Search results for: flow stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8218

Search results for: flow stress

538 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method

Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis

Abstract:

Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.

Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses

Procedia PDF Downloads 123
537 Introducing Principles of Land Surveying by Assigning a Practical Project

Authors: Introducing Principles of Land Surveying by Assigning a Practical Project

Abstract:

A practical project is used in an engineering surveying course to expose sophomore and junior civil engineering students to several important issues related to the use of basic principles of land surveying. The project, which is the design of a two-lane rural highway to connect between two arbitrary points, requires students to draw the profile of the proposed highway along with the existing ground level. Areas of all cross-sections are then computed to enable quantity computations between them. Lastly, Mass-Haul Diagram is drawn with all important parts and features shown on it for clarity. At the beginning, students faced challenges getting started on the project. They had to spend time and effort thinking of the best way to proceed and how the work would flow. It was even more challenging when they had to visualize images of cut, fill and mixed cross sections in three dimensions before they can draw them to complete the necessary computations. These difficulties were then somewhat overcome with the help of the instructor and thorough discussions among team members and/or between different teams. The method of assessment used in this study was a well-prepared-end-of-semester questionnaire distributed to students after the completion of the project and the final exam. The survey contained a wide spectrum of questions from students' learning experience when this course development was implemented to students' satisfaction of the class instructions provided to them and the instructor's competency in presenting the material and helping with the project. It also covered the adequacy of the project to show a sample of a real-life civil engineering application and if there is any excitement added by implementing this idea. At the end of the questionnaire, students had the chance to provide their constructive comments and suggestions for future improvements of the land surveying course. Outcomes will be presented graphically and in a tabular format. Graphs provide visual explanation of the results and tables, on the other hand, summarize numerical values for each student along with some descriptive statistics, such as the mean, standard deviation, and coefficient of variation for each student and each question as well. In addition to gaining experience in teamwork, communications, and customer relations, students felt the benefit of assigning such a project. They noticed the beauty of the practical side of civil engineering work and how theories are utilized in real-life engineering applications. It was even recommended by students that such a project be exercised every time this course is offered so future students can have the same learning opportunity they had.

Keywords: land surveying, highway project, assessment, evaluation, descriptive statistics

Procedia PDF Downloads 208
536 Consumer Cognitive Models of Vaccine Attitudes: Behavioral Informed Strategies Promoting Vaccination Policy in Greece

Authors: Halkiopoulos Constantinos, Koutsopoulou Ioanna, Gkintoni Evgenia, Antonopoulou Hera

Abstract:

Immunization appears to be an essential part of health care service in times of pandemics such as covid-19 and aims not only to protect the health of the population but also the health and sustainability of the economies of the countries affected. It is reported that more than 3.44 billion doses have been administered so far, which accounts for 45 doses for 100 people. Vaccination programs in various countries have been promoted and accepted by people differently and therefore they proceeded in different ways and speed; most countries directing them towards people with vulnerable chronic or recent health statuses. Large scale restriction measures or lockdown, personal protection measures such as masks and gloves and a decrease in leisure and sports activities were also implemented around the world as part of the protection health strategies against the covid-19 pandemic. This research aims to present an analysis based on variations on people’s attitudes towards vaccination based on demographic, social and epidemiological characteristics, and health status on the one hand and perception of health, health satisfaction, pain, and quality of life on the other hand. 1500 Greek e-consumers participated in the research, mainly through social media who took part in an online-based survey voluntarily. The questionnaires included demographic, social and medical characteristics of the participants, and questions asking people’s willingness to be vaccinated and their opinion on whether there should be a vaccine against covid-19. Other stressor factors were also reported in the questionnaires and participants’ loss of someone close due to covid-19, or staying at home quarantine due to being infected from covid-19. WHOQUOL-BREF and GLOBAL PSYCHOTRAUMA SCREEN- GPS were used with kind permission from WHO and from the International Society for Traumatic Stress Studies in this study. Attitudes towards vaccination varied significantly related to aging, level of education, health status and consumer behavior. Health professionals’ attitudes also varied in relation to age, level of education, profession, health status and consumer needs. Vaccines have been the most common technological aid of human civilization so far in the fight against viruses. The results of this study can be used for health managers and digital marketers of pharmaceutical companies and also other staff involved in vaccination programs and for designing health policy immunization strategies during pandemics in order to achieve positive attitudes towards vaccination and larger populations being vaccinated in shorter periods of time after the break out of pandemic. Health staff needs to be trained, aided and supervised to go through with vaccination programs and to be protected through vaccination programs themselves. Feedback in each country’s vaccination program, short backs, deficiencies and delays should be addressed and worked out.

Keywords: consumer behavior, cognitive models, vaccination policy, pandemic, Covid-19, Greece

Procedia PDF Downloads 177
535 An Exploration of the Emergency Staff’s Perceptions and Experiences of Teamwork and the Skills Required in the Emergency Department in Saudi Arabia

Authors: Sami Alanazi

Abstract:

Teamwork practices have been recognized as a significant strategy to improve patient safety, quality of care, and staff and patient satisfaction in healthcare settings, particularly within the emergency department (ED). The EDs depend heavily on teams of interdisciplinary healthcare staff to carry out their operational goals and core business of providing care to the serious illness and injured. The ED is also recognized as a high-risk area in relation to service demand and the potential for human error. Few studies have considered the perceptions and experiences of the ED staff (physicians, nurses, allied health professionals, and administration staff) about the practice of teamwork, especially in Saudi Arabia (SA), and no studies have been conducted to explore the practices of teamwork in the EDs. Aim: To explore the practices of teamwork from the perspectives and experiences of staff (physicians, nurses, allied health professionals, and administration staff) when interacting with each other in the admission areas in the ED of a public hospital in the Northern Border region of SA. Method: A qualitative case study design was utilized, drawing on two methods for the data collection, comprising of semi-structured interviews (n=22) with physicians (6), nurses (10), allied health professionals (3), and administrative members (3) working in the ED of a hospital in the Northern Border region of SA. The second method is non-participant direct observation. All data were analyzed using thematic analysis. Findings: The main themes that emerged from the analysis were as follows: the meaningful of teamwork, reasons of teamwork, the ED environmental factors, the organizational factors, the value of communication, leadership, teamwork skills in the ED, team members' behaviors, multicultural teamwork, and patients and families behaviors theme. Discussion: Working in the ED environment played a major role in affecting work performance as well as team dynamics. However, Communication, time management, fast-paced performance, multitasking, motivation, leadership, and stress management were highlighted by the participants as fundamental skills that have a major impact on team members and patients in the ED. It was found that the behaviors of the team members impacted the team dynamics as well as ED health services. Behaviors such as disputes among team members, conflict, cooperation, uncooperative members, neglect, and emotions of the members. Besides that, the behaviors of the patients and their accompanies had a direct impact on the team and the quality of the services. In addition, the differences in the cultures have separated the team members and created undesirable gaps such the gender segregation, national origin discrimination, and similarity and different in interests. Conclusion: Effective teamwork, in the context of the emergency department, was recognized as an essential element to obtain the quality of care as well as improve staff satisfaction.

Keywords: teamwork, barrier, facilitator, emergencydepartment

Procedia PDF Downloads 125
534 Part Variation Simulations: An Industrial Case Study with an Experimental Validation

Authors: Narendra Akhadkar, Silvestre Cano, Christophe Gourru

Abstract:

Injection-molded parts are widely used in power system protection products. One of the biggest challenges in an injection molding process is shrinkage and warpage of the molded parts. All these geometrical variations may have an adverse effect on the quality of the product, functionality, cost, and time-to-market. The situation becomes more challenging in the case of intricate shapes and in mass production using multi-cavity tools. To control the effects of shrinkage and warpage, it is very important to correctly find out the input parameters that could affect the product performance. With the advances in the computer-aided engineering (CAE), different tools are available to simulate the injection molding process. For our case study, we used the MoldFlow insight tool. Our aim is to predict the spread of the functional dimensions and geometrical variations on the part due to variations in the input parameters such as material viscosity, packing pressure, mold temperature, melt temperature, and injection speed. The input parameters may vary during batch production or due to variations in the machine process settings. To perform the accurate product assembly variation simulation, the first step is to perform an individual part variation simulation to render realistic tolerance ranges. In this article, we present a method to simulate part variations coming from the input parameters variation during batch production. The method is based on computer simulations and experimental validation using the full factorial design of experiments (DoE). The robustness of the simulation model is verified through input parameter wise sensitivity analysis study performed using simulations and experiments; all the results show a very good correlation in the material flow direction. There exists a non-linear interaction between material and the input process variables. It is observed that the parameters such as packing pressure, material, and mold temperature play an important role in spread on functional dimensions and geometrical variations. This method will allow us in the future to develop accurate/realistic virtual prototypes based on trusted simulated process variation and, therefore, increase the product quality and potentially decrease the time to market.

Keywords: correlation, molding process, tolerance, sensitivity analysis, variation simulation

Procedia PDF Downloads 164
533 A Review of Atomization Mechanisms Used for Spray Flash Evaporation: Their Effectiveness and Proposal of Rotary Bell Atomizer for Flashing Application

Authors: Murad A. Channa, Mehdi Khiadani. Yasir Al-Abdeli

Abstract:

Considering the severity of water scarcity around the world and its widening at an alarming rate, practical improvements in desalination techniques need to be engineered at the earliest. Atomization is the major aspect of flashing phenomena, yet it has been paid less attention to until now. There is a need to test efficient ways of atomization for the flashing process. Flash evaporation together with reverse osmosis is also a commercially matured desalination technique commonly famous as Multi-stage Flash (MSF). Even though reverse osmosis is massively practical, it is not economical or sustainable compared to flash evaporation. However, flashing evaporation has its drawbacks as well such as lower efficiency of water production per higher consumption of power and time. Flash evaporation is simply the instant boiling of a subcooled liquid which is introduced as droplets in a well-maintained negative environment. This negative pressure inside the vacuum increases the temperature of the liquid droplets far above their boiling point, which results in the release of latent heat, and the liquid droplets turn into vapor which is collected to be condensed back into an impurity-free liquid in a condenser. Atomization is the main difference between pool and spray flash evaporation. Atomization is the heart of the flash evaporation process as it increases the evaporating surface area per drop atomized. Atomization can be categorized into many levels depending on its drop size, which again becomes crucial for increasing the droplet density (drop count) per given flow rate. This review comprehensively summarizes the selective results relating to the methods of atomization and their effectiveness on the evaporation rate from earlier works to date. In addition, the reviewers propose using centrifugal atomization for the flashing application, which brings several advantages viz ultra-fine droplets, uniform droplet density, and the swirling geometry of the spray with kinetically more energetic sprays during their flight. Finally, several challenges of using rotary bell atomizer (RBA) and RBA Sprays inside the chamber have been identified which will be explored in detail. A schematic of rotary bell atomizer (RBA) integration with the chamber has been designed. This powerful centrifugal atomization has the potential to increase potable water production in commercial multi-stage flash evaporators, where it would be preferably advantageous.

Keywords: atomization, desalination, flash evaporation, rotary bell atomizer

Procedia PDF Downloads 67
532 Bed Evolution under One-Episode Flushing in a Truck Sewer in Paris, France

Authors: Gashin Shahsavari, Gilles Arnaud-Fassetta, Alberto Campisano, Roberto Bertilotti, Fabien Riou

Abstract:

Sewer deposits have been identified as a major cause of dysfunctions in combined sewer systems regarding sewer management, which induces different negative consequents resulting in poor hydraulic conveyance, environmental damages as well as worker’s health. In order to overcome the problematics of sedimentation, flushing has been considered as the most operative and cost-effective way to minimize the sediments impacts and prevent such challenges. Flushing, by prompting turbulent wave effects, can modify the bed form depending on the hydraulic properties and geometrical characteristics of the conduit. So far, the dynamics of the bed-load during high-flow events in combined sewer systems as a complex environment is not well understood, mostly due to lack of measuring devices capable to work in the “hostile” in combined sewer system correctly. In this regards, a one-episode flushing issue from an opening gate valve with weir function was carried out in a trunk sewer in Paris to understanding its cleansing efficiency on the sediments (thickness: 0-30 cm). During more than 1h of flushing within 5 m distance in downstream of this flushing device, a maximum flowrate and a maximum level of water have been recorded at 5 m in downstream of the gate as 4.1 m3/s and 2.1 m respectively. This paper is aimed to evaluate the efficiency of this type of gate for around 1.1 km (from the point -50 m to +1050 m in downstream from the gate) by (i) determining bed grain-size distribution and sediments evolution through the sewer channel, as well as their organic matter content, and (ii) identifying sections that exhibit more changes in their texture after the flush. For the first one, two series of sampling were taken from the sewer length and then analyzed in laboratory, one before flushing and second after, at same points among the sewer channel. Hence, a non-intrusive sampling instrument has undertaken to extract the sediments smaller than the fine gravels. The comparison between sediments texture after the flush operation and the initial state, revealed the most modified zones by the flush effect, regarding the sewer invert slope and hydraulic parameters in the zone up to 400 m from the gate. At this distance, despite the increase of sediment grain-size rages, D50 (median grain-size) varies between 0.6 mm and 1.1 mm compared to 0.8 mm and 10 mm before and after flushing, respectively. Overall, regarding the sewer channel invert slope, results indicate that grains smaller than sands (< 2 mm) are more transported to downstream along about 400 m from the gate: in average 69% before against 38% after the flush with more dispersion of grain-sizes distributions. Furthermore, high effect of the channel bed irregularities on the bed material evolution has been observed after the flush.

Keywords: bed-load evolution, combined sewer systems, flushing efficiency, sediments transport

Procedia PDF Downloads 392
531 Influence of Recycled Concrete Aggregate Content on the Rebar/Concrete Bond Properties through Pull-Out Tests and Acoustic Emission Measurements

Authors: L. Chiriatti, H. Hafid, H. R. Mercado-Mendoza, K. L. Apedo, C. Fond, F. Feugeas

Abstract:

Substituting natural aggregate with recycled aggregate coming from concrete demolition represents a promising alternative to face the issues of both the depletion of natural resources and the congestion of waste storage facilities. However, the crushing process of concrete demolition waste, currently in use to produce recycled concrete aggregate, does not allow the complete separation of natural aggregate from a variable amount of adhered mortar. Given the physicochemical characteristics of the latter, the introduction of recycled concrete aggregate into a concrete mix modifies, to a certain extent, both fresh and hardened concrete properties. As a consequence, the behavior of recycled reinforced concrete members could likely be influenced by the specificities of recycled concrete aggregates. Beyond the mechanical properties of concrete, and as a result of the composite character of reinforced concrete, the bond characteristics at the rebar/concrete interface have to be taken into account in an attempt to describe accurately the mechanical response of recycled reinforced concrete members. Hence, a comparative experimental campaign, including 16 pull-out tests, was carried out. Four concrete mixes with different recycled concrete aggregate content were tested. The main mechanical properties (compressive strength, tensile strength, Young’s modulus) of each concrete mix were measured through standard procedures. A single 14-mm-diameter ribbed rebar, representative of the diameters commonly used in the domain of civil engineering, was embedded into a 200-mm-side concrete cube. The resulting concrete cover is intended to ensure a pull-out type failure (i.e. exceedance of the rebar/concrete interface shear strength). A pull-out test carried out on the 100% recycled concrete specimen was enriched with exploratory acoustic emission measurements. Acoustic event location was performed by means of eight piezoelectric transducers distributed over the whole surface of the specimen. The resulting map was compared to existing data related to natural aggregate concrete. Damage distribution around the reinforcement and main features of the characteristic bond stress/free-end slip curve appeared to be similar to previous results obtained through comparable studies carried out on natural aggregate concrete. This seems to show that the usual bond mechanism sequence (‘chemical adhesion’, mechanical interlocking and friction) remains unchanged despite the addition of recycled concrete aggregate. However, the results also suggest that bond efficiency seems somewhat improved through the use of recycled concrete aggregate. This observation appears to be counter-intuitive with regard to the diminution of the main concrete mechanical properties with the recycled concrete aggregate content. As a consequence, the impact of recycled concrete aggregate content on bond characteristics seemingly represents an important factor which should be taken into account and likely to be further explored in order to determine flexural parameters such as deflection or crack distribution.

Keywords: acoustic emission monitoring, high-bond steel rebar, pull-out test, recycled aggregate concrete

Procedia PDF Downloads 159
530 Identifying Controlling Factors for the Evolution of Shallow Groundwater Chemistry of Ellala Catchment, Northern Ethiopia

Authors: Grmay Kassa Brhane, Hailemariam Siyum Mekonen

Abstract:

This study was designed to identify the hydrogeochemical and anthropogenic processes controlling the evaluation of groundwater chemistry in the Ellala catchment which covers about 296.5 km2 areal extent. The chemical analysis revealed that the major ions in the groundwater are Ca2+, Mg2+, Na+, and K+ (cations) and HCO3-, PO43-, Cl-, NO3-, and SO42-(anions). Most of the groundwater samples (68.42%) revealed that the groundwater in the catchment is non-alkaline. In addition to the contribution of aquifer material, the solid materials and liquid wastes discharged from different sources can be the main sources of pH and EC in the groundwater. It is observed that the EC of the groundwater is fairly correlated with the DTS. This indicates that high mineralized water is more conductor than water with low concentration. The degree of salinity of the groundwater increases along the groundwater flow path from East to West; then, areas surrounding Mekelle City are highly saline due to the liquid and solid wastes discharged from the city and the industries. The groundwater facies in the catchment are predominated with calcium, magnesium, and bicarbonate which are labeled as Ca-Mg-HCO3 and Mg-Ca-HCO3. The main geochemical process controlling the evolution of the groundwater chemistry in the catchment is rock-water interaction, particularly carbonate dissolution. Due to the clay layer in the aquifer, the reverse is ion exchange. Non-significant silicate weathering and halite dissolution also contribute to the evolution of groundwater chemistry in the catchment. The groundwater in the catchment is dominated by the meteoritic origin although it needs further groundwater chemistry study with isotope dating analysis. The groundwater is under-saturated with calcite, dolomite, and aragonite minerals; hence, the more these minerals encounter the groundwater, the more the minerals dissolve. The main source of calcium and magnesium in groundwater is the dissolution of carbonate minerals (calcite and dolomite) since carbonate rocks are the dominant aquifer materials in the catchment. In addition to this, the weathering of dolerite rock is a possible source of magnesium ions. The relatively higher concentration of sodium over chloride indicates that the source of sodium-ion is reverse ion exchange and/or weathering of sodium-bearing materials, such as shale and dolerite rather than halite dissolution. High concentration of phosphate, nitrate, and chloride in the groundwater is the main anthropogenic source that needs treatment, quality control, and management in the catchment. From the Base Exchange Index Analysis, it is possible to understand that, in the catchment, the groundwater is dominated by the meteoritic origin, although it needs further groundwater chemistry study with isotope dating analysis.

Keywords: Ellala catchment, factor, chemistry, geochemical, groundwater

Procedia PDF Downloads 58
529 Health Care Teams during COVID-19: Roles, Challenges, Emotional State and Perceived Preparedness to the Next Pandemic

Authors: Miriam Schiff, Hadas Rosenne, Ran Nir-Paz, Shiri Shinan Altman

Abstract:

To examine (1) the level, predictors, and subjective perception of professional quality of life (PRoQL), posttraumatic growth, roles, task changes during the pandemic, and perceived preparedness for the next pandemic. These variables were added as part of an international study on social workers in healthcare stress, resilience, and perceived preparedness we took part in, along with Australia, Canada, China, Hong Kong, Singapore, and Taiwan. (2) The extent to which background variables, rate of exposure to the virus, working in COVID wards, profession, personal resilience, and resistance to organizational change predict posttraumatic growth, perceived preparedness, and PRoQL (the latter was examined among social workers only). (3) The teams' perceptions of how the pandemic impacted them at the personal, professional, and organizational levels and what assisted them. Methodologies: Mixed quantitative and qualitative methods were used. 1039 hospital healthcare workers from various professions participated in the quantitative study while 32 participated in in-depth interviews. The same methods were used in six other countries. Findings: The level of PRoQL was moderate, with higher burnout and secondary traumatization level than during routine times. Differences between countries in the level of PRoQL were found as well. Perceived preparedness for the next pandemic at the personal level was moderate and similar among the different health professions. Higher exposure to the virus was associated with lower perceived preparedness of the hospitals. Compared to other professions, doctors and nurses perceived hospitals as significantly less prepared for the next pandemic. The preparedness of the State of Israel for the next pandemic is perceived as low by all healthcare professionals. A moderate level of posttraumatic growth was found. Staff who worked at the COVID ward reported a greater level of growth. Doctors reported the lowest level of growth. The staff's resilience was high, with no differences among professions or levels of exposure. Working in the COVID ward and resilience predicted better preparedness, while resistance to organizational change predicted worse preparedness. Findings from the qualitative part of the study revealed that healthcare workers reported challenges at the personal, professional and organizational level during the different waves of the pandemic. They also report on internal and external resources they either owned or obtained during that period. Conclusion: Exposure to the COVID-19 virus is associated with secondary traumatization on one hand and personal posttraumatic growth on the other hand. Personal and professional discoveries and a sense of mission helped cope with the pandemic that was perceived as a historical event, war, or mass casualty event. Personal resilience, along with the support of colleagues, family, and direct management, were seen as significant components of coping. Hospitals should plan ahead and improve their preparedness to the next pandemic.

Keywords: covid-19, health-care, social workers, burnout, preparedness, international perspective

Procedia PDF Downloads 64
528 Lean Implementation in a Nurse Practitioner Led Pediatric Primary Care Clinic: A Case Study

Authors: Lily Farris, Chantel E. Canessa, Rena Heathcote, Susan Shumay, Suzanna V. McRae, Alissa Collingridge, Minna K. Miller

Abstract:

Objective: To describe how the Lean approach can be applied to improve access, quality and safety of care in an ambulatory pediatric primary care setting. Background: Lean was originally developed by Toyota manufacturing in Japan, and subsequently adapted for use in the healthcare sector. Lean is a systematic approach, focused on identifying and reducing waste within organizational processes, improving patient-centered care and efficiency. Limited literature is available on the implementation of the Lean methodologies in a pediatric ambulatory care setting. Methods: A strategic continuous improvement event or Rapid Process Improvement Workshop (RPIW) was launched with the aim evaluating and structurally supporting clinic workflow, capacity building, sustainability, and ultimately improving access to care and enhancing the patient experience. The Lean process consists of five specific activities: Current state/process assessment (value stream map); development of a future state map (value stream map after waste reduction); identification, quantification and prioritization of the process improvement opportunities; implementation and evaluation of process changes; and audits to sustain the gains. Staff engagement is a critical component of the Lean process. Results: Through the implementation of the RPIW and shifting workload among the administrative team, four hours of wasted time moving between desks and doing work was eliminated from the Administrative Clerks role. To streamline clinic flow, the Nursing Assistants completed patient measurements and vitals for Nurse Practitioners, reducing patient wait times and adding value to the patients visit with the Nurse Practitioners. Additionally, through the Nurse Practitioners engagement in the Lean processes a need was recognized to articulate clinic vision, mission and the alignment of NP role and scope of practice with the agency and Ministry of Health strategic plan. Conclusions: Continuous improvement work in the Pediatric Primary Care NP Clinic has provided a unique opportunity to improve the quality of care delivered and has facilitated further alignment of the daily continuous improvement work with the strategic priorities of the Ministry of Health.

Keywords: ambulatory care, lean, pediatric primary care, system efficiency

Procedia PDF Downloads 289
527 The Improved Therapeutic Effect of Trans-Cinnamaldehyde on Adipose-Derived Stem Cells without Chemical Induction

Authors: Karthyayani Rajamani, Yi-Chun Lin, Tung-Chou Wen, Jeanne Hsieh, Yi-Maun Subeq, Jen-Wei Liu, Po-Cheng Lin, Horng-Jyh Harn, Shinn-Zong Lin, Tzyy-Wen Chiou

Abstract:

Assuring cell quality is an essential parameter for the success of stem cell therapy, utilization of various components to improve this potential has been the primary goal of stem cell research. The aim of this study was not only to demonstrate the capacity of trans-cinnamaldehyde (TC) to reverse stress-induced senescence but also improve the therapeutic abilities of stem cells. Because of the availability and the promising application potential in regenerative medicine, adipose-derived stem cells (ADSCs) were chosen for the study. We found that H2O2 treatment resulted in the expression of senescence characteristics in the ADSCs, including decreased proliferation rate, increased senescence-associated- β-galactosidase (SA-β-gal) activity, decreased SIRT1 (silent mating type information regulation 2 homologs) expression and decreased telomerase activity. However, TC treatment was sufficient to rescue or reduce the effects of H2O2 induction, ultimately leading to an increased proliferation rate, a decrease in the percentage of SA-β-gal positive cells, upregulation of SIRT1 expression, and increased telomerase activity of the senescent ADSCs at the cellular level. Further recently it was observed that the ADSCs were treated with TC without induction of senescence, all the before said positives were observed. Moreover, a chemically induced liver fibrosis animal model was used to evaluate the functionality of these rescued cells in vivo. Liver dysfunction was established by injecting 200 mg/kg thioacetamide (TAA) intraperitoneally into Wistar rats every third day for 60 days. The experimental rats were separated into groups; normal group (rats without TAA induction), sham group (without ADSC transplantation), positive control group (transplanted with normal ADSCs); H2O2 group (transplanted with H2O2 -induced senescent ADSCs), H2O2+TC group (transplanted with ADSCs pretreated with H2O2 and then further treated with TC) and TC group (ADSC treated with TC without H2O2 treatment). In the transplantation group, 1 × 106 human ADSCs were introduced into each rat via direct liver injection. Based on the biochemical analysis and immunohistochemical staining results, it was determined that the therapeutic effects on liver fibrosis by the induced senescent ADSCs (H2O2 group) were not as significant as those exerted by the normal ADSCs (the positive control group). However, the H2O2+TC group showed significant reversal of liver damage when compared to the H2O2 group 1 week post-transplantation. Further ADSCs without H2O2 treatment but with just TC treatment performed much better than all the groups. These data confirmed that the TC treatment had the potential to improve the therapeutic effect of ADSCs. It is therefore suggested that TC has potential applications in maintaining stem cell quality and could possibly aid in the treatment of senescence-related disorders.

Keywords: senescence, SIRT1, adipose derived stem cells, liver fibrosis

Procedia PDF Downloads 247
526 Hydrogen Storage Systems for Enhanced Grid Balancing Services in Wind Energy Conversion Systems

Authors: Nezmin Kayedpour, Arash E. Samani, Siavash Asiaban, Jeroen M. De Kooning, Lieven Vandevelde, Guillaume Crevecoeur

Abstract:

The growing adoption of renewable energy sources, such as wind power, in electricity generation is a significant step towards a sustainable and decarbonized future. However, the inherent intermittency and uncertainty of wind resources pose challenges to the reliable and stable operation of power grids. To address this, hydrogen storage systems have emerged as a promising and versatile technology to support grid balancing services in wind energy conversion systems. In this study, we propose a supplementary control design that enhances the performance of the hydrogen storage system by integrating wind turbine (WT) pitch and torque control systems. These control strategies aim to optimize the hydrogen production process, ensuring efficient utilization of wind energy while complying with grid requirements. The wind turbine pitch control system plays a crucial role in managing the turbine's aerodynamic performance. By adjusting the blade pitch angle, the turbine's rotational speed and power output can be regulated. Our proposed control design dynamically coordinates the pitch angle to match the wind turbine's power output with the optimal hydrogen production rate. This ensures that the electrolyzer receives a steady and optimal power supply, avoiding unnecessary strain on the system during high wind speeds and maximizing hydrogen production during low wind speeds. Moreover, the wind turbine torque control system is incorporated to facilitate efficient operation at varying wind speeds. The torque control system optimizes the energy capture from the wind while limiting mechanical stress on the turbine components. By harmonizing the torque control with hydrogen production requirements, the system maintains stable wind turbine operation, thereby enhancing the overall energy-to-hydrogen conversion efficiency. To enable grid-friendly operation, we introduce a cascaded controller that regulates the electrolyzer's electrical power-current in accordance with grid requirements. This controller ensures that the hydrogen production rate can be dynamically adjusted based on real-time grid demands, supporting grid balancing services effectively. By maintaining a close relationship between the wind turbine's power output and the electrolyzer's current, the hydrogen storage system can respond rapidly to grid fluctuations and contribute to enhanced grid stability. In this paper, we present a comprehensive analysis of the proposed supplementary control design's impact on the overall performance of the hydrogen storage system in wind energy conversion systems. Through detailed simulations and case studies, we assess the system's ability to provide grid balancing services, maximize wind energy utilization, and reduce greenhouse gas emissions.

Keywords: active power control, electrolyzer, grid balancing services, wind energy conversion systems

Procedia PDF Downloads 72
525 Geographical Information System and Multi-Criteria Based Approach to Locate Suitable Sites for Industries to Minimize Agriculture Land Use Changes in Bangladesh

Authors: Nazia Muhsin, Tofael Ahamed, Ryozo Noguchi, Tomohiro Takigawa

Abstract:

One of the most challenging issues to achieve sustainable development on food security is land use changes. The crisis of lands for agricultural production mainly arises from the unplanned transformation of agricultural lands to infrastructure development i.e. urbanization and industrialization. Land use without sustainability assessment could have impact on the food security and environmental protections. Bangladesh, as the densely populated country with limited arable lands is now facing challenges to meet sustainable food security. Agricultural lands are using for economic growth by establishing industries. The industries are spreading from urban areas to the suburban areas and using the agricultural lands. To minimize the agricultural land losses for unplanned industrialization, compact economic zones should be find out in a scientific approach. Therefore, the purpose of the study was to find out suitable sites for industrial growth by land suitability analysis (LSA) by using Geographical Information System (GIS) and multi-criteria analysis (MCA). The goal of the study was to emphases both agricultural lands and industries for sustainable development in land use. The study also attempted to analysis the agricultural land use changes in a suburban area by statistical data of agricultural lands and primary data of the existing industries of the study place. The criteria were selected as proximity to major roads, and proximity to local roads, distant to rivers, waterbodies, settlements, flood-flow zones, agricultural lands for the LSA. The spatial dataset for the criteria were collected from the respective departments of Bangladesh. In addition, the elevation spatial dataset were used from the SRTM (Shuttle Radar Topography Mission) data source. The criteria were further analyzed with factors and constraints in ArcGIS®. Expert’s opinion were applied for weighting the criteria according to the analytical hierarchy process (AHP), a multi-criteria technique. The decision rule was set by using ‘weighted overlay’ tool to aggregate the factors and constraints with the weights of the criteria. The LSA found only 5% of land was most suitable for industrial sites and few compact lands for industrial zones. The developed LSA are expected to help policy makers of land use and urban developers to ensure the sustainability of land uses and agricultural production.

Keywords: AHP (analytical hierarchy process), GIS (geographic information system), LSA (land suitability analysis), MCA (multi-criteria analysis)

Procedia PDF Downloads 253
524 Management and Genetic Characterization of Local Sheep Breeds for Better Productive and Adaptive Traits

Authors: Sonia Bedhiaf-Romdhani

Abstract:

The sheep (Ovis aries) was domesticated, approximately 11,000 years ago (YBP), in the Fertile Crescent from Asian Mouflon (Ovis Orientalis). The Northern African (NA) sheep is 7,000 years old, represents a remarkable diversity of sheep populations reared under traditional and low input farming systems (LIFS) over millennia. The majority of small ruminants in developing countries are encountered in low input production systems and the resilience of local communities in rural areas is often linked to the wellbeing of small ruminants. Regardless of the rich biodiversity encountered in sheep ecotypes there are four main sheep breeds in the country with 61,6 and 35.4 percents of Barbarine (fat tail breed) and Queue Fine de l’Ouest (thin tail breed), respectively. Phoenicians introduced the Barbarine sheep from the steppes of Central Asia in the Carthaginian period, 3000 years ago. The Queue Fine de l’Ouest is a thin-tailed meat breed heavily concentrated in the Western and the central semi-arid regions. The Noire de Thibar breed, involving mutton-fine wool producing animals, has been on the verge of extinction, it’s a composite black coated sheep breed found in the northern sub-humid region because of its higher nutritional requirements and non-tolerance of the prevailing harsher condition. The D'Man breed, originated from Morocco, is mainly located in the southern oases of the extreme arid ecosystem. A genetic investigation of Tunisian sheep breeds using a genome-wide scan of approximately 50,000 SNPs was performed. Genetic analysis of relationship between breeds highlighted the genetic differentiation of Noire de Thibar breed from the other local breeds, reflecting the effect of past events of introgression of European gene pool. The Queue Fine de l’Ouest breed showed a genetic heterogeneity and was close to Barbarine. The D'Man breed shared a considerable gene flow with the thin-tailed Queue Fine de l'Ouest breed. Native small ruminants breeds, are capable to be efficiently productive if essential ingredients and coherent breeding schemes are implemented and followed. Assessing the status of genetic variability of native sheep breeds could provide important clues for research and policy makers to devise better strategies for the conservation and management of genetic resources.

Keywords: sheep, farming systems, diversity, SNPs.

Procedia PDF Downloads 136
523 Wave Powered Airlift PUMP for Primarily Artificial Upwelling

Authors: Bruno Cossu, Elio Carlo

Abstract:

The invention (patent pending) relates to the field of devices aimed to harness wave energy (WEC) especially for artificial upwelling, forced downwelling, production of compressed air. In its basic form, the pump consists of a hydro-pneumatic machine, driven by wave energy, characterised by the fact that it has no moving mechanical parts, and is made up of only two structural components: an hollow body, which is open at the bottom to the sea and partially immersed in sea water, and a tube, both joined together to form a single body. The shape of the hollow body is like a mushroom whose cap and stem are hollow; the stem is open at both ends and the lower part of its surface is crossed by holes; the tube is external and coaxial to the stem and is joined to it so as to form a single body. This shape of the hollow body and the type of connection to the tube allows the pump to operate simultaneously as an air compressor (OWC) on the cap side, and as an airlift on the stem side. The pump can be implemented in four versions, each of which provides different variants and methods of implementation: 1) firstly, for the artificial upwelling of cold, deep ocean water; 2) secondly, for the lifting and transfer of these waters to the place of use (above all, fish farming plants), even if kilometres away; 3) thirdly, for the forced downwelling of surface sea water; 4) fourthly, for the forced downwelling of surface water, its oxygenation, and the simultaneous production of compressed air. The transfer of the deep water or the downwelling of the raised surface water (as for pump versions indicated in points 2 and 3 above), is obtained by making the water raised by the airlift flow into the upper inlet of another pipe, internal or adjoined to the airlift; the downwelling of raised surface water, oxygenation, and the simultaneous production of compressed air (as for the pump version indicated in point 4), is obtained by installing a venturi tube on the upper end of the pipe, whose restricted section is connected to the external atmosphere, so that it also operates like a hydraulic air compressor (trompe). Furthermore, by combining one or more pumps for the upwelling of cold, deep water, with one or more pumps for the downwelling of the warm surface water, the system can be used in an Ocean Thermal Energy Conversion plant to supply the cold and the warm water required for the operation of the same, thus allowing to use, without increased costs, in addition to the mechanical energy of the waves, for the purposes indicated in points 1 to 4, the thermal one of the marine water treated in the process.

Keywords: air lifted upwelling, fish farming plant, hydraulic air compressor, wave energy converter

Procedia PDF Downloads 136
522 Exposure of Pacu, Piaractus mesopotamicus Gill Tissue to a High Stocking Density: An Ion Regulatory and Microscopy Study

Authors: Wiolene Montanari Nordi, Debora Botequio Moretti, Mariana Caroline Pontin, Jessica Pampolini, Raul Machado-Neto

Abstract:

Gills are organs responsible for respiration and osmoregulation between the fish internal environment and water. Under stress conditions, oxidative response and gill plasticity to attempt to increase gas exchange area are noteworthy, compromising the physiological processes and therefore fish health. Colostrum is a dietary source of nutrients, immunoglobulin, antioxidant and bioactive molecules, essential for immunological protection and development of the gastrointestinal epithelium. The hypothesis of this work is that antioxidant factors present in the colostrum, unprecedentedly tested in gills, can minimize or reduce the alteration of its epithelium structure of juvenile pacu (Piaractus mesopotamicus) subjected to high stocking density. The histological changes in the gills architecture were characterized by the frequency, incidence and severity of the tissue alteration and ionic status. Juvenile (50 kg fish/m3) were fed with pelleted diets containing 0, 10, 20 or 30% of lyophilized bovine colostrum (LBC) inclusion and at 30 experimental days, gill and blood samples were collected in eight fish per treatment. The study revealed differences in the type, frequency and severity (histological alterations index – HAI) of tissue alterations among the treatments, however, no distinct differences in the incidence of alteration (mean alteration value – MAV) were observed. The main histological changes in gill were elevation of the lamellar epithelium, excessive cell proliferation of the filament and lamellar epithelium causing total or partial melting of the lamella, hyperplasia and hypertrophy of lamellar and filament epithelium, uncontrolled thickening of filament and lamellar tissues, mucous and chloride cells presence in the lamella, aneurysms, vascular congestion and presence of parasites. The MAV obtained per treatment were 2.0, 2.5, 1.8 and 2.5 to fish fed diets containing 0, 10, 20 and 30% of LBC inclusion, respectively, classifying the incidence of gill alterations as slightly to moderate. The severity of alteration of individual fish of treatment 0, 10 and 20% LBC ranged values from 5 to 40 (HAI average of 20.1, 17.5 and 17.6, respectively, P > 0.05), and differs from 30% LBC, that ranged from 6 to 129 (HAI mean of 77.2, P < 0.05). The HAI value in the treatments 0, 10 and 20% LBC reveals gill tissue with injuries classified from slightly to moderate, while in 30% LBC moderate to severe, consequence of the onset of necrosis in the tissue of two fish that compromises the normal functioning of the organ. In relation to frequency of gill alterations, evaluated according to absence of alterations (0) to highly frequent (+++), histological alterations were observed in all evaluated fish, with a trend of higher frequency in 0% LBC. The concentration of Na+, Cl-, K+ and Ca2+ did not changed in all treatments (P > 0.05), indicating similar capacity of ion exchange. The concentrations of bovine colostrum used in diets of present study did not impair the alterations observed in the gills of juvenile pacu.

Keywords: histological alterations of gill tissue, ionic status, lyophilized bovine colostrum, optical microscopy

Procedia PDF Downloads 288
521 Totally Implantable Venous Access Device for Long Term Parenteral Nutrition in a Patient with High Output Enterocutaneous Fistula Due to Advanced Malignancy

Authors: Puneet Goyal, Aarti Agarwal

Abstract:

Background and Objective: Nutritional support is an integral part of palliative care of advanced non-resectable abdominal malignancy patients, though is frequently neglected aspect. Non-Healing high output Entero-cutaneous fistulas sometimes require long term parenteral nutrition, to take care of catabolism and replacement of nutrients. We present a case of inoperable pancreatic malignancy with high output entero-cutaneous fistula, which was provided parenteral nutritional support with the use of Totally Implantable Venous Access Device (TIVAD). Method and Results: 55 year old man diagnosed with carcinoma pancreas had developed high entero-cutaneous fistula. His tumor was found to be inoperable and was on total parenteral nutrition through routine central line. This line was difficult to maintain as he required it for a long term TPN. He was planned to undergo Totally Implantable Venous Access Device (TIVAD) implantation. 8Fr single lumen catheter with Groshong non-return Valve (Bard Access Systems, Inc. USA) was inserted through right internal jugular vein, under fluoroscopic guidance. The catheter was tunneled subcutaneously and brought towards infraclavicular pocket, cut at appropriate length and connected to port and locked. Port was sutured in floor of pocket. Free flow of blood aspirated, flushed with heparinized saline. There was no kink observed in entire length of catheter under fluoroscopy. Skin over infraclavicular pocket was sutured. Long term catheter care and associated risks were explained to patient and relatives. Patient continued to receive total parenteral nutrition as well as other supportive therapy though TIVAD for next 6 weeks, till his demise. Conclusion: TIVADs are standard of care for long term venous access solutions in cancer patients requiring chemotherapy. In this case, we extended its use for providing parenteral nutrition and other supportive therapy. TIVADs can be implanted in advanced cancer patients for providing venous access solution required for various palliative treatments and medications. This will help in improving quality of life and satisfaction amongst terminally ill cancer patients.

Keywords: parenteral nutrition, totally implantable venous access device, long term venous access, interventions in anesthesiology

Procedia PDF Downloads 227
520 Robust Electrical Segmentation for Zone Coherency Delimitation Base on Multiplex Graph Community Detection

Authors: Noureddine Henka, Sami Tazi, Mohamad Assaad

Abstract:

The electrical grid is a highly intricate system designed to transfer electricity from production areas to consumption areas. The Transmission System Operator (TSO) is responsible for ensuring the efficient distribution of electricity and maintaining the grid's safety and quality. However, due to the increasing integration of intermittent renewable energy sources, there is a growing level of uncertainty, which requires a faster responsive approach. A potential solution involves the use of electrical segmentation, which involves creating coherence zones where electrical disturbances mainly remain within the zone. Indeed, by means of coherent electrical zones, it becomes possible to focus solely on the sub-zone, reducing the range of possibilities and aiding in managing uncertainty. It allows faster execution of operational processes and easier learning for supervised machine learning algorithms. Electrical segmentation can be applied to various applications, such as electrical control, minimizing electrical loss, and ensuring voltage stability. Since the electrical grid can be modeled as a graph, where the vertices represent electrical buses and the edges represent electrical lines, identifying coherent electrical zones can be seen as a clustering task on graphs, generally called community detection. Nevertheless, a critical criterion for the zones is their ability to remain resilient to the electrical evolution of the grid over time. This evolution is due to the constant changes in electricity generation and consumption, which are reflected in graph structure variations as well as line flow changes. One approach to creating a resilient segmentation is to design robust zones under various circumstances. This issue can be represented through a multiplex graph, where each layer represents a specific situation that may arise on the grid. Consequently, resilient segmentation can be achieved by conducting community detection on this multiplex graph. The multiplex graph is composed of multiple graphs, and all the layers share the same set of vertices. Our proposal involves a model that utilizes a unified representation to compute a flattening of all layers. This unified situation can be penalized to obtain (K) connected components representing the robust electrical segmentation clusters. We compare our robust segmentation to the segmentation based on a single reference situation. The robust segmentation proves its relevance by producing clusters with high intra-electrical perturbation and low variance of electrical perturbation. We saw through the experiences when robust electrical segmentation has a benefit and in which context.

Keywords: community detection, electrical segmentation, multiplex graph, power grid

Procedia PDF Downloads 61
519 O-Functionalized CNT Mediated CO Hydro-Deoxygenation and Chain Growth

Authors: K. Mondal, S. Talapatra, M. Terrones, S. Pokhrel, C. Frizzel, B. Sumpter, V. Meunier, A. L. Elias

Abstract:

Worldwide energy independence is reliant on the ability to leverage locally available resources for fuel production. Recently, syngas produced through gasification of carbonaceous materials provided a gateway to a host of processes for the production of various chemicals including transportation fuels. The basis of the production of gasoline and diesel-like fuels is the Fischer Tropsch Synthesis (FTS) process: A catalyzed chemical reaction that converts a mixture of carbon monoxide (CO) and hydrogen (H2) into long chain hydrocarbons. Until now, it has been argued that only transition metal catalysts (usually Co or Fe) are active toward the CO hydrogenation and subsequent chain growth in the presence of hydrogen. In this paper, we demonstrate that carbon nanotube (CNT) surfaces are also capable of hydro-deoxygenating CO and producing long chain hydrocarbons similar to that obtained through the FTS but with orders of magnitude higher conversion efficiencies than the present state-of-the-art FTS catalysts. We have used advanced experimental tools such as XPS and microscopy techniques to characterize CNTs and identify C-O functional groups as the active sites for the enhanced catalytic activity. Furthermore, we have conducted quantum Density Functional Theory (DFT) calculations to confirm that C-O groups (inherent on CNT surfaces) could indeed be catalytically active towards reduction of CO with H2, and capable of sustaining chain growth. The DFT calculations have shown that the kinetically and thermodynamically feasible route for CO insertion and hydro-deoxygenation are different from that on transition metal catalysts. Experiments on a continuous flow tubular reactor with various nearly metal-free CNTs have been carried out and the products have been analyzed. CNTs functionalized by various methods were evaluated under different conditions. Reactor tests revealed that the hydrogen pre-treatment reduced the activity of the catalysts to negligible levels. Without the pretreatment, the activity for CO conversion as found to be 7 µmol CO/g CNT/s. The O-functionalized samples showed very activities greater than 85 µmol CO/g CNT/s with nearly 100% conversion. Analyses show that CO hydro-deoxygenation occurred at the C-O/O-H functional groups. It was found that while the products were similar to FT products, differences in selectivities were observed which, in turn, was a result of a different catalytic mechanism. These findings now open a new paradigm for CNT-based hydrogenation catalysts and constitute a defining point for obtaining clean, earth abundant, alternative fuels through the use of efficient and renewable catalyst.

Keywords: CNT, CO Hydrodeoxygenation, DFT, liquid fuels, XPS, XTL

Procedia PDF Downloads 331
518 Coupling of Microfluidic Droplet Systems with ESI-MS Detection for Reaction Optimization

Authors: Julia R. Beulig, Stefan Ohla, Detlev Belder

Abstract:

In contrast to off-line analytical methods, lab-on-a-chip technology delivers direct information about the observed reaction. Therefore, microfluidic devices make an important scientific contribution, e.g. in the field of synthetic chemistry. Herein, the rapid generation of analytical data can be applied for the optimization of chemical reactions. These microfluidic devices enable a fast change of reaction conditions as well as a resource saving method of operation. In the presented work, we focus on the investigation of multiphase regimes, more specifically on a biphasic microfluidic droplet systems. Here, every single droplet is a reaction container with customized conditions. The biggest challenge is the rapid qualitative and quantitative readout of information as most detection techniques for droplet systems are non-specific, time-consuming or too slow. An exception is the electrospray mass spectrometry (ESI-MS). The combination of a reaction screening platform with a rapid and specific detection method is an important step in droplet-based microfluidics. In this work, we present a novel approach for synthesis optimization on the nanoliter scale with direct ESI-MS detection. The development of a droplet-based microfluidic device, which enables the modification of different parameters while simultaneously monitoring the effect on the reaction within a single run, is shown. By common soft- and photolithographic techniques a polydimethylsiloxane (PDMS) microfluidic chip with different functionalities is developed. As an interface for the MS detection, we use a steel capillary for ESI and improve the spray stability with a Teflon siphon tubing, which is inserted underneath the steel capillary. By optimizing the flow rates, it is possible to screen parameters of various reactions, this is exemplarity shown by a Domino Knoevenagel Hetero-Diels-Alder reaction. Different starting materials, catalyst concentrations and solvent compositions are investigated. Due to the high repetition rate of the droplet production, each set of reaction condition is examined hundreds of times. As a result, of the investigation, we receive possible reagents, the ideal water-methanol ratio of the solvent and the most effective catalyst concentration. The developed system can help to determine important information about the optimal parameters of a reaction within a short time. With this novel tool, we make an important step on the field of combining droplet-based microfluidics with organic reaction screening.

Keywords: droplet, mass spectrometry, microfluidics, organic reaction, screening

Procedia PDF Downloads 286
517 Optical Assessment of Marginal Sealing Performance around Restorations Using Swept-Source Optical Coherence Tomography

Authors: Rima Zakzouk, Yasushi Shimada, Yasunori Sumi, Junji Tagami

Abstract:

Background and purpose: The resin composite has become the main material for the restorations of caries in recent years due to aesthetic characteristics, especially with the development of the adhesive techniques. The quality of adhesion to tooth structures is depending on an exchange process between inorganic tooth material and synthetic resin and a micromechanical retention promoted by resin infiltration in partially demineralized dentin. Optical coherence tomography (OCT) is a noninvasive diagnostic method for obtaining cross-sectional images that produce high-resolution of the biological tissue at the micron scale. The aim of this study was to evaluate the gap formation at adhesive/tooth interface of two-step self-etch adhesives that are preceded with or without phosphoric acid pre-etching in different regions of teeth using SS-OCT. Materials and methods: Round tapered cavities (2×2 mm) were prepared in cervical part of bovine incisors teeth and divided into 2 groups (n=10): first group self-etch adhesive (Clearfil SE Bond) was applied for SE group and second group treated with acid etching before applying the self-etch adhesive for PA group. Subsequently, both groups were restored with Estelite Flow Quick Flowable Composite Resin and observed under OCT. Following 5000 thermal cycles, the same section was obtained again for each cavity using OCT at 1310-nm wavelength. Scanning was repeated after two months to monitor the gap progress. Then the gap length was measured using image analysis software, and the statistics analysis were done between both groups using SPSS software. After that, the cavities were sectioned and observed under Confocal Laser Scanning Microscope (CLSM) to confirm the result of OCT. Results: Gaps formed at the bottom of the cavity was longer than the gap formed at the margin and dento-enamel junction in both groups. On the other hand, pre-etching treatment led to damage the DEJ regions creating longer gap. After 2 months the results showed almost progress in the gap length significantly at the bottom regions in both groups. In conclusions, phosphoric acid etching treatment did not reduce the gap lrngth in most regions of the cavity. Significance: The bottom region of tooth was more exposed to gap formation than margin and DEJ regions, The DEJ damaged with phosphoric acid treatment.

Keywords: optical coherence tomography, self-etch adhesives, bottom, dento enamel junction

Procedia PDF Downloads 213
516 Scalable UI Test Automation for Large-scale Web Applications

Authors: Kuniaki Kudo, Raviraj Solanki, Kaushal Patel, Yash Virani

Abstract:

This research mainly concerns optimizing UI test automation for large-scale web applications. The test target application is the HHAexchange homecare management WEB application that seamlessly connects providers, state Medicaid programs, managed care organizations (MCOs), and caregivers through one platform with large-scale functionalities. This study focuses on user interface automation testing for the WEB application. The quality assurance team must execute many manual users interface test cases in the development process to confirm no regression bugs. The team automated 346 test cases; the UI automation test execution time was over 17 hours. The business requirement was reducing the execution time to release high-quality products quickly, and the quality assurance automation team modernized the test automation framework to optimize the execution time. The base of the WEB UI automation test environment is Selenium, and the test code is written in Python. Adopting a compilation language to write test code leads to an inefficient flow when introducing scalability into a traditional test automation environment. In order to efficiently introduce scalability into Test Automation, a scripting language was adopted. The scalability implementation is mainly implemented with AWS's serverless technology, an elastic container service. The definition of scalability here is the ability to automatically set up computers to test automation and increase or decrease the number of computers running those tests. This means the scalable mechanism can help test cases run parallelly. Then test execution time is dramatically decreased. Also, introducing scalable test automation is for more than just reducing test execution time. There is a possibility that some challenging bugs are detected by introducing scalable test automation, such as race conditions, Etc. since test cases can be executed at same timing. If API and Unit tests are implemented, the test strategies can be adopted more efficiently for this scalability testing. However, in WEB applications, as a practical matter, API and Unit testing cannot cover 100% functional testing since they do not reach front-end codes. This study applied a scalable UI automation testing strategy to the large-scale homecare management system. It confirmed the optimization of the test case execution time and the detection of a challenging bug. This study first describes the detailed architecture of the scalable test automation environment, then describes the actual performance reduction time and an example of challenging issue detection.

Keywords: aws, elastic container service, scalability, serverless, ui automation test

Procedia PDF Downloads 86
515 Determining the Thermal Performance and Comfort Indices of a Naturally Ventilated Room with Reduced Density Reinforced Concrete Wall Construction over Conventional M-25 Grade Concrete

Authors: P. Crosby, Shiva Krishna Pavuluri, S. Rajkumar

Abstract:

Purpose: Occupied built-up space can be broadly classified as air-conditioned and naturally ventilated. Regardless of the building type, the objective of all occupied built-up space is to provide a thermally acceptable environment for human occupancy. Considering this aspect, air-conditioned spaces allow a greater degree of flexibility to control and modulate the comfort parameters during the operation phase. However, in the case of naturally ventilated space, a number of design features favoring indoor thermal comfort should be mandatorily conceptualized starting from the design phase. One such primary design feature that requires to be prioritized is, selection of building envelope material, as it decides the flow of energy from outside environment to occupied spaces. Research Methodology: In India and many countries across globe, the standardized material used for building envelope is re-enforced concrete (i.e. M-25 grade concrete). The comfort inside the RC built environment for warm & humid climate (i.e. mid-day temp of 30-35˚C, diurnal variation of 5-8˚C & RH of 70-90%) is unsatisfying to say the least. This study is mainly focused on reviewing the impact of mix design of conventional M25 grade concrete on inside thermal comfort. In this mix design, air entrainment in the range of 2000 to 2100 kg/m3 is introduced to reduce the density of M-25 grade concrete. Thermal performance parameters & indoor comfort indices are analyzed for the proposed mix and compared in relation to the conventional M-25 grade. There are diverse methodologies which govern indoor comfort calculation. In this study, three varied approaches specifically a) Indian Adaptive Thermal comfort model, b) Tropical Summer Index (TSI) c) Air temperature less than 33˚C & RH less than 70% to calculate comfort is adopted. The data required for the thermal comfort study is acquired by field measurement approach (i.e. for the new mix design) and simulation approach by using design builder (i.e. for the conventional concrete grade). Findings: The analysis points that the Tropical Summer Index has a higher degree of stringency in determining the occupant comfort band whereas also providing a leverage in thermally tolerable band over & above other methodologies in the context of the study. Another important finding is the new mix design ensures a 10% reduction in indoor air temperature (IAT) over the outdoor dry bulb temperature (ODBT) during the day. This translates to a significant temperature difference of 6 ˚C IAT and ODBT.

Keywords: Indian adaptive thermal comfort, indoor air temperature, thermal comfort, tropical summer index

Procedia PDF Downloads 313
514 Automated Building Internal Layout Design Incorporating Post-Earthquake Evacuation Considerations

Authors: Sajjad Hassanpour, Vicente A. González, Yang Zou, Jiamou Liu

Abstract:

Earthquakes pose a significant threat to both structural and non-structural elements in buildings, putting human lives at risk. Effective post-earthquake evacuation is critical for ensuring the safety of building occupants. However, current design practices often neglect the integration of post-earthquake evacuation considerations into the early-stage architectural design process. To address this gap, this paper presents a novel automated internal architectural layout generation tool that optimizes post-earthquake evacuation performance. The tool takes an initial plain floor plan as input, along with specific requirements from the user/architect, such as minimum room dimensions, corridor width, and exit lengths. Based on these inputs, firstly, the tool randomly generates different architectural layouts. Secondly, the human post-earthquake evacuation behaviour will be thoroughly assessed for each generated layout using the advanced Agent-Based Building Earthquake Evacuation Simulation (AB2E2S) model. The AB2E2S prototype is a post-earthquake evacuation simulation tool that incorporates variables related to earthquake intensity, architectural layout, and human factors. It leverages a hierarchical agent-based simulation approach, incorporating reinforcement learning to mimic human behaviour during evacuation. The model evaluates different layout options and provides feedback on evacuation flow, time, and possible casualties due to earthquake non-structural damage. By integrating the AB2E2S model into the automated layout generation tool, architects and designers can obtain optimized architectural layouts that prioritize post-earthquake evacuation performance. Through the use of the tool, architects and designers can explore various design alternatives, considering different minimum room requirements, corridor widths, and exit lengths. This approach ensures that evacuation considerations are embedded in the early stages of the design process. In conclusion, this research presents an innovative automated internal architectural layout generation tool that integrates post-earthquake evacuation simulation. By incorporating evacuation considerations into the early-stage design process, architects and designers can optimize building layouts for improved post-earthquake evacuation performance. This tool empowers professionals to create resilient designs that prioritize the safety of building occupants in the face of seismic events.

Keywords: agent-based simulation, automation in design, architectural layout, post-earthquake evacuation behavior

Procedia PDF Downloads 86
513 Enhanced Physiological Response of Blood Pressure and Improved Performance in Successive Divided Attention Test Seen with Classical Instrumental Background Music Compared to Controls

Authors: Shantala Herlekar

Abstract:

Introduction: Entrainment effect of music on cardiovascular parameters is well established. Music is being used in the background by medical students while studying. However, does it really help them relax faster and concentrate better? Objectives: This study was done to compare the effects of classical instrumental background music versus no music on blood pressure response over time and on successively performed divided attention test in Indian and Malaysian 1st-year medical students. Method: 60 Indian and 60 Malaysian first year medical students, with an equal number of girls and boys were randomized into two groups i.e music group and control group thus creating four subgroups. Three different forms of Symbol Digit Modality Test (to test concentration ability) were used as a pre-test, during music/control session and post-test. It was assessed using total, correct and error score. Simultaneously, multiple Blood Pressure recordings were taken as pre-test, during 1, 5, 15, 25 minutes during music/control (+SDMT) and post-test. The music group performed the test with classical instrumental background music while the control group performed it in silence. Results were analyzed using students paired t test. p value < 0.05 was taken as statistically significant. A drop in BP recording was indicative of relaxed state and a rise in BP with task performance was indicative of increased arousal. Results: In Symbol Digit Modality Test (SDMT) test, Music group showed significant better results for correct (p = 0.02) and total (p = 0.029) scores during post-test while errors reduced (p = 0.002). Indian music group showed decline in post-test error scores (p = 0.002). Malaysian music group performed significantly better in all categories. Blood pressure response was similar in music and control group with following variations, a drop in BP at 5minutes, being significant in music group (p < 0.001), a steep rise in values till 15minutes (corresponding to SDMT test) also being significant only in music group (p < 0.001) and the Systolic BP readings in controls during post-test were at lower levels compared to music group. On comparing the subgroups, not much difference was noticed in recordings of Indian student’s subgroups while all the paired-t test values in the Malaysian music group were significant. Conclusion: These recordings indicate an increased relaxed state with classical instrumental music and an increased arousal while performing a concentration task. Music used in our study was beneficial to students irrespective of their nationality and preference of music type. It can act as an “active coping” strategy and alleviate stress within a very short period of time, in our study within a span of 5minutes. When used in the background, during task performance, can increase arousal which helps the students perform better. Implications: Music can be used between lectures for a short time to relax the students and help them concentrate better for the subsequent classes, especially for late afternoon sessions.

Keywords: blood pressure, classical instrumental background music, ethnicity, symbol digit modality test

Procedia PDF Downloads 128
512 Theoretical-Methodological Model to Study Vulnerability of Death in the Past from a Bioarchaeological Approach

Authors: Geraldine G. Granados Vazquez

Abstract:

Every human being is exposed to the risk of dying; wherein some of them are more susceptible than others depending on the cause. Therefore, the cause could be the hazard to die that a group or individual has, making this irreversible damage the condition of vulnerability. Risk is a dynamic concept; which means that it depends on the environmental, social, economic and political conditions. Thus vulnerability may only be evaluated in terms of relative parameters. This research is focusing specifically on building a model that evaluate the risk or propensity of death in past urban societies in connection with the everyday life of individuals, considering that death can be a consequence of two coexisting issues: hazard and the deterioration of the resistance to destruction. One of the most important discussions in bioarchaeology refers to health and life conditions in ancient groups; the researchers are looking for more flexible models that evaluate these topics. In that way, this research proposes a theoretical-methodological model that assess the vulnerability of death in past urban groups. This model pretends to be useful to evaluate the risk of death, considering their sociohistorical context, and their intrinsic biological features. This theoretical and methodological model, propose four areas to assess vulnerability. The first three areas use statistical methods or quantitative analysis. While the last and fourth area, which corresponds to the embodiment, is based on qualitative analysis. The four areas and their techniques proposed are a) Demographic dynamics. From the distribution of age at the time of death, the analysis of mortality will be performed using life tables. From here, four aspects may be inferred: population structure, fertility, mortality-survival, and productivity-migration, b) Frailty. Selective mortality and heterogeneity in frailty can be assessed through the relationship between characteristics and the age at death. There are two indicators used in contemporary populations to evaluate stress: height and linear enamel hypoplasias. Height estimates may account for the individual’s nutrition and health history in specific groups; while enamel hypoplasias are an account of the individual’s first years of life, c) Inequality. Space reflects various sectors of society, also in ancient cities. In general terms, the spatial analysis uses measures of association to show the relationship between frail variables and space, d) Embodiment. The story of everyone leaves some evidence on the body, even in the bones. That led us to think about the dynamic individual's relations in terms of time and space; consequently, the micro analysis of persons will assess vulnerability from the everyday life, where the symbolic meaning also plays a major role. In sum, using some Mesoamerica examples, as study cases, this research demonstrates that not only the intrinsic characteristics related to the age and sex of individuals are conducive to vulnerability, but also the social and historical context that determines their state of frailty before death. An attenuating factor for past groups is that some basic aspects –such as the role they played in everyday life– escape our comprehension, and are still under discussion.

Keywords: bioarchaeology, frailty, Mesoamerica, vulnerability

Procedia PDF Downloads 210
511 Maternal Risk Factors Associated with Low Birth Weight Neonates in Pokhara, Nepal: A Hospital Based Case Control Study

Authors: Dipendra Kumar Yadav, Nabaraj Paudel, Anjana Yadav

Abstract:

Background: Low Birth weight (LBW) is defined as the weight at birth less than 2500 grams, irrespective of the period of their gestation. LBW is an important indicator of general health status of population and is considered as the single most important predictors of infant mortality especially of deaths within the first month of life that is birth weight determines the chances of newborn survival. Objective of this study was to identify the maternal risk factors associated with low birth weight neonates. Materials and Methods: A hospital based case-control study was conducted in maternity ward of Manipal Teaching Hospital, Pokhara, Nepal from 23 September 2014 to 12 November 2014. During study period 59 cases were obtained and twice number of control group were selected with frequency matching of the mother`s age with ± 3 years and total controls were 118. Interview schedule was used for data collection along with record review. Data were entered in Epi-data program and analysis was done with help of SPSS software program. Results: From bivariate logistic regression analysis, eighteen variables were found significantly associated with LBW and these were place of residence, family monthly income, education, previous still birth, previous LBW, history of STD, history of vaginal bleeding, anemia, ANC visits, less than four ANC visits, de-worming status, counseling during pregnancy, CVD, physical workload, stress, extra meal during pregnancy, smoking and alcohol consumption status. However after adjusting confounding variables, only six variables were found significantly associated with LBW. Mothers who had family monthly income up to ten thousand rupees were 4.83 times more likely to deliver LBW with CI (1.5-40.645) and p value 0.014 compared to mothers whose family income NRs.20,001-60,000. Mothers who had previous still birth were 2.01 times more likely to deliver LBW with CI (0.69-5.87) and p value 0.02 compared to mothers who did not has previous still birth. Mothers who had previous LBW were 5.472 times more likely to deliver LBW with CI (1.2-24.93) and p value 0.028 compared to mothers who did not has previous LBW. Mothers who had anemia during pregnancy were 3.36 times more likely to deliver LBW with CI (0.77-14.57) and p value 0.014 compared to mothers who did not has anemia. Mothers who delivered female newborn were 2.96 times more likely to have LBW with 95% CI (1.27-7.28) and p value 0.01 compared to mothers who deliver male newborn. Mothers who did not get extra meal during pregnancy were 6.04 times more likely to deliver LBW with CI (1.11-32.7) and p value 0.037 compared to mothers who getting the extra meal during pregnancy. Mothers who consumed alcohol during pregnancy were 4.83 times more likely to deliver LBW with CI (1.57-14.83) and p value 0.006 compared to mothers who did not consumed alcohol during pregnancy. Conclusions: To reduce low birth weight baby through economic empowerment of family and individual women. Prevention and control of anemia during pregnancy is one of the another strategy to control the LBW baby and mothers should take full dose of iron supplements with screening of haemoglobin level. Extra nutritional food should be provided to women during pregnancy. Health promotion program will be focused on avoidance of alcohol and strengthen of health services that leads increasing use of maternity services.

Keywords: low birth weight, case-control, risk factors, hospital based study

Procedia PDF Downloads 291
510 Prevalence and Risk Factors of Musculoskeletal Disorders among School Teachers in Mangalore: A Cross Sectional Study

Authors: Junaid Hamid Bhat

Abstract:

Background: Musculoskeletal disorders are one of the main causes of occupational illness. Mechanisms and the factors like repetitive work, physical effort and posture, endangering the risk of musculoskeletal disorders would now appear to have been properly identified. Teacher’s exposure to work-related musculoskeletal disorders appears to be insufficiently described in the literature. Little research has investigated the prevalence and risk factors of musculoskeletal disorders in teaching profession. Very few studies are available in this regard and there are no studies evident in India. Purpose: To determine the prevalence of musculoskeletal disorders and to identify and measure the association of such risk factors responsible for developing musculoskeletal disorders among school teachers. Methodology: An observational cross sectional study was carried out. 500 school teachers from primary, middle, high and secondary schools were selected, based on eligibility criteria. A signed consent was obtained and a self-administered, validated questionnaire was used. Descriptive statistics was used to compute the statistical mean and standard deviation, frequency and percentage to estimate the prevalence of musculoskeletal disorders among school teachers. The data analysis was done by using SPSS version 16.0. Results: Results indicated higher pain prevalence (99.6%) among school teachers during the past 12 months. Neck pain (66.1%), low back pain (61.8%) and knee pain (32.0%) were the most prevalent musculoskeletal complaints of the subjects. Prevalence of shoulder pain was also found to be high among school teachers (25.9%). 52.0% subjects reported pain as disabling in nature, causing sleep disturbance (44.8%) and pain was found to be associated with work (87.5%). A significant association was found between musculoskeletal disorders and sick leaves/absenteeism. Conclusion: Work-related musculoskeletal disorders particularly neck pain, low back pain, and knee pain, is highly prevalent and risk factors are responsible for the development of same in school teachers. There is little awareness of musculoskeletal disorders among school teachers, due to work load and prolonged/static postures. Further research should concentrate on specific risk factors like repetitive movements, psychological stress, and ergonomic factors and should be carried out all over the country and the school teachers should be studied carefully over a period of time. Also, an ergonomic investigation is needed to decrease the work-related musculoskeletal disorder problems. Implication: Recall bias and self-reporting can be considered as limitations. Also, cause and effect inferences cannot be ascertained. Based on these results, it is important to disseminate general recommendations for prevention of work-related musculoskeletal disorders with regards to the suitability of furniture, equipment and work tools, environmental conditions, work organization and rest time to school teachers. School teachers in the early stage of their careers should try to adapt the ergonomically favorable position whilst performing their work for a safe and healthy life later. Employers should be educated on practical aspects of prevention to reduce musculoskeletal disorders, since changes in workplace and work organization and physical/recreational activities are required.

Keywords: work related musculoskeletal disorders, school teachers, risk factors funding, medical and health sciences

Procedia PDF Downloads 264
509 Cardiac Rehabilitation Program and Health-Related Quality of Life; A Randomized Control Trial

Authors: Zia Ul Haq, Saleem Muhammad, Naeem Ullah, Abbas Shah, Abdullah Shah

Abstract:

Pakistan being the developing country is facing double burden of communicable and non-communicable disease. The aspect of secondary prevention of ischemic heart disease in developing countries is the dire need for public health specialists, clinicians and policy makers. There is some evidence that psychotherapeutic measures, including psychotherapy, recreation, exercise and stress management training have positive impact on secondary prevention of cardiovascular diseases but there are some contradictory findings as well. Cardiac rehabilitation program (CRP) has not yet fully implemented in Pakistan. Psychological, physical and specific health-related quality of life (HRQoL) outcomes needs assessment with respect to its practicality, effectiveness, and success. Objectives: To determine the effect of cardiac rehabilitation program (CRP) on the health-related quality of life (HRQoL) measures of post MI patients compared to the usual care. Hypothesis: Post MI patients who receive the interventions (CRP) will have better HRQoL as compared to those who receive the usual cares. Methods: The randomized control trial was conducted at a Cardiac Rehabilitation Unit of Lady Reading Hospital (LRH), Peshawar. LRH is the biggest hospital of the Province Khyber Pakhtunkhwa (KP). A total 206 participants who had recent first myocardial infarction were inducted in the study. Participants were randomly allocated into two group i.e. usual care group (UCG) and cardiac rehabilitation group (CRG) by permuted-block randomization (PBR) method. CRP was conducted in CRG in two phases. Three HRQoL outcomes i.e. general health questionnaire (GHQ), self-rated health (SRH) and MacNew quality of life after myocardial infarction (MacNew QLMI) were assessed at baseline and follow-up visits among both groups. Data were entered and analyzed by appropriate statistical test in STATA version 12. Results: A total of 195 participants were assessed at the follow-up period due to lost-to-follow-up. The mean age of the participants was 53.66 + 8.3 years. Males were dominant in both groups i.e. 150 (76.92%). Regarding educational status, majority of the participants were illiterate in both groups i.e. 128 (65.64%). Surprisingly, there were 139 (71.28%) who were non-smoker on the whole. The comorbid status was positive in 120 (61.54%) among all the patients. The SRH at follow-up among UCG and CRG was 4.06 (95% CI: 3.93, 4.19) and 2.36 (95% CI: 2.2, 2.52) respectively (p<0.001). GHQ at the follow-up of UCG and CRG was 20.91 (95% CI: 18.83, 21.97) and 7.43 (95% CI: 6.59, 8.27) respectively (p<0.001). The MacNew QLMI at follow-up of UCG and CRG was 3.82 (95% CI: 3.7, 3.94) and 5.62 (95% CI: 5.5, 5.74) respectively (p<0.001). All the HRQoL measures showed strongly significant improvement in the CRG at follow-up period. Conclusion: HRQOL improved in post MI patients after comprehensive CRP. Education of the patients and their supervision is needed when they are involved in their rehabilitation activities. It is concluded that establishing CRP in cardiac units, recruiting post-discharged MI patients and offering them CRP does not impose high costs and can result in significant improvement in HRQoL measures. Trial registration no: ACTRN12617000832370

Keywords: cardiovascular diseases, cardiac rehabilitation, health-related quality of life, HRQoL, myocardial infarction, quality of life, QoL, rehabilitation, randomized control trial

Procedia PDF Downloads 215