groundwater contamination and climate change, such as altered vegetation patterns and changes in local temperature and precipitation patterns. In this section, potential mitigation and remediation techniques to minimize fly ash contamination in groundwater are analyzed. These may include improved waste management practices, engineered barriers, groundwater remediation technologies, and sustainable fly ash utilization. This paper highlights the critical link between fly ash contamination in groundwater and its potential contribution to local climate change. It emphasizes the importance of addressing this issue promptly through a combination of preventive measures, effective management strategies, and continuous monitoring. By understanding the interconnections between fly ash contamination, groundwater quality, and local climate, towards creating a more resilient and sustainable environment for future generations. The findings of this research can assist policymakers and environmental managers in formulating sustainable strategies to mitigate fly ash contamination and minimize its contribution to climate change.

Keywords: groundwater, climate, sustainable environment, fly ash contamination

Procedia PDF Downloads 54
398 Development of a Framework for Assessing Public Health Risk Due to Pluvial Flooding: A Case Study of Sukhumvit, Bangkok

Authors: Pratima Pokharel

Abstract:

When sewer overflow due to rainfall in urban areas, this leads to public health risks when an individual is exposed to that contaminated floodwater. Nevertheless, it is still unclear the extent to which the infections pose a risk to public health. This study analyzed reported diarrheal cases by month and age in Bangkok, Thailand. The results showed that the cases are reported higher in the wet season than in the dry season. It was also found that in Bangkok, the probability of infection with diarrheal diseases in the wet season is higher for the age group between 15 to 44. However, the probability of infection is highest for kids under 5 years, but they are not influenced by wet weather. Further, this study introduced a vulnerability that leads to health risks from urban flooding. This study has found some vulnerability variables that contribute to health risks from flooding. Thus, for vulnerability analysis, the study has chosen two variables, economic status, and age, that contribute to health risk. Assuming that the people's economic status depends on the types of houses they are living in, the study shows the spatial distribution of economic status in the vulnerability maps. The vulnerability map result shows that people living in Sukhumvit have low vulnerability to health risks with respect to the types of houses they are living in. In addition, from age the probability of infection of diarrhea was analyzed. Moreover, a field survey was carried out to validate the vulnerability of people. It showed that health vulnerability depends on economic status, income level, and education. The result depicts that people with low income and poor living conditions are more vulnerable to health risks. Further, the study also carried out 1D Hydrodynamic Advection-Dispersion modelling with 2-year rainfall events to simulate the dispersion of fecal coliform concentration in the drainage network as well as 1D/2D Hydrodynamic model to simulate the overland flow. The 1D result represents higher concentrations for dry weather flows and a large dilution of concentration on the commencement of a rainfall event, resulting in a drop of the concentration due to runoff generated after rainfall, whereas the model produced flood depth, flood duration, and fecal coliform concentration maps, which were transferred to ArcGIS to produce hazard and risk maps. In addition, the study also simulates the 5-year and 10-year rainfall simulations to show the variation in health hazards and risks. It was found that even though the hazard coverage is very high with a 10-year rainfall events among three rainfall events, the risk was observed to be the same with a 5-year and 10-year rainfall events.

Keywords: urban flooding, risk, hazard, vulnerability, health risk, framework

Procedia PDF Downloads 45
397 Immunomodulatory Role of Heat Killed Mycobacterium indicus pranii against Cervical Cancer

Authors: Priyanka Bhowmik, Subrata Majumdar, Debprasad Chattopadhyay

Abstract:

Background: Cervical cancer is the third major cause of cancer in women and the second most frequent cause of cancer related deaths causing 300,000 deaths annually worldwide. Evasion of immune response by Human Papilloma Virus (HPV), the key contributing factor behind cancer and pre-cancerous lesions of the uterine cervix, makes immunotherapy a necessity to treat this disease. Objective: A Heat killed fraction of Mycobacterium indicus pranii (MIP), a non-pathogenic Mycobacterium has been shown to exhibit cytotoxic effects on different cancer cells, including human cervical carcinoma cell line HeLa. However, the underlying mechanisms remain unknown. The aim of this study is to decipher the mechanism of MIP induced HeLa cell death. Methods: The cytotoxicity of Mycobacterium indicus pranii against HeLa cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected by annexin V and Propidium iodide (PI) staining. The assessment of reactive oxygen species (ROS) generation and cell cycle analysis were measured by flow cytometry. The expression of apoptosis associated genes was analyzed by real time PCR. Result: MIP could inhibit the proliferation of HeLa cell in a time and dose dependent manner but caused minor damage to normal cells. The induction of apoptosis was confirmed by the cell surface presentation of phosphatidyl serine, DNA fragmentation, and mitochondrial damage. MIP caused very early (as early as 30 minutes) transcriptional activation of p53, followed by a higher activation (32 fold) at 24 hours suggesting prime importance of p53 in MIP-induced apoptosis in HeLa cell. The up regulation of p53 dependent pro-apoptotic genes Bax, Bak, PUMA, and Noxa followed a lag phase that was required for the transcriptional p53 program. MIP also caused the transcriptional up regulation of Toll like receptor 2 and 4 after 30 minutes of MIP treatment suggesting recognition of MIP by toll like receptors. Moreover, MIP caused the inhibition of expression of HPV anti apoptotic gene E6, which is known to interfere with p53/PUMA/Bax apoptotic cascade. This inhibition might have played a role in transcriptional up regulation of PUMA and subsequently apoptosis. ROS was generated transiently which was concomitant with the highest transcription activation of p53 suggesting a plausible feedback loop network of p53 and ROS in the apoptosis of HeLa cells. Scavenger of ROS, such as N-acetyl-L-cysteine, decreased apoptosis suggesting ROS is an important effector of MIP induced apoptosis. Conclusion: Taken together, MIP possesses full potential to be a novel therapeutic agent in the clinical treatment of cervical cancer.

Keywords: cancer, mycobacterium, immunity, immunotherapy.

Procedia PDF Downloads 231
396 Study of Biomechanical Model for Smart Sensor Based Prosthetic Socket Design System

Authors: Wei Xu, Abdo S. Haidar, Jianxin Gao

Abstract:

Prosthetic socket is a component that connects the residual limb of an amputee with an artificial prosthesis. It is widely recognized as the most critical component that determines the comfort of a patient when wearing the prosthesis in his/her daily activities. Through the socket, the body weight and its associated dynamic load are distributed and transmitted to the prosthesis during walking, running or climbing. In order to achieve a good-fit socket for an individual amputee, it is essential to obtain the biomechanical properties of the residual limb. In current clinical practices, this is achieved by a touch-and-feel approach which is highly subjective. Although there have been significant advancements in prosthetic technologies such as microprocessor controlled knee and ankle joints in the last decade, the progress in designing a comfortable socket has been rather limited. This means that the current process of socket design is still very time-consuming, and highly dependent on the expertise of the prosthetist. Supported by the state-of-the-art sensor technologies and numerical simulations, a new socket design system is being developed to help prosthetists achieve rapid design of comfortable sockets for above knee amputees. This paper reports the research work related to establishing biomechanical models for socket design. Through numerical simulation using finite element method, comprehensive relationships between pressure on residual limb and socket geometry were established. This allowed local topological adjustment for the socket so as to optimize the pressure distributions across the residual limb. When the full body weight of a patient is exerted on the residual limb, high pressures and shear forces between the residual limb and the socket occur. During numerical simulations, various hyperplastic models, namely Ogden, Yeoh and Mooney-Rivlin, were used, and their effectiveness in representing the biomechanical properties of soft tissues of the residual limb was evaluated. This also involved reverse engineering, which resulted in an optimal representative model under compression test. To validate the simulation results, a range of silicone models were fabricated. They were tested by an indentation device which yielded the force-displacement relationships. Comparisons of results obtained from FEA simulations and experimental tests showed that the Ogden model did not fit well the soft tissue material indentation data, while the Yeoh model gave the best representation of the soft tissue mechanical behavior under indentation. Compared with hyperplastic model, the result showed that elastic model also had significant errors. In addition, normal and shear stress distributions on the surface of the soft tissue model were obtained. The effect of friction in compression testing and the influence of soft tissue stiffness and testing boundary conditions were also analyzed. All these have contributed to the overall goal of designing a good-fit socket for individual above knee amputees.

Keywords: above knee amputee, finite element simulation, hyperplastic model, prosthetic socket

Procedia PDF Downloads 178
395 Insufficiency of Cardioprotection at Adaptation to Chronic Hypoxia and at Remote Postconditioning in Young and Aged Rats with Metabolic Syndrome, the Role of Metabolic Disorders or Opioid Signaling

Authors: Natalia V. Naryzhnaya, Alexandr V. Mukhomedzyanov, Ivan A. Derkachev, Boris K. Kurbatov, Leonid N. Maslov

Abstract:

Background: Techniques of adaptation to hypoxia and remote postconditioning (RPost) have great prospects for use in the clinic. However, recent studies have shown low efficacy of remote postconditioning in patients with AMI. We hypothesize that the reasons for this inefficiency may be metabolic disorders, which are very common, especially in patients with cardiovascular disease, and age of patients. The purpose of the study was to reveal the effectiveness of adaptation to chronic hypoxia and RPost. To determine the possible relationship between the decrease in the effectiveness of projective impacts and disorders of carbohydrate and lipid metabolism. Design: The study was carried out on Wistar rats 60 day old. MetS was induced by high-carbohydrate, high-fat diet (HСHFD). Modeling MS led to the formation of obesity, hypertension, impaired lipid and carbohydrate metabolism, hyperleptinemia, and moderate stress. Groups with adaptation to chronic hypoxia were subjected to hypoxia for 21 days at 12% O2 and 0.3% CO2 after complete of HСHFD. All animals were subjected to 45 min coronary occlusion and 120 min reperfusion. Groups with RPost, immediately after the end of ischemia, tourniquets were applied to the hind limbs in the area of the hip joint (3 times in the mode of 5 min ischemia, 5 min reperfusion). Results: RPost led to a twofold reduction of infarct size in rats with intact metabolism (р < 0.0001), while in rats with MetS, a decrease in infarct size during RPost was 25 % (p = 0.00003). A direct correlation was found between of infarct size during RPost and the serum leptin level of rats with MetC (r = 0.85). The presented data suggested that a decrease in the efficiency of remote postconditioning in rats with diet-induced metabolic syndrome depends on serum leptin. Chronic hypoxia resulted in a 38% reduced in infarct size in metabolically intact rats. The decrease of cardioprotection was observed in rats with chronic hypoxia and MetS. Infarct size showed a direct correlation with impaired glucose tolerance (AUC, glucose tolerance test, r = 0.034) and serum triglyceride levels (r = 0.39). Our study showed the dependence of cardioprotection in rats with metabolic syndrome during chronic hypoxia and DPost on opioids in the blood serum and myocardium, protein kinase C and NO synthase activity. Conclusion: The results obtained showed that the infarct-limiting efficiency of adaptation to hypoxia and remote postconditioning is reduced or completely absent in animals with metabolic syndrome. The increase in the infarction, in this case, directly depends on the disturbances in carbohydrate. lipid metabolism and opioids signaling. Funding: Investigation of effectiveness of chronic hypoxia at the metabolic syndrome was carried out within the support of Russian Science Foundation Grant 22-15-00048. Studies of the mechanisms of arterial hypertension in induced metabolic syndrome were carried out within the framework of the state assignment (122020300042-4). The work was performed using the Center for Collective Use "Medical Genomics".

Keywords: chronic hypoxia, opioids, remote postconditioning, metabolic syndrome

Procedia PDF Downloads 56
394 Gamifying Content and Language Integrated Learning: A Study Exploring the Use of Game-Based Resources to Teach Primary Mathematics in a Second Language

Authors: Sarah Lister, Pauline Palmer

Abstract:

Research findings presented within this paper form part of a larger scale collaboration between academics at Manchester Metropolitan University and a technology company. The overarching aims of this project focus on developing a series of game-based resources to promote the teaching of aspects of mathematics through a second language (L2) in primary schools. This study explores the potential of game-based learning (GBL) as a dynamic way to engage and motivate learners, making learning fun and purposeful. The research examines the capacity of GBL resources to provide a meaningful and purposeful context for CLIL. GBL is a powerful learning environment and acts as an effective vehicle to promote the learning of mathematics through an L2. The fun element of GBL can minimise stress and anxiety associated with mathematics and L2 learning that can create barriers. GBL provides one of the few safe domains where it is acceptable for learners to fail. Games can provide a life-enhancing experience for learners, revolutionizing the routinized ways of learning through fusing learning and play. This study argues that playing games requires learners to think creatively to solve mathematical problems, using the L2 in order to progress, which can be associated with the development of higher-order thinking skills and independent learning. GBL requires learners to engage appropriate cognitive processes with increased speed of processing, sensitivity to environmental inputs, or flexibility in allocating cognitive and perceptual resources. At surface level, GBL resources provide opportunities for learners to learn to do things. Games that fuse subject content and appropriate learning objectives have the potential to make learning academic subjects more learner-centered, promote learner autonomy, easier, more enjoyable, more stimulating and engaging and therefore, more effective. Data includes observations of the children playing the games and follow up group interviews. Given that learning as a cognitive event cannot be directly observed or measured. A Cognitive Discourse Functions (CDF) construct was used to frame the research, to map the development of learners’ conceptual understanding in an L2 context and as a framework to observe the discursive interactions that occur learner to learner and between learner and teacher. Cognitively, the children were required to engage with mathematical content, concepts and language to make decisions quickly, to engage with the gameplay to reason, solve and overcome problems and learn through experimentation. The visual elements of the games supported the learning of new concepts. Children recognised the value of the games to consolidate their mathematical thinking and develop their understanding of new ideas. The games afforded them time to think and reflect. The teachers affirmed that the games provided meaningful opportunities for the learners to practise the language. The findings of this research support the view that using the game-based resources supported children’s grasp of mathematical ideas and their confidence and ability to use the L2. Engaging with the content and language through the games led to deeper learning.

Keywords: CLIL, gaming, language, mathematics

Procedia PDF Downloads 114
393 Corporate Life Cycle and Corporate Social Responsibility Performance: Empirical Evidence from Pharmaceutical Industry in China

Authors: Jing (Claire) LI

Abstract:

The topic of corporate social responsibility (CSR) is significant for pharmaceutical companies in China at this current stage. This is because, as a rapid growth industry in China in recent years, the pharmaceutical industry in China has been undergone continuous and terrible incidents relating to CSR. However, there is limited research and practice of CSR in Chinese pharmaceutical companies. Also, there is an urgent call for more research in an international context to understand the implications of corporate life cycle on CSR performance. To respond to the research need and research call, this study examines the relationship between corporate life cycle and CSR performance of Chinese listed companies in pharmaceutical industry. This research studies Chinese listed companies in pharmaceutical industry for the period of 2010-2017, where the data is available in database. Following the literature, this study divides CSR performance with regards to CSR dimensions, including shareholders, creditors, employees, customers, suppliers, the government, and the society. This study uses CSR scores of HEXUN database and financial measures of these CSR dimensions to measure the CSR performance. This study performed regression analysis to examine the relationship between corporate life cycle stages and CSR performance with regards to CSR dimensions for pharmaceutical listed companies in China. Using cash flow pattern as proxy of corporate life cycle to classify corporate life cycle stages, this study found that most (least) pharmaceutical companies in China are in maturity (decline) stage. This study found that CSR performance for most dimensions are highest (lowest) in maturity (decline) stage as well. Among these CSR dimensions, performing responsibilities for shareholder is the most important among all CSR responsibilities for pharmaceutical companies. This study is the first to provide important empirical evidence from Chinese pharmaceutical industry on the association between life cycle and CSR performance, supporting that corporate life cycle is a key factor in CSR performance. The study expands corporate life cycle and CSR literatures and has both empirical and theoretical contributions to the literature. From perspective of empirical contributions, the findings contribute to the argument that whether there is a relationship between CSR performance and various corporate life cycle stages in the literature. This study also provides empirical evidence that companies in different corporate life cycles have difference in CSR performance. From perspective of theoretical contributions, this study relates CSR and stakeholders to corporate life cycle stages and complements the corporate life cycle and CSR literature. This study has important implications for managers and policy makers. First, the results will be helpful for managers to have an understanding in the essence of CSR, and their company’s current and future CSR focus over corporate life cycle. This study provides a reference for their actions and may help them make more wise resources allocation decisions of CSR investment. Second, policy makers (in the government, stock exchanges, and securities commission) may consider corporate life cycle as an important factor in formulating future regulations for companies. Future research can explore the "process-based" differences in CSR performance and more industries.

Keywords: China, corporate life cycle, corporate social responsibility, pharmaceutical industry

Procedia PDF Downloads 80
392 Adaptation Measures as a Response to Climate Change Impacts and Associated Financial Implications for Construction Businesses by the Application of a Mixed Methods Approach

Authors: Luisa Kynast

Abstract:

It is obvious that buildings and infrastructure are highly impacted by climate change (CC). Both, design and material of buildings need to be resilient to weather events in order to shelter humans, animals, or goods. As well as buildings and infrastructure are exposed to weather events, the construction process itself is generally carried out outdoors without being protected from extreme temperatures, heavy rain, or storms. The production process is restricted by technical limitations for processing materials with machines and physical limitations due to human beings (“outdoor-worker”). In future due to CC, average weather patterns are expected to change as well as extreme weather events are expected to occur more frequently and more intense and therefore have a greater impact on production processes and on the construction businesses itself. This research aims to examine this impact by analyzing an association between responses to CC and financial performance of businesses within the construction industry. After having embedded the above depicted field of research into the resource dependency theory, a literature review was conducted to expound the state of research concerning a contingent relation between climate change adaptation measures (CCAM) and corporate financial performance for construction businesses. The examined studies prove that this field is rarely investigated, especially for construction businesses. Therefore, reports of the Carbon Disclosure Project (CDP) were analyzed by applying content analysis using the software tool MAXQDA. 58 construction companies – located worldwide – could be examined. To proceed even more systematically a coding scheme analogous to findings in literature was adopted. Out of qualitative analysis, data was quantified and a regression analysis containing corporate financial data was conducted. The results gained stress adaptation measures as a response to CC as a crucial proxy to handle climate change impacts (CCI) by mitigating risks and exploiting opportunities. In CDP reports the majority of answers stated increasing costs/expenses as a result of implemented measures. A link to sales/revenue was rarely drawn. Though, CCAM were connected to increasing sales/revenues. Nevertheless, this presumption is supported by the results of the regression analysis where a positive effect of implemented CCAM on construction businesses´ financial performance in the short-run was ascertained. These findings do refer to appropriate responses in terms of the implemented number of CCAM. Anyhow, still businesses show a reluctant attitude for implementing CCAM, which was confirmed by findings in literature as well as by findings in CDP reports. Businesses mainly associate CCAM with costs and expenses rather than with an effect on their corporate financial performance. Mostly companies underrate the effect of CCI and overrate the costs and expenditures for the implementation of CCAM and completely neglect the pay-off. Therefore, this research shall create a basis for bringing CC to the (financial) attention of corporate decision-makers, especially within the construction industry.

Keywords: climate change adaptation measures, construction businesses, financial implication, resource dependency theory

Procedia PDF Downloads 117
391 Dual-Layer Microporous Layer of Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells under Various RH Conditions

Authors: Grigoria Athanasaki, Veerarajan Vimala, A. M. Kannan, Louis Cindrella

Abstract:

Energy usage has been increased throughout the years, leading to severe environmental impacts. Since the majority of the energy is currently produced from fossil fuels, there is a global need for clean energy solutions. Proton Exchange Membrane Fuel Cells (PEMFCs) offer a very promising solution for transportation applications because of their solid configuration and low temperature operations, which allows them to start quickly. One of the main components of PEMFCs is the Gas Diffusion Layer (GDL), which manages water and gas transport and shows direct influence on the fuel cell performance. In this work, a novel dual-layer GDL with gradient porosity was prepared, using polyethylene glycol (PEG) as pore former, to improve the gas diffusion and water management in the system. The microporous layer (MPL) of the fabricated GDL consists of carbon powder PUREBLACK, sodium dodecyl sulfate as a surfactant, 34% wt. PTFE and the gradient porosity was created by applying one layer using 30% wt. PEG on the carbon substrate, followed by a second layer without using any pore former. The total carbon loading of the microporous layer is ~ 3 mg.cm-2. For the assembly of the catalyst layer, Nafion membrane (Ion Power, Nafion Membrane NR211) and Pt/C electrocatalyst (46.1% wt.) were used. The catalyst ink was deposited on the membrane via microspraying technique. The Pt loading is ~ 0.4 mg.cm-2, and the active area is 5 cm2. The sample was ex-situ characterized via wetting angle measurement, Scanning Electron Microscopy (SEM), and Pore Size Distribution (PSD) to evaluate its characteristics. Furthermore, for the performance evaluation in-situ characterization via Fuel Cell Testing using H2/O2 and H2/air as reactants, under 50, 60, 80, and 100% relative humidity (RH), took place. The results were compared to a single layer GDL, fabricated with the same carbon powder and loading as the dual layer GDL, and a commercially available GDL with MPL (AvCarb2120). The findings reveal high hydrophobic properties of the microporous layer of the GDL for both PUREBLACK based samples, while the commercial GDL demonstrates hydrophilic behavior. The dual layer GDL shows high and stable fuel cell performance under all the RH conditions, whereas the single layer manifests a drop in performance at high RH in both oxygen and air, caused by catalyst flooding. The commercial GDL shows very low and unstable performance, possibly because of its hydrophilic character and thinner microporous layer. In conclusion, the dual layer GDL with PEG appears to have improved gas diffusion and water management in the fuel cell system. Due to its increasing porosity from the catalyst layer to the carbon substrate, it allows easier access of the reactant gases from the flow channels to the catalyst layer, and more efficient water removal from the catalyst layer, leading to higher performance and stability.

Keywords: gas diffusion layer, microporous layer, proton exchange membrane fuel cells, relative humidity

Procedia PDF Downloads 105
390 Seasonal Variability of M₂ Internal Tides Energetics in the Western Bay of Bengal

Authors: A. D. Rao, Sachiko Mohanty

Abstract:

The Internal Waves (IWs) are generated by the flow of barotropic tide over the rapidly varying and steep topographic features like continental shelf slope, subsurface ridges, and the seamounts, etc. The IWs of the tidal frequency are generally known as internal tides. These waves have a significant influence on the vertical density and hence causes mixing in the region. Such waves are also important in submarine acoustics, underwater navigation, offshore structures, ocean mixing and biogeochemical processes, etc. over the shelf-slope region. The seasonal variability of internal tides in the Bay of Bengal with special emphasis on its energetics is examined by using three-dimensional MITgcm model. The numerical simulations are performed for different periods covering August-September, 2013; November-December, 2013 and March-April, 2014 representing monsoon, post-monsoon and pre-monsoon seasons respectively during which high temporal resolution in-situ data sets are available. The model is initially validated through the spectral estimates of density and the baroclinic velocities. From the estimates, it is inferred that the internal tides associated with semi-diurnal frequency are more dominant in both observations and model simulations for November-December and March-April. However, in August, the estimate is found to be maximum near-inertial frequency at all the available depths. The observed vertical structure of the baroclinic velocities and its magnitude are found to be well captured by the model. EOF analysis is performed to decompose the zonal and meridional baroclinic tidal currents into different vertical modes. The analysis suggests that about 70-80% of the total variance comes from Mode-1 semi-diurnal internal tide in both observations as well as in the model simulations. The first three modes are sufficient to describe most of the variability for semidiurnal internal tides, as they represent 90-95% of the total variance for all the seasons. The phase speed, group speed, and wavelength are found to be maximum for post-monsoon season compared to other two seasons. The model simulation suggests that the internal tide is generated all along the shelf-slope regions and propagate away from the generation sites in all the months. The model simulated energy dissipation rate infers that its maximum occurs at the generation sites and hence the local mixing due to internal tide is maximum at these sites. The spatial distribution of available potential energy is found to be maximum in November (20kg/m²) in northern BoB and minimum in August (14kg/m²). The detailed energy budget calculation are made for all the seasons and results are analysed.

Keywords: available potential energy, baroclinic energy flux, internal tides, Bay of Bengal

Procedia PDF Downloads 147
389 Coupling Random Demand and Route Selection in the Transportation Network Design Problem

Authors: Shabnam Najafi, Metin Turkay

Abstract:

Network design problem (NDP) is used to determine the set of optimal values for certain pre-specified decision variables such as capacity expansion of nodes and links by optimizing various system performance measures including safety, congestion, and accessibility. The designed transportation network should improve objective functions defined for the system by considering the route choice behaviors of network users at the same time. The NDP studies mostly investigated the random demand and route selection constraints separately due to computational challenges. In this work, we consider both random demand and route selection constraints simultaneously. This work presents a nonlinear stochastic model for land use and road network design problem to address the development of different functional zones in urban areas by considering both cost function and air pollution. This model minimizes cost function and air pollution simultaneously with random demand and stochastic route selection constraint that aims to optimize network performance via road capacity expansion. The Bureau of Public Roads (BPR) link impedance function is used to determine the travel time function in each link. We consider a city with origin and destination nodes which can be residential or employment or both. There are set of existing paths between origin-destination (O-D) pairs. Case of increasing employed population is analyzed to determine amount of roads and origin zones simultaneously. Minimizing travel and expansion cost of routes and origin zones in one side and minimizing CO emission in the other side is considered in this analysis at the same time. In this work demand between O-D pairs is random and also the network flow pattern is subject to stochastic user equilibrium, specifically logit route choice model. Considering both demand and route choice, random is more applicable to design urban network programs. Epsilon-constraint is one of the methods to solve both linear and nonlinear multi-objective problems. In this work epsilon-constraint method is used to solve the problem. The problem was solved by keeping first objective (cost function) as the objective function of the problem and second objective as a constraint that should be less than an epsilon, where epsilon is an upper bound of the emission function. The value of epsilon should change from the worst to the best value of the emission function to generate the family of solutions representing Pareto set. A numerical example with 2 origin zones and 2 destination zones and 7 links is solved by GAMS and the set of Pareto points is obtained. There are 15 efficient solutions. According to these solutions as cost function value increases, emission function value decreases and vice versa.

Keywords: epsilon-constraint, multi-objective, network design, stochastic

Procedia PDF Downloads 617
388 Development of a Quick On-Site Pass/Fail Test for the Evaluation of Fresh Concrete Destined for Application as Exposed Concrete

Authors: Laura Kupers, Julie Piérard, Niki Cauberg

Abstract:

The use of exposed concrete (sometimes referred to as architectural concrete), keeps gaining popularity. Exposed concrete has the advantage to combine the structural properties of concrete with an aesthetic finish. However, for a successful aesthetic finish, much attention needs to be paid to the execution (formwork, release agent, curing, weather conditions…), the concrete composition (choice of the raw materials and mix proportions) as well as to its fresh properties. For the latter, a simple on-site pass/fail test could halt the casting of concrete not suitable for architectural concrete and thus avoid expensive repairs later. When architects opt for an exposed concrete, they usually want a smooth, uniform and nearly blemish-free surface. For this choice, a standard ‘construction’ concrete does not suffice. An aesthetic surface finishing requires the concrete to contain a minimum content of fines to minimize the risk of segregation and to allow complete filling of more complex shaped formworks. The concrete may neither be too viscous as this makes it more difficult to compact and it increases the risk of blow holes blemishing the surface. On the other hand, too much bleeding may cause color differences on the concrete surface. An easy pass/fail test, which can be performed on the site just before the casting, could avoid these problems. In case the fresh concrete fails the test, the concrete can be rejected. Only in case the fresh concrete passes the test, the concrete would be cast. The pass/fail tests are intended for a concrete with a consistency class S4. Five tests were selected as possible onsite pass/fail test. Two of these tests already exist: the K-slump test (ASTM C1362) and the Bauer Filter Press Test. The remaining three tests were developed by the BBRI in order to test the segregation resistance of fresh concrete on site: the ‘dynamic sieve stability test’, the ‘inverted cone test’ and an adapted ‘visual stability index’ (VSI) for the slump and flow test. These tests were inspired by existing tests for self-compacting concrete, for which the segregation resistance is of great importance. The suitability of the fresh concrete mixtures was also tested by means of a laboratory reference test (resistance to segregation) and by visual inspection (blow holes, structure…) of small test walls. More than fifteen concrete mixtures of different quality were tested. The results of the pass/fail tests were compared with the results of this laboratory reference test and the test walls. The preliminary laboratory results indicate that concrete mixtures ‘suitable’ for placing as exposed concrete (containing sufficient fines, a balanced grading curve etc.) can be distinguished from ‘inferior’ concrete mixtures. Additional laboratory tests, as well as tests on site, will be conducted to confirm these preliminary results and to set appropriate pass/fail values.

Keywords: exposed concrete, testing fresh concrete, segregation resistance, bleeding, consistency

Procedia PDF Downloads 403