Search results for: antibiofouling properties
1372 FEM for Stress Reduction by Optimal Auxiliary Holes in a Loaded Plate with Elliptical Hole
Authors: Basavaraj R. Endigeri, S. G. Sarganachari
Abstract:
Steel is widely used in machine parts, structural equipment and many other applications. In many steel structural elements, holes of different shapes and orientations are made with a view to satisfy the design requirements. The presence of holes in steel elements creates stress concentration, which eventually reduce the mechanical strength of the structure. Therefore, it is of great importance to investigate the state of stress around the holes for the safety and properties design of such elements. By literature survey, it is known that till date, there is no analytical solution to reduce the stress concentration by providing auxiliary holes at a definite location and radii in a steel plate. The numerical method can be used to determine the optimum location and radii of auxiliary holes. In the present work plate with an elliptical hole, for a steel material subjected to uniaxial load is analyzed and the effect of stress concentration is graphically represented .The introduction of auxiliary holes at a optimum location and radii with its effect on stress concentration is also represented graphically. The finite element analysis package ANSYS 11.0 is used to analyse the steel plate. The analysis is carried out using a plane 42 element. Further the ANSYS optimization model is used to determine the location and radii for optimum values of auxiliary hole to reduce stress concentration. All the results for different diameter to plate width ratio are presented graphically. The results of this study are in the form of the graphs for determining the locations and diameter of optimal auxiliary holes. The graph of stress concentration v/s central hole diameter to plate width ratio. The Finite Elements results of the study indicates that the stress concentration effect of central elliptical hole in an uniaxial loaded plate can be reduced by introducing auxiliary holes on either side of the central circular hole.Keywords: finite element method, optimization, stress concentration factor, auxiliary holes
Procedia PDF Downloads 4571371 Polymer Mixing in the Cavity Transfer Mixer
Authors: Giovanna Grosso, Martien A. Hulsen, Arash Sarhangi Fard, Andrew Overend, Patrick. D. Anderson
Abstract:
In many industrial applications and, in particular in polymer industry, the quality of mixing between different materials is fundamental to guarantee the desired properties of finished products. However, properly modelling and understanding polymer mixing often presents noticeable difficulties, because of the variety and complexity of the physical phenomena involved. This is the case of the Cavity Transfer Mixer (CTM), for which a clear understanding of mixing mechanisms is still missing, as well as clear guidelines for the system optimization. This device, invented and patented by Gale at Rapra Technology Limited, is an add-on to be mounted downstream of existing extruders, in order to improve distributive mixing. It consists of two concentric cylinders, the rotor and stator, both provided with staggered rows of hemispherical cavities. The inner cylinder (rotor) rotates, while the outer (stator) remains still. At the same time, the pressure load imposed upstream, pushes the fluid through the CTM. Mixing processes are driven by the flow field generated by the complex interaction between the moving geometry, the imposed pressure load and the rheology of the fluid. In such a context, the present work proposes a complete and accurate three dimensional modelling of the CTM and results of a broad range of simulations assessing the impact on mixing of several geometrical and functioning parameters. Among them, we find: the number of cavities per row, the number of rows, the size of the mixer, the rheology of the fluid and the ratio between the rotation speed and the fluid throughput. The model is composed of a flow part and a mixing part: a finite element solver computes the transient velocity field, which is used in the mapping method implementation in order to simulate the concentration field evolution. Results of simulations are summarized in guidelines for the device optimization.Keywords: Mixing, non-Newtonian fluids, polymers, rheology.
Procedia PDF Downloads 3811370 Effects of Gamma-Tocotrienol Supplementation on T-Regulatory Cells in Syngeneic Mouse Model of Breast Cancer
Authors: S. Subramaniam, J. S. A. Rao, P. Ramdas, K. R. Selvaduray, N. M. Han, M. K. Kutty, A. K. Radhakrishnan
Abstract:
Immune system is a complex system where the immune cells have the capability to respond against a wide range of immune challenges including cancer progression. However, in the event of cancer development, tumour cells trigger immunosuppressive environment via activation of myeloid-derived suppressor cells and T regulatory (Treg) cells. The Treg cells are subset of CD4+ T lymphocytes, known to have crucial roles in regulating immune homeostasis and promoting the establishment and maintenance of peripheral tolerance. Dysregulation of these mechanisms could lead to cancer progression and immune suppression. Recently, there are many studies reporting on the effects of natural bioactive compounds on immune responses against cancer. It was known that tocotrienol-rich-fraction consisting 70% tocotrienols and 30% α-tocopherol is able to exhibit immunomodulatory as well as anti-cancer properties. Hence, this study was designed to evaluate the effects of gamma-tocotrienol (G-T3) supplementation on T-reg cells in a syngeneic mouse model of breast cancer. In this study, female BALB/c mice were divided into two groups and fed with either soy oil (vehicle) or gamma-tocotrienol (G-T3) for two weeks followed by inoculation with tumour cells. All the mice continued to receive the same supplementation until day 49. The results showed a significant reduction in tumour volume and weight in G-T3 fed mice compared to vehicle-fed mice. Lung and liver histology showed reduced evidence of metastasis in tumour-bearing G-T3 fed mice. Besides that, flow cytometry analysis revealed T-helper cell population was increased, and T-regulatory cell population was suppressed following G-T3 supplementation. Moreover, immunohistochemistry analysis showed that there was a marked decrease in the expression of FOXP3 in the G-T3 fed tumour bearing mice. In conclusion, the G-T3 supplementation showed good prognosis towards breast cancer by enhancing the immune response in tumour-bearing mice. Therefore, gamma-T3 can be used as immunotherapy agent for the treatment of breast cancer.Keywords: breast cancer, gamma tocotrienol, immune suppression, supplement
Procedia PDF Downloads 2251369 Industrial Prototype for Hydrogen Separation and Purification: Graphene Based-Materials Application
Authors: Juan Alfredo Guevara Carrio, Swamy Toolahalli Thipperudra, Riddhi Naik Dharmeshbhai, Sergio Graniero Echeverrigaray, Jose Vitorio Emiliano, Antonio Helio Castro
Abstract:
In order to advance the hydrogen economy, several industrial sectors can potentially benefit from the trillions of stimulus spending for post-coronavirus. Blending hydrogen into natural gas pipeline networks has been proposed as a means of delivering it during the early market development phase, using separation and purification technologies downstream to extract the pure H₂ close to the point of end-use. This first step has been mentioned around the world as an opportunity to use existing infrastructures for immediate decarbonisation pathways. Among current technologies used to extract hydrogen from mixtures in pipelines or liquid carriers, membrane separation can achieve the highest selectivity. The most efficient approach for the separation of H₂ from other substances by membranes is offered from the research of 2D layered materials due to their exceptional physical and chemical properties. Graphene-based membranes, with their distribution of pore sizes in nanometers and angstrom range, have shown fundamental and economic advantages over other materials. Their combination with the structure of ceramic and geopolymeric materials enabled the synthesis of nanocomposites and the fabrication of membranes with long-term stability and robustness in a relevant range of physical and chemical conditions. Versatile separation modules have been developed for hydrogen separation, which adaptability allows their integration in industrial prototypes for applications in heavy transport, steel, and cement production, as well as small installations at end-user stations of pipeline networks. The developed membranes and prototypes are a practical contribution to the technological challenge of supply pure H₂ for the mentioned industries as well as hydrogen energy-based fuel cells.Keywords: graphene nano-composite membranes, hydrogen separation and purification, separation modules, indsutrial prototype
Procedia PDF Downloads 1641368 Factors Affecting the Ultimate Compressive Strength of the Quaternary Calcarenites, North Western Desert, Egypt
Authors: M. A. Rashed, A. S. Mansour, H. Faris, W. Afify
Abstract:
The calcarenites carbonate rocks of the Quaternary ridges, which extend along the northwestern Mediterranean coastal plain of Egypt, represent an excellent model for the transformation of loose sediments to real sedimentary rocks by the different stages of meteoric diagenesis. The depositional and diagenetic fabrics of the rocks, in addition to the strata orientation, highly affect their ultimate compressive strength and other geotechnical properties. There is a marked increase in the compressive strength (UCS) from the first to the fourth ridge rock samples. The lowest values are related to the loose packing, weakly cemented aragonitic ooid sediments with high porosity, besides the irregularly distributed of cement, which result in decreasing the ability of these rocks to withstand crushing under direct pressure. The high (UCS) values are attributed to the low porosity, the presence of micritic cement, the reduction in grain size and the occurrence of micritization and calcretization processes. The strata orientation has a notable effect on the measured (UCS). The lowest values have been recorded for the samples cored in the inclined direction; whereas the highest values have been noticed in most samples cored in the vertical and parallel directions to bedding plane. In case of the inclined direction, the bedding planes were oriented close to the plane of maximum shear stress. The lowest and highest anisotropy values have been recorded for the first and the third ridges rock samples, respectively, which may attributed to the relatively homogeneity and well sorted grain-stone of the first ridge rock samples, and relatively heterogeneity in grain and pore size distribution and degree of cementation of the third ridge rock samples, besides, the abundance of shell fragments with intra-particle pore spaces, which may produce lines of weakness within the rock.Keywords: compressive strength, anisotropy, calcarenites, Egypt
Procedia PDF Downloads 3781367 Sustainable Design and Mechanical Evaluation of Al-Based Bio-composite for Structural Applications
Authors: Akram Balaswad, Muhammad Farzik Ijaz, Shahid Parves
Abstract:
In the face of growing global environmental concerns and the urgent need for sustainable material methods, the use of bio-composites has emerged as a promising solution. Bio-composites, which integrate natural fibers or agricultural wastes, offer several advantages, such as easy disposal, fewer health hazards, and reduced energy consumption during manufacturing. They also contribute to weight reduction in products, leading to lower carbon emissions and energy savings. This study focuses on the development and characterization of bio-composites using recycled aluminum, eggshell carbonized powder (ECP), and date seed powder (DSP) for engineering applications. The research will investigate the mechanical and corrosion characteristics of the bio-composites and assess their feasibility for practical use in various engineering fields. Recycled aluminum and agro-waste materials are utilized to enhance sustainability, reduce environmental impact, and promote a circular economy. The study will highlight the potential of these eco-friendly materials in improving mechanical and corrosion properties, making them suitable for a wide range of engineering applications. The fabrication process will involve sourcing materials from local sources, cleaning, processing, and fabricating composites using a stir casting technique. Statistical analysis using ANNOVA will be done to compare the amount of variation of organic reinforcement (ECP / DSP) between groups with the amount of variation within groups Characterization methods include tensile testing, Vickers macro-hardness testing, SEM analysis, and corrosion testing. This research will contribute to the development of sustainable engineering materials and support the global and local efforts towards environmentally conscious practices.Keywords: bio-composites, sustainability, recycled aluminum, eggshell carbonized powder (ECP), date seed powder (DSP)
Procedia PDF Downloads 91366 Implementation of Algorithm K-Means for Grouping District/City in Central Java Based on Macro Economic Indicators
Authors: Nur Aziza Luxfiati
Abstract:
Clustering is partitioning data sets into sub-sets or groups in such a way that elements certain properties have shared property settings with a high level of similarity within one group and a low level of similarity between groups. . The K-Means algorithm is one of thealgorithmsclustering as a grouping tool that is most widely used in scientific and industrial applications because the basic idea of the kalgorithm is-means very simple. In this research, applying the technique of clustering using the k-means algorithm as a method of solving the problem of national development imbalances between regions in Central Java Province based on macroeconomic indicators. The data sample used is secondary data obtained from the Central Java Provincial Statistics Agency regarding macroeconomic indicator data which is part of the publication of the 2019 National Socio-Economic Survey (Susenas) data. score and determine the number of clusters (k) using the elbow method. After the clustering process is carried out, the validation is tested using themethodsBetween-Class Variation (BCV) and Within-Class Variation (WCV). The results showed that detection outlier using z-score normalization showed no outliers. In addition, the results of the clustering test obtained a ratio value that was not high, namely 0.011%. There are two district/city clusters in Central Java Province which have economic similarities based on the variables used, namely the first cluster with a high economic level consisting of 13 districts/cities and theclustersecondwith a low economic level consisting of 22 districts/cities. And in the cluster second, namely, between low economies, the authors grouped districts/cities based on similarities to macroeconomic indicators such as 20 districts of Gross Regional Domestic Product, with a Poverty Depth Index of 19 districts, with 5 districts in Human Development, and as many as Open Unemployment Rate. 10 districts.Keywords: clustering, K-Means algorithm, macroeconomic indicators, inequality, national development
Procedia PDF Downloads 1611365 Current Harvesting Methods for Jatropha curcas L.
Authors: Luigi Pari, Alessandro Suardi, Enrico Santangelo
Abstract:
In the last decade Jatropha curcas L. (an oleaginous crop native to Central America and part of South America) has raised particular interest owing to of its properties and uses. Its capsules may contain up to 40% in oil and can be used as feedstock for biodiesel production. The harvesting phase is made difficult by the physiological traits of the specie, because fruits are in bunches and do not ripen simultaneously. Three harvesting methodologies are currently diffused and differ for the level of mechanization applied: manual picking, semi-mechanical harvesting, and mechanical harvesting. The manual picking is the most common in the developing countries but it is also the most time consuming and inefficient. Mechanical harvesting carried out with modified grape harvesters has the higher productivity, but it is very costly as initial investment and requires appropriate schemes of cultivation. The semi-mechanical harvesting method is achieved with shaker tools employed to facilitate the fruit detachment. This system resulted much cheaper than the fully mechanized one and quite flexible for small and medium scale applications, but it still requires adjustments for improving the productive performance. CRA-ING, within the European project Jatromed (http://www.jatromed.aua.gr) has carried out preliminary studies on the applicability of such approach, adapting an olive shaker to harvest Jatropha fruits. The work is a survey of the harvesting methods currently available for Jatropha, show the pros and cons of each system, and highlighting the criteria to be considered for choosing one respect another. The harvesting of Jatropha curcas L. remains a big constrains for the spread of the species as energy crop. The approach pursued by CRA-ING can be considered a good compromise between the fully mechanized harvesters and the exclusive manual intervention. It is an attempt to promote a sustainable mechanization suited to the social context of developing countries by encouraging the concrete involvement of local populations.Keywords: jatropha curcas, energy crop, harvesting, central america, south america
Procedia PDF Downloads 3891364 The Effect of Electromagnetic Stirring during Solidification of Nickel Based Alloys
Authors: Ricardo Paiva, Rui Soares, Felix Harnau, Bruno Fragoso
Abstract:
Nickel-based alloys are materials well suited for service in extreme environments subjected to pressure and heat. Some industrial applications for Nickel-based alloys are aerospace and jet engines, oil and gas extraction, pollution control and waste processing, automotive and marine industry. It is generally recognized that grain refinement is an effective methodology to improve the quality of casted parts. Conventional grain refinement techniques involve the addition of inoculation substances, the control of solidification conditions, or thermomechanical treatment with recrystallization. However, such methods often lead to non-uniform grain size distribution and the formation of hard phases, which are detrimental to both wear performance and biocompatibility. Stirring of the melt by electromagnetic fields has been widely used in continuous castings with success for grain refinement, solute redistribution, and surface quality improvement. Despite the advantages, much attention has not been paid yet to the use of this approach on functional castings such as investment casting. Furthermore, the effect of electromagnetic stirring (EMS) fields on Nickel-based alloys is not known. In line with the gaps/needs of the state-of-art, the present research work targets to promote new advances in controlling grain size and morphology of investment cast Nickel based alloys. For such a purpose, a set of experimental tests was conducted. A high-frequency induction furnace with vacuum and controlled atmosphere was used to cast the Inconel 718 alloy in ceramic shells. A coil surrounded the casting chamber in order to induce electromagnetic stirring during solidification. Aiming to assess the effect of the electromagnetic stirring on Ni alloys, the samples were subjected to microstructural analysis and mechanical tests. The results show that electromagnetic stirring can be an effective methodology to modify the grain size and mechanical properties of investment-cast parts.Keywords: investment casting, grain refinement, electromagnetic stirring, nickel alloys
Procedia PDF Downloads 1361363 An Evaluation of Discontinuities in Rock Mass Using Coupled Hydromechanical Finite Element and Discrete Element Analyses
Authors: Mohammad Moridzadeh, Aaron Gallant
Abstract:
The paper will present the design and construction of the underground excavations of a pump station forebay and its related components including connector tunnels, access shaft, riser shaft and well shafts. The underground openings include an 8 m-diameter riser shaft, an 8-m-diameter access shaft, 34 2.4-m-diameter well shafts, a 107-m-long forebay with a cross section having a height of 11 m and width of 10 m, and a 6 m by 6 m stub connector tunnel between the access shaft and a future forebay extension. The riser shaft extends down from the existing forebay connector tunnel at elevation 247 m to the crown of the forebay at elevation 770.0 feet. The access shaft will extend from the platform at the surface down to El. 223.5 m. The pump station will have the capacity to deliver 600 million gallons per day. The project is located on an uplifted horst consisting of a mass of Precambrian metamorphic rock trending in a north-south direction. The eastern slope of the area is very steep and pronounced and is likely the result of high-angle normal faulting. Toward the west, the area is bordered by a high angle normal fault and recent alluvial, lacustrine, and colluvial deposits. An evaluation of rock mass properties, fault and discontinuities, foliation and joints, and in situ stresses was performed. The response of the rock mass was evaluated in 3DEC using Discrete Element Method (DEM) by explicitly accounting for both major and minor discontinuities within the rock mass (i.e. joints, shear zones, faults). Moreover, the stability of the entire subsurface structure including the forebay, access and riser shafts, future forebay, well shafts, and connecting tunnels and their interactions with each other were evaluated using a 3D coupled hydromechanical Finite Element Analysis (FEA).Keywords: coupled hydromechanical analysis, discontinuities, discrete element, finite element, pump station
Procedia PDF Downloads 2691362 A Strategy for Reducing Dynamic Disorder in Small Molecule Organic Semiconductors by Suppressing Large Amplitude Thermal Motions
Authors: Steffen Illig, Alexander S. Eggeman, Alessandro Troisi, Stephen G. Yeates, John E. Anthony, Henning Sirringhaus
Abstract:
Large-amplitude intermolecular vibrations in combination with complex shaped transfer integrals generate a thermally fluctuating energetic landscape. The resulting dynamic disorder and its intrinsic presence in organic semiconductors is one of the most fundamental differences to their inorganic counterparts. Dynamic disorder is believed to govern many of the unique electrical and optical properties of organic systems. However, the low energy nature of these vibrations makes it difficult to access them experimentally and because of this we still lack clear molecular design rules to control and reduce dynamic disorder. Applying a novel technique based on electron diffraction we encountered strong intermolecular, thermal vibrations in every single organic material we studied (14 up to date), indicating that a large degree of dynamic disorder is a universal phenomenon in organic crystals. In this paper a new molecular design strategy will be presented to avoid dynamic disorder. We found that small molecules that have their side chains attached to the long axis of their conjugated core have been found to be less likely to suffer from dynamic disorder effects. In particular, we demonstrate that 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothio-phene (C8-BTBT) and 2,9-di-decyl-dinaphtho-[2,3-b:20,30-f]-thieno-[3,2-b]-thiophene (C10DNTT) exhibit strongly reduced thermal vibrations in comparison to other molecules and relate their outstanding performance to their lower dynamic disorder. We rationalize the low degree of dynamic disorder in C8-BTBT and C10-DNTT with a better encapsulation of the conjugated cores in the crystal structure which helps reduce large amplitude thermal motions. The work presented in this paper provides a general strategy for the design of new classes of very high mobility organic semiconductors with low dynamic disorder.Keywords: charge transport, C8-BTBT, C10-DNTT, dynamic disorder, organic semiconductors, thermal vibrations
Procedia PDF Downloads 4021361 Induction of Callus and Expression of Compounds in Capsicum Frutescens Supplemented with of 2, 4-D
Authors: Jamilah Syafawati Yaacob, Muhammad Aiman Ramli
Abstract:
Cili padi or Capsicum frutescens is one of capsicum species from nightshade family, Solanaceae. It is famous in Malaysia and is widely used as a food ingredient. Capsicum frutescens also possess vast medicinal properties. The objectives of this study are to determine the most optimum 2,4-D hormone concentration for callus induction from stem explants C. frutescens and the effects of different 2,4-D concentrations on expression of compounds from C. frutescens. Seeds were cultured on MS media without hormones (MS basal media) to yield aseptic seedlings of this species, which were then used to supply explant source for subsequent tissue culture experiments. Stem explants were excised from aseptic seedlings and cultured on MS media supplemented with various concentrations (0.1, 0.3 and 0.5 mg/L) of 2,4-D to induce formation of callus. Fresh weight, dry weight and callus growth percentage in all samples were recorded. The highest mean of dry weight was observed in MS media supplemented with 0.5 mg/L 2,4-D, where 0.4499 ± 0.106 g of callus was produced. The highest percentage of callus growth (16.4%) was also observed in cultures supplemented with 0.5 mg/L 2,4-D. The callus samples were also subjected to HPLC-MS to evaluate the effect of hormone concentration on expression of bio active compounds in different samples. Results showed that caffeoylferuloylquinic acids were present in all samples, but was most abundant in callus cells supplemented with 0.3 & 0.5 mg/L 2,4-D. Interestingly, there was an unknown compound observed to be highly expressed in callus cells supplemented with 0.1 mg/L 2,4-D, but its presence was less significant in callus cells supplemented with 0.3 and 0.5 mg/L 2,4-D. Furthermore, there was also a compound identified as octadecadienoic acid, which was uniquely expressed in callus supplemented with 0.5 mg/L 2,4-D, but absent in callus cells supplemented with 0.1 and 0.3 mg/L 2,4-D. The results obtained in this study indicated that plant growth regulators played a role in expression of secondary metabolites in plants. The increase or decrease of these growth regulators may have triggered a change in the secondary metabolite biosynthesis pathways, thus causing differential expression of compounds in this plant.Keywords: callus, in vitro, secondary metabolite, 2, 4-Dichlorophenoxyacetic acid
Procedia PDF Downloads 3791360 Computation and Validation of the Stress Distribution around a Circular Hole in a Slab Undergoing Plastic Deformation
Authors: Sherif D. El Wakil, John Rice
Abstract:
The aim of the current work was to employ the finite element method to model a slab, with a small hole across its width, undergoing plastic plane strain deformation. The computational model had, however, to be validated by comparing its results with those obtained experimentally. Since they were in good agreement, the finite element method can therefore be considered a reliable tool that can help gain better understanding of the mechanism of ductile failure in structural members having stress raisers. The finite element software used was ANSYS, and the PLANE183 element was utilized. It is a higher order 2-D, 8-node or 6-node element with quadratic displacement behavior. A bilinear stress-strain relationship was used to define the material properties, with constants similar to those of the material used in the experimental study. The model was run for several tensile loads in order to observe the progression of the plastic deformation region, and the stress concentration factor was determined in each case. The experimental study involved employing the visioplasticity technique, where a circular mesh (each circle was 0.5 mm in diameter, with 0.05 mm line thickness) was initially printed on the side of an aluminum slab having a small hole across its width. Tensile loading was then applied to produce a small increment of plastic deformation. Circles in the plastic region became ellipses, where the directions of the principal strains and stresses coincided with the major and minor axes of the ellipses. Next, we were able to determine the directions of the maximum and minimum shear stresses at the center of each ellipse, and the slip-line field was then constructed. We were then able to determine the stress at any point in the plastic deformation zone, and hence the stress concentration factor. The experimental results were found to be in good agreement with the analytical ones.Keywords: finite element method to model a slab, slab undergoing plastic deformation, stress distribution around a circular hole, visioplasticity
Procedia PDF Downloads 3231359 Coupled Exciton - Surface Plasmon Polariton Enhanced Photoresponse of Two-Dimensional Hydrogenated Honeycomb Silicon Boride
Authors: Farzaneh Shayeganfar, Ali Ramazani
Abstract:
Exciton (strong electronic interaction of electron-hole) and hot carriers created by surface plasmon polaritons has been demonstrated in nanoscale optoelectronic devices, enhancing the photoresponse of the system. Herein, we employ a quantum framework to consider coupled exciton- hot carriers effects on photovoltaiv energy distribution, scattering process, polarizability and light emission of 2D-semicnductor. We use density functional theory (DFT) to design computationally a semi-functionalized 2D honeycomb silicon boride (SiB) monolayer with H atoms, suitable for photovoltaics. The dynamical stability, electronic and optical properties of SiB and semi-hydrogenated SiB structures were investigated utilizing the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The calculated phonon dispersion shows that while an unhydrogenated SiB monolayer is dynamically unstable, surface semi-hydrogenation improves the stability of the structure and leads to a transition from metallic to semiconducting conductivity with a direct band gap of about 1.57 eV, appropriate for photovoltaic applications. The optical conductivity of this H-SiB structure, determined using the random phase approximation (RPA), shows that light adsorption should begin at the boundary of the visible range of light. Additionally, due to hydrogenation, the reflectivity spectrum declines sharply with respect to the unhydrogenated reflectivity spectrum in the IR and visible ranges of light. The energy band gap remains direct, increasing from 0.9 to 1.8 eV, upon increasing the strain from -6% (compressive) to +6% (tensile). Additionally, compressive and tensile strains lead, respectively, to red and blue shifts of optical the conductivity threshold around the visible range of light. Overall, this study suggests that H-SiB monolayers are suitable as two-dimensional solar cell materials.Keywords: surface plasmon, hot carrier, strain engineering, valley polariton
Procedia PDF Downloads 1151358 Transient Phenomena in a 100 W Hall Thrusters: Experimental Measurements of Discharge Current and Plasma Parameter Evolution
Authors: Clémence Royer, Stéphane Mazouffre
Abstract:
Nowadays, electric propulsion systems play a crucial role in space exploration missions due to their high specific impulse and long operational life. The Hall thrusters are one of the most mature EP technologies. It is a gridless ion thruster that has proved reliable and high-performance for decades in various space missions. Operation of HT relies on electron emissions through a cathode placed outside a hollow dielectric channel that includes an anode at the back. Negatively charged particles are trapped in a magnetic field and efficiently slow down. By collisions, the electron cloud ionizes xenon atoms. A large electric field is generated in the axial direction due to the low electron transverse mobility in the region of a strong magnetic field. Positive particles are pulled out of the chamber at high velocity and are neutralized directly at the exhaust area. This phenomenon leads to the acceleration of the spacecraft system at a high specific impulse. While HT’s architecture and operating principle are relatively simple, the physics behind thrust is complex and still partly unknown. Current and voltage oscillations, as well as electron properties, have been captured over a 30 mn time period after ignition. The observed low-frequency oscillations exhibited specific frequency ranges, amplitudes, and stability patterns. Correlations between the oscillations and plasma characteristics we analyzed. The impact of these instabilities on thruster performance, including thrust efficiency, has been evaluated as well. Moreover, strategies for mitigating and controlling these instabilities have been developed, such as filtering. In this contribution, in addition to presenting a summary of the results obtained in the transient regime, we will present and discuss recent advances in Hall thruster plasma discharge filtering and control.Keywords: electric propulsion, Hall Thruster, plasma diagnostics, low-frequency oscillations
Procedia PDF Downloads 941357 Development of PPy-M Composites Materials for Sensor Application
Authors: Yatimah Alias, Tilagam Marimuthu, M. R. Mahmoudian, Sharifah Mohamad
Abstract:
The rapid growth of science and technology in energy and environmental fields has enlightened the substantial importance of the conducting polymer and metal composite materials engineered at nano-scale. In this study, polypyrrole-cobalt composites (PPy-Co Cs) and polypyrrole-nickel oxide composites (PPy-NiO Cs) were prepared by a simple and facile chemical polymerization method with an aqueous solution of pyrrole monomer in the presence of metal salt. These composites then fabricated into non-enzymatic hydrogen peroxide (H2O2) and glucose sensor. The morphology and composition of the composites are characterized by the Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrum and X-ray Powder Diffraction. The obtained results were compared with the pure PPy and metal oxide particles. The structural and morphology properties of synthesized composites are different from those of pure PPy and metal oxide particles, which were attributed to the strong interaction between the PPy and the metal particles. Besides, a favorable micro-environment for the electrochemical oxidation of H2O2 and glucose was achieved on the modified glassy carbon electrode (GCE) coated with PPy-Co Cs and PPy-NiO Cs respectively, resulting in an enhanced amperometric response. Both PPy-Co/GCE and PPy-NiO/GCE give high response towards target analyte at optimum condition of 500 μl pyrrole monomer content. Furthermore, the presence of pyrrole monomer greatly increases the sensitivity of the respective modified electrode. The PPy-Co/GCE could detect H2O2 in a linear range of 20 μM to 80 mM with two linear segments (low and high concentration of H2O2) and the detection limit for both ranges is 2.05 μM and 19.64 μM, respectively. Besides, PPy-NiO/GCE exhibited good electrocatalytic behavior towards glucose oxidation in alkaline medium and could detect glucose in linear ranges of 0.01 mM to 0.50 mM and 1 mM to 20 mM with detection limit of 0.33 and 5.77 μM, respectively. The ease of modifying and the long-term stability of this sensor have made it superior to enzymatic sensors, which must kept in a critical environment.Keywords: metal oxide, composite, non-enzymatic sensor, polypyrrole
Procedia PDF Downloads 2681356 The Effects of Some Organic Amendments on Sediment Yield, Splash Loss, and Runoff of Soils of Selected Parent Materials in Southeastern Nigeria
Authors: Leonard Chimaobi Agim, Charles Arinzechukwu Igwe, Emmanuel Uzoma Onweremadu, Gabreil Osuji
Abstract:
Soil erosion has been linked to stream sedimentation, ecosystem degradation, and loss of soil nutrients. A study was conducted to evaluate the effect of some organic amendment on sediment yield, splash loss, and runoff of soils of selected parent materials in southeastern Nigeria. A total of 20 locations, five from each of four parent materials namely: Asu River Group (ARG), Bende Ameki Group (BAG), Coastal Plain Sand (CPS) and Falsebedded Sandstone (FBS) were used for the study. Collected soil samples were analyzed with standard methods for the initial soil properties. Rainfall simulation at an intensity of 190 mm hr-1was conducted for 30 minutes on the soil samples at both the initial stage and after amendment to obtain erosion parameters. The influence of parent material on sediment yield, splash loss and runoff based on rainfall simulation was tested for using one way analyses of variance, while the influence of organic material and their combinations were a factorially fitted in a randomized complete block design. The organic amendments include; goat dropping (GD), poultry dropping (PD), municipal solid waste (MSW) and their combinations (COA) applied at four rates of 0, 10, 20 and 30 t ha-1 respectively. Data were analyzed using analyses of variance suitable for a factorial experiment. Significant means were separated using LSD at 5 % probability levels. Result showed significant (p ≤ 0.05) lower values of sediment yield, splash loss and runoff following amendment. For instance, organic amendment reduced sediment yield under wet and dry runs by 12.91 % and 26.16% in Ishiagu, 40.76% and 45.67%, in Bende, 16.17% and 50% in Obinze and 22.80% and 42.35% in Umulolo respectively. Goat dropping and combination of amendment gave the best results in reducing sediment yield.Keywords: organic amendment, parent material, rainfall simulation, soil erosion
Procedia PDF Downloads 3481355 Valorization of Waste and By-products for Protein Extraction and Functional Properties
Authors: Lorena Coelho, David Ramada, Catarina Nobre, Joaquim Gaião, Juliana Duarte
Abstract:
The development of processes that allows the valorization of waste and by-products generated by industries is crucial to promote symbiotic relationships between different sectors and is mandatory to “close the loop” in the circular economy paradigm. In recent years, by-products and waste from agro-food and forestry sector have attracted attention due to their potential application and technical characteristics. The extraction of bio-based active compounds to be reused is in line with the circular bioeconomy concept trends, combining the use of renewable resources with the process’s circularity, aiming the waste reduction and encouraging reuse and recycling. Among different types of bio-based materials, which are being explored and can be extracted, proteins fractions are becoming an attractive new raw material. Within this context, BioTrace4Leather project, a collaboration between two Technological Centres – CeNTI and CTIC, and a company of Tanning and Finishing of Leather – Curtumes Aveneda, aims to develop innovative and biologically sustainable solutions for leather industry and accomplish the market circularity trends. Specifically, it aims to the valorisation of waste and by-products from the tannery industry through proteins extraction and the development of an innovative and biologically sustainable materials. The achieved results show that keratin, gelatine, and collagen fractions can be successfully extracted from hair and leather bovine waste. These products could be reintegrated into the industrial manufacturing process to attain innovative and functional textile and leather substrates. ACKNOWLEDGEMENT This work has been developed under BioTrace4Leather scope, a project co-funded by Operational Program for Competitiveness and Internationalization (COMPETE) of PORTUGAL2020, through the European Regional Development Fund (ERDF), under grant agreement Nº POCI-01-0247-FEDER-039867.Keywords: leather by-products, circular economy, sustainability, protein fractions
Procedia PDF Downloads 1621354 Dimensional-Controlled Functional Gold Nanoparticles and Zinc Oxide Nanorods for Solar Water Splitting
Authors: Kok Hong Tan, Hing Wah Lee, Jhih-Wei Chen, Chang Fu Dee, Chung-Lin Wu, Siang-Piao Chai, Wei Sea Chang
Abstract:
Semiconductor photocatalyst is known as one of the key roles in developing clean and sustainable energy. However, most of the semiconductor only possesses photoactivity within the UV light region, and hence, decreases the overall photocatalyst efficiency. Generally, the overall effectiveness of the photocatalyst activity is determined by three critical steps: (i) light absorption efficiency and photoexcitation electron-hole pair generation, (ii) separation and migration of charge carriers to the surface of the photocatalyst, and (iii) surface reaction of the carriers with its environment. Much effort has been invested on optimizing hierarchical nanostructures of semiconductors for efficient photoactivity due to the fact that the visible light absorption capability and occurrence of the chemical reactions mostly depend on the dimension of photocatalysts. In this work, we incorporated zero-dimensional (0D) gold nanoparticles (AuNPs) and one dimensional (1D) Zinc Oxide (ZnO) nanorods (NRs) onto strontium titanate (STO) for efficient visible light absorption, charge transfer, and separation. We demonstrate that the electrical and optical properties of the photocatalyst can be tuned by controlling the dimensional structures of AuNPs and ZnO NRs. We found that smaller AuNPs sizes exhibited higher photoactivity because of Fermi level shifting toward the conductive band of STO, STO band gap narrowing and broadening of absorption spectrum to the visible light region. For ZnO NRs, it was found that the average ZnO NRs c-axis length must achieve of certain length to induce multiphoton absorption as a result of light reflection and trapping behavior in the free space between adjacent ZnO NRs hence broadening the absorption spectrum of ZnO from UV to visible light region. This work opens up a new way of broadening the absorption spectrum by incorporating controllable nanostructures of semiconductors, which is important in optimizing the solar water splitting process.Keywords: gold nanoparticles, photoelectrochemical, PEC, semiconductor photocatalyst, zinc oxide nanorods
Procedia PDF Downloads 1641353 Time Domain Dielectric Relaxation Microwave Spectroscopy
Authors: A. C. Kumbharkhane
Abstract:
Time domain dielectric relaxation microwave spectroscopy (TDRMS) is a term used to describe a technique of observing the time dependant response of a sample after application of time dependant electromagnetic field. A TDRMS probes the interaction of a macroscopic sample with a time dependent electrical field. The resulting complex permittivity spectrum, characterizes amplitude (voltage) and time scale of the charge-density fluctuations within the sample. These fluctuations may arise from the reorientation of the permanent dipole moments of individual molecules or from the rotation of dipolar moieties in flexible molecules, like polymers. The time scale of these fluctuations depends on the sample and its relative relaxation mechanism. Relaxation times range from some picoseconds in low viscosity liquids to hours in glasses, Therefore the TDRS technique covers an extensive dynamical process. The corresponding frequencies range from 10-4 Hz to 1012 Hz. This inherent ability to monitor the cooperative motion of molecular ensemble distinguishes dielectric relaxation from methods like NMR or Raman spectroscopy, which yield information on the motions of individual molecules. Recently, we have developed and established the TDR technique in laboratory that provides information regarding dielectric permittivity in the frequency range 10 MHz to 30 GHz. The TDR method involves the generation of step pulse with rise time of 20 pico-seconds in a coaxial line system and monitoring the change in pulse shape after reflection from the sample placed at the end of the coaxial line. There is a great interest to study the dielectric relaxation behaviour in liquid systems to understand the role of hydrogen bond in liquid system. The intermolecular interaction through hydrogen bonds in molecular liquids results in peculiar dynamical properties. The dynamics of hydrogen-bonded liquids have been studied. The theoretical model to explain the experimental results will be discussed.Keywords: microwave, time domain reflectometry (TDR), dielectric measurement, relaxation time
Procedia PDF Downloads 3381352 La₀.₈Ba₀.₂FeO₃ Perovskite as an Additive in the Three-Way Catalyst (TWCs) for Reduction of PGMs Loading
Authors: Mahshid Davoodpoor, Zahra Shamohammadi Ghahsareh, Saeid Razfar, Alaleh Dabbaghi
Abstract:
Nowadays, air pollution has become a topic of great concern all over the world. One of the main sources of air pollution is automobile exhaust gas, which introduces a large number of toxic gases, including CO, unburned hydrocarbons (HCs), NOx, and non-methane hydrocarbons (NMHCs), into the air. The application of three-way catalysts (TWCs) is still the most effective strategy to mitigate the emission of these pollutants. Due to the stringent environmental regulations which continuously become stricter, studies on the TWCs are ongoing despite several years of research and development. This arises from the washcoat complexity and the several numbers of parameters involved in the redox reactions. The main objectives of these studies are the optimization of washcoat formulation and the investigation of different coating modes. Perovskite (ABO₃), as a promising class of materials, has unique features that make it versatile to use as an alternative to commonly mixed oxides in washcoats. High catalytic activity for oxidation reactions and its relatively high oxygen storage capacity are important properties of perovskites in catalytic applications. Herein, La₀.₈Ba₀.₂FeO₃ perovskite material was synthesized using the co-precipitation method and characterized by XRD, ICP, and BET analysis. The effect of synthesis conditions, including B site metal (Fe and Co), metal precursor concentration, and dopant (Ba), were examined on the phase purity of the products. The selected perovskite sample was used as one of the components in the TWC formulation to evaluate its catalytic performance through Light-off, oxygen storage capacity, and emission analysis. Results showed a remarkable increment in oxygen storage capacity and also revealed that T50 and emission of CO, HC, and NOx reduced in the presence of perovskite structure which approves the enhancement of catalytic performance for the new washcoat formulation. This study shows the brilliant future of advanced oxide structures in the TWCs.Keywords: Perovskite, three-way catalyst, PGMs, PGMs reduction
Procedia PDF Downloads 701351 Fexofenadine Hydrochloride Orodispersisble Tablets: Formulation and in vitro/in vivo Evaluation in Healthy Human Volunteers
Authors: Soad Ali Yehia, Mohamed Shafik El-Ridi, Mina Ibrahim Tadros, Nolwa Gamal El-Sherif
Abstract:
Fexofenadine hydrochloride (FXD) is a slightly soluble, bitter-tasting, drug having an oral bioavailability of 35%. The maximum plasma concentration is reached 2.6 hours (Tmax) post-dose. The current work aimed to develop taste-masked FXD orodispersible tablets (ODTs) to increase extent of drug absorption and reduce Tmax. Taste masking was achieved via solid dispersion (SD) with chitosan (CS) or sodium alginate (ALG). FT-IR, DSC and XRD were performed to identify physicochemical interactions and FXD crystallinity. Taste-masked FXD-ODTs were developed via addition of superdisintegrants (crosscarmelose sodium or sodium starch glycolate, 5% and 10%, w/w) or sublimable agents (camphor, menthol or thymol; 10% and 20%, w/w) to FXD-SDs. ODTs were evaluated for weight variation, drug-content, friability, wetting time, disintegration time and drug release. Camphor-based (20%, w/w) FXD-ODT (F12) was optimized (F23) by incorporation of a more hydrophilic lubricant, sodium stearyl fumarate (Pruv®). The topography of the latter formula was examined via scanning electron microscopy (SEM). The in vivo estimation of FXD pharmacokinetics, relative to Allegra® tablets, was evaluated in healthy human volunteers. Based on the gustatory sensation test in healthy volunteers, FXD:CS (1:1) and FXD:ALG (1:0.5) SDs were selected. Taste-masked FXD-ODTs had appropriate physicochemical properties and showed short wetting and disintegration times. Drug release profiles of F23 and phenylalanine-containing Allegra® ODT were similar (f2 = 96) showing a complete release in two minutes. SEM micrographs revealed pores following camphor sublimation. Compared to Allegra® tablets, pharmacokinetic studies in healthy volunteers proved F23 ability to increase extent of FXD absorption (14%) and reduce Tmax to 1.83 h.Keywords: fexofenadine hydrochloride, taste masking, chitosan, orodispersible
Procedia PDF Downloads 3481350 Nanomaterials-Assisted Drilling Fluids for Application in Oil Fields - Challenges and Prospects
Authors: Husam Mohammed Saleh Alziyadi
Abstract:
The drilling fluid has a significant impact on drilling efficiency. Drilling fluids have several functions which make them most important within the drilling process, such as lubricating and cooling the drill bit, removing cuttings from down of hole, preventing formation damage, suspending drill bit cuttings, , and also removing permeable formation as a result, the flow of fluid into the formation process is delayed. In the oil and gas sector, unconventional shale reserves have been a central player in meeting world energy demands. Oil-based drilling fluids (OBM) are generally favored for drilling shale plays due to negligible chemical interactions. Nevertheless, the industry has been inspired by strict environmental regulations to design water-based drilling fluids (WBM) capable of regulating shale-water interactions to boost their efficiency. However, traditional additives are too large to plug the micro-fractures and nanopores of the shale. Recently, nanotechnology in the oil and gas industries has shown a lot of promise, especially with drilling fluids based on nanoparticles. Nanotechnology has already made a huge contribution to technical developments in the energy sector. In the drilling industry, nanotechnology can make revolutionary changes. Nanotechnology creates nanomaterials with many attractive properties that can play an important role in improving the consistency of mud cake, reducing friction, preventing differential pipe sticking, preserving the stability of the borehole, protecting reservoirs, and improving the recovery of oil and gas. The selection of suitable nanomaterials should be based on the shale formation characteristics intended for drilling. The size, concentration, and stability of the NPs are three more important considerations. The effects of the environment are highly sensitive to these materials, such as changes in ionic strength, temperature, or pH, all of which occur under downhole conditions. This review paper focused on the previous research and recent development of environmentally friendly drilling fluids according to the regulatory environment and cost challenges.Keywords: nanotechnology, WBM, Drilling Fluid, nanofluids
Procedia PDF Downloads 1291349 Determination of Stress-Strain Curve of Duplex Stainless Steel Welds
Authors: Carolina Payares-Asprino
Abstract:
Dual-phase duplex stainless steel comprised of ferrite and austenite has shown high strength and corrosion resistance in many aggressive environments. Joining duplex alloys is challenging due to several embrittling precipitates and metallurgical changes during the welding process. The welding parameters strongly influence the quality of a weld joint. Therefore, it is necessary to quantify the weld bead’s integral properties as a function of welding parameters, especially when part of the weld bead is removed through a machining process due to aesthetic reasons or to couple the elements in the in-service structure. The present study uses the existing stress-strain model to predict the stress-strain curves for duplex stainless-steel welds under different welding conditions. Having mathematical expressions that predict the shape of the stress-strain curve is advantageous since it reduces the experimental work in obtaining the tensile test. In analysis and design, such stress-strain modeling simplifies the time of operations by being integrated into calculation tools, such as the finite element program codes. The elastic zone and the plastic zone of the curve can be defined by specific parameters, generating expressions that simulate the curve with great precision. There are empirical equations that describe the stress-strain curves. However, they only refer to the stress-strain curve for the stainless steel, but not when the material is under the welding process. It is a significant contribution to the applications of duplex stainless steel welds. For this study, a 3x3 matrix with a low, medium, and high level for each of the welding parameters were applied, giving a total of 27 weld bead plates. Two tensile specimens were manufactured from each welded plate, resulting in 54 tensile specimens for testing. When evaluating the four models used to predict the stress-strain curve in the welded specimens, only one model (Rasmussen) presented a good correlation in predicting the strain stress curve.Keywords: duplex stainless steels, modeling, stress-stress curve, tensile test, welding
Procedia PDF Downloads 1731348 The Investigation of Fiber Reinforcement Self-Compacting Concrete and Fiber Reinforcement Concrete
Authors: Orod Zarrin, Mohesn Ramezan Shirazi, Hassan Moniri
Abstract:
The use of pile foundations technique is developed to support structures and buildings on soft soil. The most important dynamic load that can affect the pile structure is earthquake vibrations. From the 1960s the comprehensive investigation of pile foundations during earthquake excitation indicate that, piles are subject to damage by affecting the superstructure integrity and serviceability. The main part of these research has been focused on the behavior of liquefiable soil and lateral spreading load on piles. During an earthquake, two types of stresses can damage the pile head, inertial load that is caused by superstructure and deformation which caused by the surrounding soil. Soil deformation and inertial load are associated with the acceleration developed in an earthquake. The acceleration amplitude at the ground surface depends on the magnitude of earthquakes, soil properties and seismic source distance. According to the investigation, the damage is between the liquefiable and non-liquefiable layers and also soft and stiff layers. This damage crushes the pile head by increasing the inertial load which is applied by the superstructure. On the other hand, the cracks on the piles due to the surrounding soil are directly related to the soil profile and causes cracks from small to large. And researchers have been listed the large cracks reason such as liquefaction, lateral spreading and inertial load. In the field of designing, elastic response of piles are always a challenge for designer in liquefaction soil, by allowing deflection at top of piles. Moreover, absence of plastic hinges in piles should be insured, because the damage in the piles is not observed directly. In this study, the performance and behavior of pile foundations during liquefaction and lateral spreading are investigated. And emphasize on the soil behavior in the liquefiable and non-liquefiable layers by different aspect of piles damage such as ranking, location and degree of damage are going to discuss.Keywords: self-compacting concrete, fiber, tensile strength, post-cracking, direct and inverse technique
Procedia PDF Downloads 2411347 Improvement in Blast Furnace Performance Using Softening - Melting Zone Profile Prediction Model at G Blast Furnace, Tata Steel Jamshedpur
Authors: Shoumodip Roy, Ankit Singhania, K. R. K. Rao, Ravi Shankar, M. K. Agarwal, R. V. Ramna, Uttam Singh
Abstract:
The productivity of a blast furnace and the quality of the hot metal produced are significantly dependent on the smoothness and stability of furnace operation. The permeability of the furnace bed, as well as the gas flow pattern, influences the steady control of process parameters. The softening – melting zone that is formed inside the furnace contributes largely in distribution of the gas flow and the bed permeability. A better shape of softening-melting zone enhances the performance of blast furnace, thereby reducing the fuel rates and improving furnace life. Therefore, predictive model of the softening- melting zone profile can be utilized to control and improve the furnace operation. The shape of softening-melting zone depends upon the physical and chemical properties of the agglomerates and iron ore charged in the furnace. The variations in the agglomerate proportion in the burden at G Blast furnace disturbed the furnace stability. During such circumstances, it was analyzed that a w-shape softening-melting zone profile was formed inside the furnace. The formation of w-shape zone resulted in poor bed permeability and non-uniform gas flow. There was a significant increase in the heat loss at the lower zone of the furnace. The fuel demand increased, and the huge production loss was incurred. Therefore, visibility of softening-melting zone profile was necessary in order to pro-actively optimize the process parameters and thereby to operate the furnace smoothly. Using stave temperatures, a model was developed that predicted the shape of the softening-melting zone inside the furnace. It was observed that furnace operated smoothly during inverse V-shape of the zone and vice-versa during w-shape. This model helped to control the heat loss, optimize the burden distribution and lower the fuel rate at G Blast Furnace, TSL Jamshedpur. As a result of furnace stabilization productivity increased by 10% and fuel rate reduced by 80 kg/thm. Details of the process have been discussed in this paper.Keywords: agglomerate, blast furnace, permeability, softening-melting
Procedia PDF Downloads 2561346 Decomposition of Solidification Carbides during Cyclic Thermal Treatments in a Co-Based Alloy Deposit Applied to Stainless Steel
Authors: Sellidj Abdelaziz, Lebaili Soltane
Abstract:
A cobalt-based alloy type Co-Cr-Ni-WC was deposited by plasma transferred arc projection (PTA) on a stainless steel valve. The alloy is characterized at the equilibrium by a solid solution Co (γ) mainly dendritic, and eutectic carbides M₇C₃ and ηM₆C. At the deposit/substrate interface, this microstructure is modified by the fast cooling mode of the alloy when applied in the liquid state on the relatively cold steel substrate. The structure formed in this case is heterogeneous and metastable phases can occur and evolve over temperature service. Coating properties and reliability are directly related to microstructures formed during deposition. We were interested more particularly in this microstructure formed during the solidification of the deposit in the region of the interface joining the soldered couple and its evolution during cyclic heat treatments at temperatures similar to those of the thermal environment of the valve. The characterization was carried out by SEM-EDS microprobe CAMECA, XRD, and micro hardness profiles. The deposit obtained has a linear and regular appearance that is free of cracks and with little porosity. The morphology of the microstructure represents solidification stages that are relatively fast with a temperature gradient high at the beginning of the interface by forming a plane front solid solution Co (γ). It gradually changes with the decreasing temperature gradient by getting farther from the junction towards the outer limit of the deposit. The matrix takes the forms: cellular, mixed (cells and dendrites) and dendritic. Dendritic growth is done according to primary ramifications in the direction of the heat removal which takes place in the direction perpendicular to the interface, towards the external surface of the deposit, following secondary and tertiary undeveloped arms. The eutectic carbides M₇C₃ and ηM₆C formed are very thin and are located in the intercellular and interdendritic spaces of the solid solution Co (γ).Keywords: Co-Ni-Cr-W-C alloy, solid deposit, microstructure, carbides, cyclic heat treatment
Procedia PDF Downloads 1191345 The Contribution of Corpora to the Investigation of Cross-Linguistic Equivalence in Phraseology: A Contrastive Analysis of Russian and Italian Idioms
Authors: Federica Floridi
Abstract:
The long tradition of contrastive idiom research has essentially been focusing on three domains: the comparison of structural types of idioms (e.g. verbal idioms, idioms with noun-phrase structure, etc.), the description of idioms belonging to the same thematic groups (Sachgruppen), the identification of different types of cross-linguistic equivalents (i.e. full equivalents, partial equivalents, phraseological parallels, non-equivalents). The diastratic, diachronic and diatopic aspects of the compared idioms, as well as their syntactic, pragmatic and semantic properties, have been rather ignored. Corpora (both monolingual and parallel) give the opportunity to investigate the actual use of correlating idioms in authentic texts of L1 and L2. Adopting the corpus-based approach, it is possible to draw attention to the frequency of occurrence of idioms, their syntactic embedding, their potential syntactic transformations (e.g., nominalization, passivization, relativization, etc.), their combinatorial possibilities, the variations of their lexical structure, their connotations in terms of stylistic markedness or register. This paper aims to present the results of a contrastive analysis of Russian and Italian idioms referring to the concepts of ‘beginning’ and ‘end’, that has been carried out by using the Russian National Corpus and the ‘La Repubblica’ corpus. Beyond the digital corpora, bilingual dictionaries, like Skvorcova - Majzel’, Dobrovol’skaja, Kovalev, Čerdanceva, as well as monolingual resources, have been consulted. The study has shown that many of the idioms that have been traditionally indicated as cross-linguistic equivalents on bilingual dictionaries cannot be considered correspondents. The findings demonstrate that even those idioms, that are formally identical in Russian and Italian and are presumably derived from the same source (e.g., conceptual metaphor, Bible, classical mythology, World literature), exhibit differences regarding usage. The ultimate purpose of this article is to highlight that it is necessary to review and improve the existing bilingual dictionaries considering the empirical data collected in corpora. The materials gathered in this research can contribute to this sense.Keywords: corpora, cross-linguistic equivalence, idioms, Italian, Russian
Procedia PDF Downloads 1501344 Nutritional Characteristics, Phytochemical and Antimicrobial Potential of Leaf Protein Concentrates from Huckleberry
Authors: Sodamade Abiodun, Adeboye Olubunmi Omolara
Abstract:
Problems associated with protein malnutrition are still prevalent in third-world countries, leading to the constant search for plants that can serve as nutrients and medicinal purposes. Huckleberry is one of the plants that has been proven useful locally in the treatment of numerous ailments and diseases. A fresh sample of Huckleberry was collected from a vegetable garden situated near the Erelu dam of the Emmanuel Alayande College of Education campus, Oyo. The sample was authenticated at the forestry research institute of Nigeria (FRIN) Ibadan. The leaves of the plant were plucked and processed for leaf protein concentrates before proximate composition; mineral analysis phytochemical and antimicrobial properties of the leaf protein concentrates were determined using a standard method of analysis. The results of proximate constituents showed; moisture content; 9.89±0.051g/100g, Ash; 3.23±0.12g/100g, crude fat; 3.96±0.11g/100g and 61.27±0.56g/100g of Nitrogen free extractive results of the mineral analysis showed that the sample contains Mg; 0.081±0.00mg/100g, Ca; 42.30±0.05mg/100g, Na; 27.57±0.09mg/100g, K; 6.81±0.01mg/100g, P; 8.90±0.03mg/100g Fe; 0.51±0.00mg/100g, Zn; 0.021±0.00mg/100g, Cd; 0.04±0.04mg/100g, Pb; 0.002±0.00mg/100g, Cr; 0.041±0.00mg/100g while cadmium was not detected in the sample. The result of phytochemical analysis of leaf protein concentrates of the Huckleberry showed the presence of Alkaloid, Saponin, Flavonoid, Tanin, Coumarin, steroid, Terpenoid, cordial glycosides, Glycosides, Quinones, Anthocyanin, phytosterols, and phenols. Ethanolic extracts of the Huckleberry leaf protein concentrates showed that it contains bioactive compounds that are capable of eradicating some tested microorganisms; Staphylococcus aureus, Streptococcus pyogenes, Streptococcus faecalis, Pseudomonas aeruginosa, Klebisidlae pneumonia and Proteus merabilis. The results of the analysis of leaf protein concentrates of Huckleberry showed that the sample contains high nutrient and mineral constituents and phytochemical compounds that could make the sample useful for medicinal activities.Keywords: huckleberry, mentha piperita, phytochemical, leaf protein concentrates, nutritional characteristics
Procedia PDF Downloads 931343 Lead and Cadmium Spatial Pattern and Risk Assessment around Coal Mine in Hyrcanian Forest, North Iran
Authors: Mahsa Tavakoli, Seyed Mohammad Hojjati, Yahya Kooch
Abstract:
In this study, the effect of coal mining activities on lead and cadmium concentrations and distribution in soil was investigated in Hyrcanian forest, North Iran. 16 plots (20×20 m2) were established by systematic-randomly (60×60 m2) in an area of 4 ha (200×200 m2-mine entrance placed at center). An area adjacent to the mine was not affected by the mining activity; considered as the controlled area. In order to investigate soil lead and cadmium concentration, one sample was taken from the 0-10 cm in each plot. To study the spatial pattern of soil properties and lead and cadmium concentrations in the mining area, an area of 80×80m2 (the mine as the center) was considered and 80 soil samples were systematic-randomly taken (10 m intervals). Geostatistical analysis was performed via Kriging method and GS+ software (version 5.1). In order to estimate the impact of coal mining activities on soil quality, pollution index was measured. Lead and cadmium concentrations were significantly higher in mine area (Pb: 10.97±0.30, Cd: 184.47±6.26 mg.kg-1) in comparison to control area (Pb: 9.42±0.17, Cd: 131.71±15.77 mg.kg-1). The mean values of the PI index indicate that Pb (1.16) and Cd (1.77) presented slightly polluted. Results of the NIPI index showed that Pb (1.44) and Cd (2.52) presented slight pollution and moderate pollution respectively. Results of variography and kriging method showed that it is possible to prepare interpolation maps of lead and cadmium around the mining areas in Hyrcanian forest. According to results of pollution and risk assessments, forest soil was contaminated by heavy metals (lead and cadmium); therefore, using reclamation and remediation techniques in these areas is necessary.Keywords: traditional coal mining, heavy metals, pollution indicators, geostatistics, Caspian forest
Procedia PDF Downloads 185