Search results for: sustained loading.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2019

Search results for: sustained loading.

1299 Managing Construction Wastes in Nigeria for Sustainable Development

Authors: Ezekiel Ejiofor Nnadi

Abstract:

Nigeria construction industry is known for its active construction activities. This has earmarked the industry to be the key to economic growth of the nation. It has largest employer of labour and gives sustenance to other industries like manufacturing industry. While this is a sign of growth and prosperity; the waste generated by the industry has always been a problem and a serious concern. It results in wastage of economic gain and has resultant health effect on the populace apart from injury being sustained on sites. This work provides a platform to learn more about construction waste, its management strategy and how to reduce waste production in Nigeria construction industry. Construction sites, waste management authority and public health institutions in Lagos as the centre of most construction activities in Nigeria were selected, and a set of questionnaire was administered to using the systematic sampling technique. Descriptive statistics and relative importance index (RII) technique were employed for the analysis of the data gathered. The findings of the analysis show that excessive wastes reduce contractors’ profit margin and also that some construction wastes contain hazardous and toxic elements such as lead, asbestos or radioactive materials which required proper handling and effective disposal. The conclusion was drawn that the check on waste on construction sites starts with the designers to the contractors who execute on site.

Keywords: construction cost, construction industry, economic growth, materials wastes

Procedia PDF Downloads 262
1298 Numerical Prediction of Width Crack of Concrete Dapped-End Beams

Authors: Jatziri Y. Moreno-Martinez, Arturo Galvan, Xavier Chavez Cardenas, Hiram Arroyo

Abstract:

Several methods have been utilized to study the prediction of cracking of concrete structural under loading. The finite element analysis is an alternative that shows good results. The aim of this work was the numerical study of the width crack in reinforced concrete beams with dapped ends, these are frequently found in bridge girders and precast concrete construction. Properly restricting cracking is an important aspect of the design in dapped ends, it has been observed that the cracks that exceed the allowable widths are unacceptable in an aggressive environment for reinforcing steel. For simulating the crack width, the discrete crack approach was considered by means of a Cohesive Zone (CZM) Model using a function to represent the crack opening. Two cases of dapped-end were constructed and tested in the laboratory of Structures and Materials of Engineering Institute of UNAM. The first case considers a reinforcement based on hangers as well as on vertical and horizontal ring, the second case considers 50% of the vertical stirrups in the dapped end to the main part of the beam were replaced by an equivalent area (vertically projected) of diagonal bars under. The loading protocol consisted on applying symmetrical loading to reach the service load. The models were performed using the software package ANSYS v. 16.2. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The reinforcement was introduced with smeared approach. Interface delamination was modeled by traditional fracture mechanics methods such as the nodal release technique adopting softening relationships between tractions and the separations, which in turn introduce a critical fracture energy that is also the energy required to break apart the interface surfaces. This technique is called CZM. The interface surfaces of the materials are represented by a contact elements Surface-to-Surface (CONTA173) with bonded (initial contact). The Mode I dominated bilinear CZM model assumes that the separation of the material interface is dominated by the displacement jump normal to the interface. Furthermore, the opening crack was taken into consideration according to the maximum normal contact stress, the contact gap at the completion of debonding, and the maximum equivalent tangential contact stress. The contact elements were placed in the crack re-entrant corner. To validate the proposed approach, the results obtained with the previous procedure are compared with experimental test. A good correlation between the experimental and numerical Load-Displacement curves was presented, the numerical models also allowed to obtain the load-crack width curves. In these two cases, the proposed model confirms the capability of predicting the maximum crack width, with an error of ± 30 %. Finally, the orientation of the crack is a fundamental for the prediction of crack width. The results regarding the crack width can be considered as good from the practical point view. Load-Displacement curve of the test and the location of the crack were able to obtain favorable results.

Keywords: cohesive zone model, dapped-end beams, discrete crack approach, finite element analysis

Procedia PDF Downloads 158
1297 Support Vector Machine Based Retinal Therapeutic for Glaucoma Using Machine Learning Algorithm

Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Yang Yung, Tracy Lin Huan

Abstract:

Glaucoma is a group of visual maladies represented by the scheduled optic nerve neuropathy; means to the increasing dwindling in vision ground, resulting in loss of sight. In this paper, a novel support vector machine based retinal therapeutic for glaucoma using machine learning algorithm is conservative. The algorithm has fitting pragmatism; subsequently sustained on correlation clustering mode, it visualizes perfect computations in the multi-dimensional space. Support vector clustering turns out to be comparable to the scale-space advance that investigates the cluster organization by means of a kernel density estimation of the likelihood distribution, where cluster midpoints are idiosyncratic by the neighborhood maxima of the concreteness. The predicted planning has 91% attainment rate on data set deterrent on a consolidation of 500 realistic images of resolute and glaucoma retina; therefore, the computational benefit of depending on the cluster overlapping system pedestal on machine learning algorithm has complete performance in glaucoma therapeutic.

Keywords: machine learning algorithm, correlation clustering mode, cluster overlapping system, glaucoma, kernel density estimation, retinal therapeutic

Procedia PDF Downloads 235
1296 Failure Simulation of Small-scale Walls with Chases Using the Lattic Discrete Element Method

Authors: Karina C. Azzolin, Luis E. Kosteski, Alisson S. Milani, Raquel C. Zydeck

Abstract:

This work aims to represent Numerically tests experimentally developed in reduced scale walls with horizontal and inclined cuts by using the Lattice Discrete Element Method (LDEM) implemented On de Abaqus/explicit environment. The cuts were performed with depths of 20%, 30%, and 50% On the walls subjected to centered and eccentric loading. The parameters used to evaluate the numerical model are its strength, the failure mode, and the in-plane and out-of-plane displacements.

Keywords: structural masonry, wall chases, small scale, numerical model, lattice discrete element method

Procedia PDF Downloads 170
1295 Understanding Health-Related Properties of Grapes by Pharmacokinetic Modelling of Intestinal Absorption

Authors: Sophie N. Selby-Pham, Yudie Wang, Louise Bennett

Abstract:

Consumption of grapes promotes health and reduces the risk of chronic diseases due to the action of grape phytochemicals in regulation of Oxidative Stress and Inflammation (OSI). The bioefficacy of phytochemicals depends on their absorption in the human body. The time required for phytochemicals to achieve maximal plasma concentration (Tₘₐₓ) after oral intake reflects the time window of maximal bioefficacy of phytochemicals, with Tₘₐₓ dependent on physicochemical properties of phytochemicals. This research collated physicochemical properties of grape phytochemicals from white and red grapes to predict their Tₘₐₓ using pharmacokinetic modelling. The predicted values of Tₘₐₓ were then compared to the measured Tₘₐₓ collected from clinical studies to determine the accuracy of prediction. In both liquid and solid intake forms, white grapes exhibit a shorter Tₘₐₓ range (0.5-2.5 h) versus red grapes (1.5-5h). The prediction accuracy of Tₘₐₓ for grape phytochemicals was 33.3% total error of prediction compared to the mean, indicating high prediction accuracy. Pharmacokinetic modelling allows prediction of Tₘₐₓ without costly clinical trials, informing dosing frequency for sustained presence of phytochemicals in the body to optimize the health benefits of phytochemicals.

Keywords: absorption kinetics, phytochemical, phytochemical absorption prediction model, Vitis vinifera

Procedia PDF Downloads 140
1294 Curcumin Loaded Modified Chitosan Nanocarrier for Tumor Specificity

Authors: S. T. Kumbhar, M. S. Bhatia, R. C. Khairate

Abstract:

An effective nanodrug delivery system was developed by using chitosan for increased encapsulation efficiency and retarded release of curcumin. Potential ionotropic gelation method was used for the development of chitosan nanoparticles with TPP as cross-linker. The characterization was done for analysis of size, structure, surface morphology, and thermal behavior of synthesized chitosan nanoparticles. The encapsulation efficiency was more than 80%, with improved drug loading capacity. The in-vitro drug release study showed that curcumin release rate was decreased significantly. These chitosan nanoparticles could be a suitable platform for co-delivery of curcumin and anticancer agent for enhanced cytotoxic effect on tumor cells.

Keywords: Curcumin, chitosan, nanoparticles, anticancer activity

Procedia PDF Downloads 171
1293 Access to Higher Education in Nigeria: The University of Calabar Pre-Degree Programme Experience

Authors: Eni I. Eni, James Okon, Ashang J. Ashang

Abstract:

The pre-degree programme of the University of Calabar was introduced to help increase access to tertiary Education in science related courses. This has become necessary due to population increase and public awareness. Its main objective was to provide access to candidates from educationally less developed states (ELDS) and states within its catchment area. To find out if this objective of the programme has been achieved, an impact evaluation of the programme was conducted, from where the aspect of providing access to University Education was reported here. It was reasoned that if this objective of the programme was properly implemented, there should be an evidence of increase in the access to University Education. To achieve the purpose of this study, two research questions were formulated; expost-facto research design and purposive sampling technique were adopted for the study. Data was collected from the Faculty of Science and analyzed using descriptive statistics in terms of frequencies and percentages. The result of data analysis showed that the pre-degree programme of the University of Calabar has provided educational access to Nigerians especially those from educationally less developed states in science related courses. It was therefore recommended that the programme be sustained and further be improved upon to facilitate its continued provision of access to University Education in Nigeria.

Keywords: higher education, pre-degree programme, University of Calabar, educationally less developed states

Procedia PDF Downloads 327
1292 Correlation of IFNL4 ss469415590 and IL28B rs12979860 with the Hepatitis C Virus Treatment Response among Tunisian Patients

Authors: Khaoula Azraiel, Mohamed Mehdi Abassi, Amel Sadraoui, Walid Hammami, Azouz Msaddek, Imed Cheikh, Maria Mancebo, Elisabet Perez-Navarro, Antonio Caruz, Henda Triki, Ahlem Djebbi

Abstract:

IL28B rs12979860 genotype is confirmed as an important predictor of response to peginterferon/ribavirin therapy in patients with chronic hepatitis C (CHC). IFNL4 ss469415590 is a newly discovered polymorphism that could also affect the sustained virological response (SVR). The aim of this study was to evaluate the association of IL28B and IFNL4 genotypes with peginterferon/ribavirin treatment response in Tunisians patients with CHC and to determine which of these SNPs, was the stronger marker. A total of 120 patients were genotyped for both rs12979860 and ss469415590 polymorphisms. The association of each genetic marker with SVR was analyzed and comparison between the two SNPs was calculated by logistic regression models. For rs12979860, 69.6% of patients with CC, 41.8% with CT and 42.8% with TT achieved SVR (p = 0.003). Regarding ss469415590, 70.4% of patients with TT/TT genotype achieved SVR compared to 42.8% with TT/ΔG and 37.5% with ΔG /ΔG (p = 0.002). The presence of CC and TT/TT genotypes was independently associated with treatment response with an OR of 3.86 for each. In conclusion, both IL28B rs12979860 and IFNL4 ss469415590 variants were associated with response to pegIFN/RBV in Tunisian patients, without any additional benefit in performance for IFNL4. Our results are different from those detected in Sub-Saharan Africa countries.

Keywords: Hepatitis C virus, IFNL4, IL28B, Peginterferon/ribavirin, polymorphism

Procedia PDF Downloads 334
1291 Synthesis of High-Antifouling Ultrafiltration Polysulfone Membranes Incorporating Low Concentrations of Graphene Oxide

Authors: Abdulqader Alkhouzaam, Hazim Qiblawey, Majeda Khraisheh

Abstract:

Membrane treatment for desalination and wastewater treatment is one of the promising solutions to affordable clean water. It is a developing technology throughout the world and considered as the most effective and economical method available. However, the limitations of membranes’ mechanical and chemical properties restrict their industrial applications. Hence, developing novel membranes was the focus of most studies in the water treatment and desalination sector to find new materials that can improve the separation efficiency while reducing membrane fouling, which is the most important challenge in this field. Graphene oxide (GO) is one of the materials that have been recently investigated in the membrane water treatment sector. In this work, ultrafiltration polysulfone (PSF) membranes with high antifouling properties were synthesized by incorporating different loadings of GO. High-oxidation degree GO had been synthesized using a modified Hummers' method. The synthesized GO was characterized using different analytical techniques including elemental analysis, Fourier transform infrared spectroscopy - universal attenuated total reflectance sensor (FTIR-UATR), Raman spectroscopy, and CHNSO elemental analysis. CHNSO analysis showed a high oxidation degree of GO represented by its oxygen content (50 wt.%). Then, ultrafiltration PSF membranes incorporating GO were fabricated using the phase inversion technique. The prepared membranes were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and showed a clear effect of GO on PSF physical structure and morphology. The water contact angle of the membranes was measured and showed better hydrophilicity of GO membranes compared to pure PSF caused by the hydrophilic nature of GO. Separation properties of the prepared membranes were investigated using a cross-flow membrane system. Antifouling properties were studied using bovine serum albumin (BSA) and humic acid (HA) as model foulants. It has been found that GO-based membranes exhibit higher antifouling properties compared to pure PSF. When using BSA, the flux recovery ratio (FRR %) increased from 65.4 ± 0.9 % for pure PSF to 84.0 ± 1.0 % with a loading of 0.05 wt.% GO in PSF. When using HA as model foulant, FRR increased from 87.8 ± 0.6 % to 93.1 ± 1.1 % with 0.02 wt.% of GO in PSF. The pure water permeability (PWP) decreased with loadings of GO from 181.7 L.m⁻².h⁻¹.bar⁻¹ of pure PSF to 181.1, and 157.6 L.m⁻².h⁻¹.bar⁻¹ with 0.02 and 0.05 wt.% GO respectively. It can be concluded from the obtained results that incorporating low loading of GO could enhance the antifouling properties of PSF hence improving its lifetime and reuse.

Keywords: antifouling properties, GO based membranes, hydrophilicity, polysulfone, ultrafiltration

Procedia PDF Downloads 137
1290 The Effect of Organic Matter Maturation and Porosity Evolution on Methane Storage Potential in Shale-Gas Reservoirs

Authors: T. Topór, A. Derkowski, P. Ziemiański

Abstract:

Formation of organic matter (OM)-hosted nanopores upon thermal maturation are one of the key factor controlling methane storage potential in unconventional shale-gas reservoirs. In this study, the subcritical CO₂ and N₂ gas adsorption measurements combined with scanning electron microscopy and supercritical methane adsorption have been used to characterize pore system and methane storage potential in black shales from the Baltic Basin (Poland). The samples were collected from a virtually equivalent Llandovery strata across the basin and represent a complete digenetic sequence, from thermally immature to overmature. The results demonstrate that the thermal maturation is a dominant mechanism controlling the formation of OM micro- and mesopores in the Baltic Basin shales. The formation of micro- and mesopores occurs in the oil window (vitrinite reflectance; leavedVR; ~0.5-0.9%) as a result of oil expulsion from kerogenleft OM highly porous. The generated hydrocarbons then turn into solid bitumen causing pore blocking and substantial decrease in micro- and mesopore volume in late-mature shales (VR ~0.9-1.2%). Both micro- and mesopores are regenerated in a middle of the catagenesis range (VR 1.4-1.9%) due to secondary cracking of OM and gas formation. The micropore volume in investigated shales is almost exclusively controlled by the OM content. The contribution of clay minerals to micropore volume is insignificant and masked by a strong contribution from OM. Methane adsorption capacity in the Baltic Basin shales is predominantly controlled by microporous OM with pores < 1.5 nm. The mesopore volume (2-50 nm) and mesopore surface area have no effect on methane sorption behavior. The adsorbed methane density equivalent, calculated as absolute methane adsorption divided by micropore volume, reviled a decrease of the methane loading potential in micropores with increasing maturity. The highest methane loading potential in micropores is observed for OM before metagenesis (VR < 2%), where the adsorbed methane density equivalent is greater than the density of liquid methane. This implies that, in addition to physical adsorption, absorption of methane in OM may occur before metagenesis. After OM content reduction using NaOCl solution methane adoption capacity substantially decreases, suggesting significantly greater adsorption potential for OM microstructure than for the clay minerals matrix.

Keywords: maturation, methane sorption, organic matter, porosity, shales

Procedia PDF Downloads 231
1289 Static Modeling of the Delamination of a Composite Material Laminate in Mode II

Authors: Y. Madani, H. Achache, B. Boutabout

Abstract:

The purpose of this paper is to analyze numerically by the three-dimensional finite element method, using ABAQUS calculation code, the mechanical behavior of a unidirectional and multidirectional delaminated stratified composite under mechanical loading in Mode II. This study consists of the determination of the energy release rate G in mode II as well as the distribution of equivalent von Mises stresses along the damaged zone by varying several parameters such as the applied load and the delamination length. It allowed us to deduce that the high energy release rate favors delamination at the free edges of a stratified plate subjected to bending.

Keywords: delamination, energy release rate, finite element method, stratified composite

Procedia PDF Downloads 168
1288 Component Test of Martensitic/Ferritic Steels and Nickel-Based Alloys and Their Welded Joints under Creep and Thermo-Mechanical Fatigue Loading

Authors: Daniel Osorio, Andreas Klenk, Stefan Weihe, Andreas Kopp, Frank Rödiger

Abstract:

Future power plants currently face high design requirements due to worsening climate change and environmental restrictions, which demand high operational flexibility, superior thermal performance, minimal emissions, and higher cyclic capability. The aim of the paper is, therefore, to investigate the creep and thermo-mechanical material behavior of improved materials experimentally and welded joints at component scale under near-to-service operating conditions, which are promising for application in highly efficient and flexible future power plants. These materials promise an increase in flexibility and a reduction in manufacturing costs by providing enhanced creep strength and, therefore, the possibility for wall thickness reduction. At the temperature range between 550°C and 625°C, the investigation focuses on the in-phase thermo-mechanical fatigue behavior of dissimilar welded joints of conventional materials (ferritic and martensitic material T24 and T92) to nickel-based alloys (A617B and HR6W) by means of membrane test panels. The temperature and external load are varied in phase during the test, while the internal pressure remains constant. At the temperature range between 650°C and 750°C, it focuses on the creep behavior under multiaxial stress loading of similar and dissimilar welded joints of high temperature resistant nickel-based alloys (A740H, A617B, and HR6W) by means of a thick-walled-component test. In this case, the temperature, the external axial load, and the internal pressure remain constant during testing. Numerical simulations are used for the estimation of the axial component load in order to induce a meaningful damage evolution without causing a total component failure. Metallographic investigations after testing will provide support for understanding the damage mechanism and the influence of the thermo-mechanical load and multiaxiality on the microstructure change and on the creep and TMF- strength.

Keywords: creep, creep-fatigue, component behaviour, weld joints, high temperature material behaviour, nickel-alloys, high temperature resistant steels

Procedia PDF Downloads 109
1287 Response Surface Methodology to Obtain Disopyramide Phosphate Loaded Controlled Release Ethyl Cellulose Microspheres

Authors: Krutika K. Sawant, Anil Solanki

Abstract:

The present study deals with the preparation and optimization of ethyl cellulose-containing disopyramide phosphate loaded microspheres using solvent evaporation technique. A central composite design consisting of a two-level full factorial design superimposed on a star design was employed for optimizing the preparation microspheres. The drug:polymer ratio (X1) and speed of the stirrer (X2) were chosen as the independent variables. The cumulative release of the drug at a different time (2, 6, 10, 14, and 18 hr) was selected as the dependent variable. An optimum polynomial equation was generated for the prediction of the response variable at time 10 hr. Based on the results of multiple linear regression analysis and F statistics, it was concluded that sustained action can be obtained when X1 and X2 are kept at high levels. The X1X2 interaction was found to be statistically significant. The drug release pattern fitted the Higuchi model well. The data of a selected batch were subjected to an optimization study using Box-Behnken design, and an optimal formulation was fabricated. Good agreement was observed between the predicted and the observed dissolution profiles of the optimal formulation.

Keywords: disopyramide phosphate, ethyl cellulose, microspheres, controlled release, Box-Behnken design, factorial design

Procedia PDF Downloads 446
1286 Key Roles of the N-Type Oxide Layer in Hybrid Perovskite Solar Cells

Authors: Thierry Pauporté

Abstract:

Wide bandgap n-type oxide layers (TiO2, SnO2, ZnO etc.) play key roles in perovskite solar cells. They act as electron transport layers, and they permit the charge separation. They are also the substrate for the preparation of perovskite in the direct architecture. Therefore, they have a strong influence on the perovskite loading, its crystallinity and they can induce a degradation phenomenon upon annealing. The interface between the oxide and the perovskite is important, and the quality of this heterointerface must be optimized to limit the recombination of charges phenomena and performance losses. One can also play on the oxide and use two oxide contact layers for improving the device stability and durability. These aspects will be developed and illustrated on the basis of recent results obtained at Chimie-ParisTech.

Keywords: oxide, hybrid perovskite, solar cells, impedance

Procedia PDF Downloads 309
1285 Functional Performance of Unpaved Roads Reinforced with Treated Coir Geotextiles

Authors: Priya Jaswal, Vivek, S. K. Sinha

Abstract:

One of the most important and complicated factors influencing the functional performance of unpaved roads is traffic loading. The complexity of traffic loading is caused by the variable magnitude and frequency of load, which causes unpaved roads to fail prematurely. Unpaved roads are low-volume roads, and as peri-urbanization increases, unpaved roads act as a means to boost the rural economy. This has also increased traffic on unpaved roads, intensifying the issue of settlement, rutting, and fatigue failure. This is a major concern for unpaved roads built on poor subgrade soil, as excessive rutting caused by heavy loads can cause driver discomfort, vehicle damage, and an increase in maintenance costs. Some researchers discovered that when a consistent static load is exerted as opposed to a rapidly changing load, the rate of deformation of unpaved roads increases. Previously, some of the most common methods for overcoming the problem of rutting and fatigue failure included chemical stabilisation, fibre reinforcement, and so on. However, due to their high cost, engineers' attention has shifted to geotextiles which are used as reinforcement in unpaved roads. Geotextiles perform the function of filtration, lateral confinement of base material, vertical restraint of subgrade soil, and the tension membrane effect. The use of geotextiles in unpaved roads increases the strength of unpaved roads and is an economically viable method because it reduces the required aggregate thickness, which would need less earthwork, and is thus recommended for unpaved road applications. The majority of geotextiles used previously were polymeric, but with a growing awareness of sustainable development to preserve the environment, researchers' focus has shifted to natural fibres. Coir is one such natural fibre that possesses the advantage of having a higher tensile strength than other bast fibres, being eco-friendly, low in cost, and biodegradable. However, various researchers have discovered that the surface of coir fibre is covered with various impurities, voids, and cracks, which act as a plane of weakness and limit the potential application of coir geotextiles. To overcome this limitation, chemical surface modification of coir geotextiles is widely accepted by researchers because it improves the mechanical properties of coir geotextiles. The current paper reviews the effect of using treated coir geotextiles as reinforcement on the load-deformation behaviour of a two-layered unpaved road model.

Keywords: coir, geotextile, treated, unpaved

Procedia PDF Downloads 88
1284 Adaptation and Validation of the Program Sustainability Assessment Tool

Authors: Henok Metaferia Gebremariam

Abstract:

Worldwide, considerable resources are spent implementing public health interventions that are interrupted soon after the initial funding ends. However, ambiguity remains as to how health programs can be effectively sustained over time because of the diversity of perspectives, definitions, study methods, outcomes measures and timeframes. From all the above-mentioned research challenges, standardized measures of sustainability should ultimately become a key research issue. To resolve this key challenge, the objective of the study was to adapt a tool for measuring the program’s capacity for sustainability and evaluating its reliability and validity. To adapt and validate the tool, a cross-sectional and cohort study design was conducted at 26 programs in Addis Ababa between September 2014 and May 2015. An adapted version of the tool after the pilot test was administered to 220 staff. The tool was analyzed for reliability and validity. Results show that a 40-item PSAT tool had been adapted into the Amharic version with good internal consistency (Cronbach’s alpha= 0.80), test-retest reliability(r=0.916) and construct validity. Factor analysis resulted in 7 components explaining 56.67 % of the variance. In conclusion, it was found that the Amharic version of PAST was a reliable and valid tool for measuring the program’s capacity for sustainability.

Keywords: program sustainability, public health interventions, reliability, validity

Procedia PDF Downloads 33
1283 Effect on Body Weight of Naltrexone/Bupropion in Overweight and Obese Participants with Cardiovascular Risk Factors in a Large Randomized Double-Blind Study

Authors: Amy Halseth, Kevin Shan, Kye Gilder, John Buse

Abstract:

The study assessed the effect of prolonged-release naltrexone 32 mg/bupropion 360 mg (NB) on cardiovascular (CV) events in overweight/obese participants at elevated CV risk. Participants must lose ≥ 2% body weight at 16 wks, without a sustained increase in blood pressure, to continue drug. The study was terminated early after second interim analysis with 50% of all CV events. Data on CV endpoints has been published. Current analyses focus on weight change. Intent-to-treat (ITT) population (placebo [PBO] N=4450, NB N=4455) was 54.5% female, 83.5% white, mean age 61 yrs, mean BMI 37.3 kg/m2; 85.2% had type 2 diabetes, 32.1% had CV disease, 17.4% had both. At 52 wks, ITT-LOCF analysis showed greater least squares mean percent change in weight (LSM%ΔBW) with NB (-3.1%; 95% CI -4.8, -1.4) vs PBO (-0.3%; 95% CI -1.9, 1.4). Both groups demonstrated greater weight loss while on-treatment (NB [-7.3%], PBO [-3.9%]). Odds ratios of 5% and 10% weight loss were 3.3 and 4.1 (ITT-LOCF), respectively, in NB over PBO. At 104 wks, on-treatment LSM%ΔBW was -6.3% with NB (n=1137) vs -3.5% with PBO (n=741). Major reasons for NB withdrawal were adverse events (AE, 29%) and patient decision (21%), with GI disorders being the most common. Weight loss with NB in this study, in an older population predominantly with diabetes and elevated CV risk, was somewhat lower than that observed in overweight/obese participants without diabetes and similar to participants with diabetes in Phase 3 studies.

Keywords: contrave, mysimba, obesity, pharmacotherapy, weight loss

Procedia PDF Downloads 310
1282 Digital Image Correlation: Metrological Characterization in Mechanical Analysis

Authors: D. Signore, M. Ferraiuolo, P. Caramuta, O. Petrella, C. Toscano

Abstract:

The Digital Image Correlation (DIC) is a newly developed optical technique that is spreading in all engineering sectors because it allows the non-destructive estimation of the entire surface deformation without any contact with the component under analysis. These characteristics make the DIC very appealing in all the cases the global deformation state is to be known without using strain gages, which are the most used measuring device. The DIC is applicable to any material subjected to distortion caused by either thermal or mechanical load, allowing to obtain high-definition mapping of displacements and deformations. That is why in the civil and the transportation industry, DIC is very useful for studying the behavior of metallic materials as well as of composite materials. DIC is also used in the medical field for the characterization of the local strain field of the vascular tissues surface subjected to uniaxial tensile loading. DIC can be carried out in the two dimension mode (2D DIC) if a single camera is used or in a three dimension mode (3D DIC) if two cameras are involved. Each point of the test surface framed by the cameras can be associated with a specific pixel of the image, and the coordinates of each point are calculated knowing the relative distance between the two cameras together with their orientation. In both arrangements, when a component is subjected to a load, several images related to different deformation states can be are acquired through the cameras. A specific software analyzes the images via the mutual correlation between the reference image (obtained without any applied load) and those acquired during the deformation giving the relative displacements. In this paper, a metrological characterization of the digital image correlation is performed on aluminum and composite targets both in static and dynamic loading conditions by comparison between DIC and strain gauges measures. In the static test, interesting results have been obtained thanks to an excellent agreement between the two measuring techniques. In addition, the deformation detected by the DIC is compliant with the result of a FEM simulation. In the dynamic test, the DIC was able to follow with a good accuracy the periodic deformation of the specimen giving results coherent with the ones given by FEM simulation. In both situations, it was seen that the DIC measurement accuracy depends on several parameters such as the optical focusing, the parameters chosen to perform the mutual correlation between the images and, finally, the reference points on image to be analyzed. In the future, the influence of these parameters will be studied, and a method to increase the accuracy of the measurements will be developed in accordance with the requirements of the industries especially of the aerospace one.

Keywords: accuracy, deformation, image correlation, mechanical analysis

Procedia PDF Downloads 302
1281 Food Security in Nigeria: An Examination of Food Availability and Accessibility in Nigeria

Authors: Okolo Chimaobi Valentine, Obidigbo Chizoba

Abstract:

As a basic physiology need, the threat to sufficient food production is the threat to human survival. Food security has been an issue that has gained global concern. This paper looks at the food security in Nigeria by assessing the availability of food and accessibility of the available food. The paper employed multiple linear regression technique and graphic trends of growth rates of relevant variables to show the situation of food security in Nigeria. Results of the tests revealed that population growth rate was higher than the growth rate of food availability in Nigeria for the earlier period of the study. Commercial bank credit to the agricultural sector, foreign exchange utilization for food and the Agricultural Credit Guarantee Scheme Fund (ACGSF) contributed significantly to food availability in Nigeria. Food prices grew at a faster rate than the average income level, making it difficult to access sufficient food. It implies that prior to the year 2012; there was insufficient food to feed the Nigerian populace. However, continued credit to the food and agricultural sector will ensure sustained and sufficient production of food in Nigeria. Microfinance banks should make sufficient credit available to the smallholder farmer. The government should further control and subsidize the rising price of food to make it more accessible by the people.

Keywords: food, accessibility, availability, security

Procedia PDF Downloads 364
1280 Further Development of Offshore Floating Solar and Its Design Requirements

Authors: Madjid Karimirad

Abstract:

Floating solar was not very well-known in the renewable energy field a decade ago; however, there has been tremendous growth internationally with a Compound Annual Growth Rate (CAGR) of nearly 30% in recent years. To reach the goal of global net-zero emission by 2050, all renewable energy sources including solar should be used. Considering that 40% of the world’s population lives within 100 kilometres of the coasts, floating solar in coastal waters is an obvious energy solution. However, this requires more robust floating solar solutions. This paper tries to enlighten the fundamental requirements in the design of floating solar for offshore installations from the hydrodynamic and offshore engineering points of view. In this regard, a closer look at dynamic characteristics, stochastic behaviour and nonlinear phenomena appearing in this kind of structure is a major focus of the current article. Floating solar structures are alternative and very attractive green energy installations with (a) Less strain on land usage for densely populated areas; (b) Natural cooling effect with efficiency gain; and (c) Increased irradiance from the reflectivity of water. Also, floating solar in conjunction with the hydroelectric plants can optimise energy efficiency and improve system reliability. The co-locating of floating solar units with other types such as offshore wind, wave energy, tidal turbines as well as aquaculture (fish farming) can result in better ocean space usage and increase the synergies. Floating solar technology has seen considerable developments in installed capacities in the past decade. Development of design standards and codes of practice for floating solar technologies deployed on both inland water-bodies and offshore is required to ensure robust and reliable systems that do not have detrimental impacts on the hosting water body. Floating solar will account for 17% of all PV energy produced worldwide by 2030. To enhance the development, further research in this area is needed. This paper aims to discuss the main critical design aspects in light of the load and load effects that the floating solar platforms are subjected to. The key considerations in hydrodynamics, aerodynamics and simultaneous effects from the wind and wave load actions will be discussed. The link of dynamic nonlinear loading, limit states and design space considering the environmental conditions is set to enable a better understanding of the design requirements of fast-evolving floating solar technology.

Keywords: floating solar, offshore renewable energy, wind and wave loading, design space

Procedia PDF Downloads 64
1279 Averting Food Crisis in Nigeria and Beyond, Activities of the National Food Security Programme

Authors: Musa M. Umar, S. G. Ado

Abstract:

The paper examines the activities of the National Programme for food security (NPFS) for averting food insecurity in Nigeria and beyond. The components of the NPFS include site development, outreach, community development and management support. On each site, core activities comprise crop productivity, production diversification and agro-processing. The outreach activities consist of inputs and commodity marketing, rural finance, strengthening research-extension-farmers-inputs linkages, health and nutrition and expansion of site activities. The community development activities include small-scale rural infrastructure, micro-earth dams and community forestry. The overall benefits include food security, improved productivity, marketing and processing, enhanced land and water use, increased animal production and fish catches, improved nutrition, reduction in post-harvest losses and value addition, improved rural infrastructure and diversification of production leading to improved livelihood. The NPFS would poster sustained development of small-holder agricultural and income generation.

Keywords: food-security, community development, post-harvest, production

Procedia PDF Downloads 346
1278 Control of Oxide and Silicon Loss during Exposure of Silicon Waveguide

Authors: Gu Zhonghua

Abstract:

Control method of bulk silicon dioxide etching process to approach then expose silicon waveguide has been developed. It has been demonstrated by silicon waveguide of photonics devices. It is also able to generalize other applications. Use plasma dry etching to etch bulk silicon dioxide and approach oxide-silicon interface accurately, then use dilute HF wet etching to etch silicon dioxide residue layer to expose the silicon waveguide as soft landing. Plasma dry etch macro loading effect and endpoint technology was used to determine dry etch time accurately with a low wafer expose ratio.

Keywords: waveguide, etch, control, silicon loss

Procedia PDF Downloads 407
1277 Copper Removal from Synthetic Wastewater by a Novel Fluidized-bed Homogeneous Crystallization (FBHC) Technology

Authors: Cheng-Yen Huang, Yu-Jen Shih, Ming-Chun Yen, Yao-Hui Huang

Abstract:

This research developed a fluidized-bed homogeneous crystallization (FBHC) process to remove copper from synthetic wastewater in terms of recovery of highly pure malachite (Cu2(OH)2CO3) pellets. The experimental parameters of FBHC which included pH, molar ratio of copper to carbonate, copper loading, upper flowrate and bed height were tested in the absence of seed particles. Under optimized conditions, both the total copper removal (TR) and crystallization ratio (CR) reached 99%. The malachite crystals were characterized by XRD and SEM. FBHC was capable of treating concentrated copper (1600 ppm) wastewater and minimizing the sludge production.

Keywords: copper, carbonate, fluidized-bed, crystallization, malachite

Procedia PDF Downloads 407
1276 Status of Communication and Swallowing Therapy in Patient with a Tracheostomy

Authors: Ya-Hui Wang

Abstract:

Lower speech therapy rate of tracheostomized patient was noted in comparison with previous researches. This study is aim to shed light on the referral status of speech therapy in those patients in Taiwan. This study developed an analysis for the size and key characteristics of the population of tracheostomized in-patient in the Taiwan. Method: We analyzed National Healthcare Insurance data (The Collaboration Center of Health Information Application, CCHIA) from Jan 1 2010 to Dec 31 2010. Result: over ages 3, number of tracheostomized in-patient is directly proportional to age. A high service loading was observed in North region in comparison with other regions. Only 4.87% of the tracheostomized in-patients were referred for speech therapy, and 1.9% for swallow examination, 2.5% for communication evaluation.

Keywords: refer, speech therapy, training, rehabilitation

Procedia PDF Downloads 432
1275 Enhancement of the Performance of Al-Qatraneh 33-kV Transmission Line Using STATCOM: A Case Study

Authors: Ali Hamad, Ibrahim Al-Drous, Saleh Al-Jufout

Abstract:

This paper presents a case study of using STATCOM to enhance the performance of Al-Qatraneh 33-kV transmission line. The location of the STATCOM was identified maintaining minimum voltage drops at the 110 load nodes. The transmission line and the 110 load nodes have been modeled by MATLAB/Simulink. The suggested STATCOM and its location will increase the transmission capability of this transmission line and overcome the overload expected in the year 2020. The annual percentage loading rise has been considered as 14%. A graphical representation of the line voltages and the voltage drops at different load nodes has been illustrated.

Keywords: FACTS, MATLAB, STATCOM, transmission line, voltage drop

Procedia PDF Downloads 429
1274 Experimental Analysis of the Origins of the Anisotropy Behavior in the 2017 AA Aluminum Alloy

Authors: May Abdelghani

Abstract:

The present work is devoted to the study of the microstructural anisotropy in mechanical cyclic behavior of the 2017AA aluminum alloy which is widely used in the aerospace industry. The main purpose of the study is to investigate the microstructural origins of this anisotropy already confirmed in our previous work in 2017AA aluminum alloy. To do this, we have used the microstructural analysis resources such as Scanning Electron Microscope (SEM) to see the differences between breaks from different directions of cyclic loading. Another resource of investigation was used in this study is that the EBSD method, which allows us to obtain a mapping of the crystallographic texture of our material. According to the obtained results in the microscopic analysis, we are able to identify the origins of the anisotropic behavior at the macroscopic scale.

Keywords: fatigue damage, cyclic behavior, anisotropy, microstructural analysis

Procedia PDF Downloads 403
1273 The Catalytic Properties of PtSn/Al2O3 for Acetic Acid Hydrogenation

Authors: Mingchuan Zhou, Haitao Zhang, Hongfang Ma, Weiyong Ying

Abstract:

Alumina supported platinum and tin catalysts with different loadings of Pt and Sn were prepared and characterized by low temperature N2 adsorption/desorption, H2-temperature programed reduction and CO pulse chemisorption. Pt and Sn below 1% loading were suitable for acetic acid hydrogenation. The best performance over 0.75Pt1Sn/Al2O3 can reach 87.55% conversion of acetic acid and 47.39% selectivity of ethanol. The operating conditions of acetic acid hydrogenation over 1Pt1Sn/Al2O3 were investigated. High reaction temperature can enhance the conversion of acetic acid, but it decreased total selectivity of ethanol and acetyl acetate. High pressure and low weight hourly space velocity were beneficial to both conversion of acetic acid and selectivity to ethanol.

Keywords: acetic acid, hydrogenation, operating condition, PtSn

Procedia PDF Downloads 344
1272 Investigation the Effect of Nano-Alumina Particles on Physical Adsorption Property of Acrylic Fiber

Authors: Mehdi Ketabchi, Shamsollah Alijanlou

Abstract:

The flue gas from fossil fuels combustion contains harmful pollutants dangerous for human health and the environment. One of the air pollution control methods to restrict the emission of these pollutants is based on using the nanoparticle in the adsorption process. In the present research gamma, Nano-alumina particle is added to Polyacrylonitrile (PAN) polymer through simple loading method and the adsorption capacity of the wet spun fiber is investigated. The results of exposure the fiber to the acid gasses including SO2, CO, NO2, NO and CO2 show the noticeable increase of gas adsorption capacity on fiber contains nanoparticle. The research has been conducted in Acrylic II Plant of Polyacryl Iran Corporation.

Keywords: acrylic fiber, adsorbent, wet spun, nano gamma alumina

Procedia PDF Downloads 304
1271 Adopting the Transition Management Model as a Tool for Sustainable Groundwater Management in Nigeria

Authors: Ali Bakari Mohammed

Abstract:

Transitioning is a continuous process of radical change in a society which involves co-evolution of institutional, technological, socio-cultural, and ecological developments at different scales and levels. Transition management model is a methodology that influences structural change of complex systems over a period (0-30 years) by experimenting and implementing new techniques. A transition management in the context of groundwater is a radical change from the current operate and control system to a next generation integrated and sustainable system that takes into account quality protection and sustained supply into the future. This study evaluates the transition management model in adopting it as a viable tool for the attainment of sustainable groundwater management. The outcome of the evaluation shows that there are three levels (strategic, tactical and operational) of operating the transition management model. At the strategic level, long-term goals for sustainable groundwater management are formulated, at the tactical level activities such as inter institutional networking, negotiation, planning and financing are carried out, and at the operational level, transition experiments and strategic niche management are carried out at the societal level. Overall, different actors and set of activities are required to partake at each management level. The outcome of this paper will provide basis for the implementation of the Sustainable Development Goal (SDG) 6 in Nigeria.

Keywords: transition management, groundwater, sustainable management, tool, Nigeria

Procedia PDF Downloads 261
1270 Assess Changes in Groundwater Dynamics Caused by Mini Dam Construction in Arid Zone of District Killa Abdullah, Pakistan

Authors: Akhtar Malik Muhammad, Agha Mirwais

Abstract:

Dams are considered to recharge aquifers by raising the water table, especially the ones near wells. The present study investigates the impact of dams on groundwater recharge in Jilga, Pakistan. The comparative analysis of changes in the groundwater table of the year 2012 and 2019 was carried out using ArcGIS 10.5 through the kriging method and remote sensing techniques to evaluate the mini dam's impact on the upstream area. Arc Info Spatial Analyze extension was used to find static water level maps of the years. The water table was observed minimum 67.08 feet and maximum 130.09 feet in 2012 whereas in 2019 the minimum water table level 49.89 feet and maximum 115.85 feet. Groundwater recharge with different ratio was noted, but the most significant was at Rabbani dam with 26ft due to supported lithology conditions and the lowest recharge was found at Garang dam14ft. The overall positive trend indicates the rehabilitation of dead karez and agriculture activities by increasing 36% the vegetation area in 2019. An over 6% increase in human settlement indicates socioeconomic development. Thus, it highlights the need for preferential focus on the construction of the dam so that the water level could be sustained to cater to the agricultural and domestic needs of the local population around the year

Keywords: water table, GIS, land cover, mini dams, agriculture

Procedia PDF Downloads 75