Search results for: steel cleanliness
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1724

Search results for: steel cleanliness

1004 The Review for Repair of Masonry Structures Using the Crack Stitching Technique

Authors: Sandile Daniel Ngidi

Abstract:

Masonry structures often crack due to different factors, which include differential movement of structures, thermal expansion, and seismic waves. Retrofitting is introduced to ensure that these cracks do not expand to a point of making the wall fail. Crack stitching is one of many repairing methods used to repair cracked masonry walls. It is done by stitching helical stainless steel reinforcement bars to reconnect and stabilize the wall. The basic element of this reinforcing system is the mechanical interlink between the helical stainless-steel bar and the grout, which makes it such a flexible and well-known masonry repair system. The objective of this review was to use previous experimental work done by different authors to check the efficiency and effectiveness of using the crack stitching technique to repair and stabilize masonry walls. The technique was found to be effective to rejuvenate the strength of a masonry structure to be stronger than initial strength. Different factors were investigated, which include economic features, sustainability, buildability, and suitability of this technique for application in developing communities.

Keywords: brickforce, crack-stitching, masonry concrete, reinforcement, wall panels

Procedia PDF Downloads 153
1003 Corrosion Protective Coatings in Machines Design

Authors: Cristina Diaz, Lucia Perez, Simone Visigalli, Giuseppe Di Florio, Gonzalo Fuentes, Roberto Canziani, Paolo Gronchi

Abstract:

During the last 50 years, the selection of materials is one of the main decisions in machine design for different industrial applications. It is due to numerous physical, chemical, mechanical and technological factors to consider in it. Corrosion effects are related with all of these factors and impact in the life cycle, machine incidences and the costs for the life of the machine. Corrosion affects the deterioration or destruction of metals due to the reaction with the environment, generally wet. In food industry, dewatering industry, concrete industry, paper industry, etc. corrosion is an unsolved problem and it might introduce some alterations of some characteristics in the final product. Nowadays, depending on the selected metal, its surface and its environment of work, corrosion prevention might be a change of metal, use a coating, cathodic protection, use of corrosion inhibitors, etc. In the vast majority of the situations, use of a corrosion resistant material or in its defect, a corrosion protection coating is the solution. Stainless steels are widely used in machine design, because of their strength, easily cleaned capacity, corrosion resistance and appearance. Typical used are AISI 304 and AISI 316. However, their benefits don’t fit every application, and some coatings are required against corrosion such as some paintings, galvanizing, chrome plating, SiO₂, TiO₂ or ZrO₂ coatings, etc. In this work, some coatings based in a bilayer made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium or Titanium-Zirconium, have been developed used magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology, for trying to reduce corrosion effects on AISI 304, AISI 316 and comparing it with Titanium alloy substrates. Ti alloy display exceptional corrosion resistance to chlorides, sour and oxidising acidic media and seawater. In this study, Ti alloy (99%) has been included for comparison with coated AISI 304 and AISI 316 stainless steel. Corrosion tests were conducted by a Gamry Instrument under ASTM G5-94 standard, using different electrolytes such as tomato salsa, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl for testing corrosion in different industrial environments. In general, in all tested environments, the results showed an improvement of corrosion resistance of all coated AISI 304 and AISI 316 stainless steel substrates when they were compared to uncoated stainless steel substrates. After that, comparing these results with corrosion studies on uncoated Ti alloy substrate, it was observed that in some cases, coated stainless steel substrates, reached similar current density that uncoated Ti alloy. Moreover, Titanium-Zirconium and Titanium-Tantalum coatings showed for all substrates in study including coated Ti alloy substrates, a reduction in current density more than two order in magnitude. As conclusion, Ti-Ta, Ti-Zr, Ti-Nb and Ti-Hf coatings have been developed for improving corrosion resistance of AISI 304 and AISI 316 materials. After corrosion tests in several industry environments, substrates have shown improvements on corrosion resistance. Similar processes have been carried out in Ti alloy (99%) substrates. Coated AISI 304 and AISI 316 stainless steel, might reach similar corrosion protection on the surface than uncoated Ti alloy (99%). Moreover, coated Ti Alloy (99%) might increase its corrosion resistance using these coatings.

Keywords: coatings, corrosion, PVD, stainless steel

Procedia PDF Downloads 139
1002 Simulation of Kinetic Friction in L-Bending of Sheet Metals

Authors: Maziar Ramezani, Thomas Neitzert, Timotius Pasang

Abstract:

This paper aims at experimental and numerical investigation of springback behavior of sheet metals during L-bending process with emphasis on Stribeck-type friction modeling. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The springback behavior of mild steel and aluminum alloy 6022-T4 sheets was studied experimentally and using numerical simulations with ABAQUS software with two types of friction model: Coulomb friction and Stribeck friction. The influence of forming speed on springback behavior was studied experimentally and numerically. The results showed that Stribeck-type friction model has better results in predicting springback in sheet metal forming. The FE prediction error for mild steel and 6022-T4 AA is 23.8%, 25.5% respectively, using Coulomb friction model and 11%, 13% respectively, using Stribeck friction model. These results show that Stribeck model is suitable for simulation of sheet metal forming especially at higher forming speed.

Keywords: friction, L-bending, springback, Stribeck curves

Procedia PDF Downloads 468
1001 Experimental Study and Neural Network Modeling in Prediction of Surface Roughness on Dry Turning Using Two Different Cutting Tool Nose Radii

Authors: Deba Kumar Sarma, Sanjib Kr. Rajbongshi

Abstract:

Surface finish is an important product quality in machining. At first, experiments were carried out to investigate the effect of the cutting tool nose radius (considering 1mm and 0.65mm) in prediction of surface finish with process parameters of cutting speed, feed and depth of cut. For all possible cutting conditions, full factorial design was considered as two levels four parameters. Commercial Mild Steel bar and High Speed Steel (HSS) material were considered as work-piece and cutting tool material respectively. In order to obtain functional relationship between process parameters and surface roughness, neural network was used which was found to be capable for the prediction of surface roughness within a reasonable degree of accuracy. It was observed that tool nose radius of 1mm provides better surface finish in comparison to 0.65 mm. Also, it was observed that feed rate has a significant influence on surface finish.

Keywords: full factorial design, neural network, nose radius, surface finish

Procedia PDF Downloads 348
1000 The Effect of Fly Ash and Natural Pozzolans on the Quality of Passive Oxide Film Developed on Steel Reinforcement Bars

Authors: M.S. Ashraf, Raja Rizwan Hussain, A. M. Alhozaimy

Abstract:

The effect of supplementary cementitious materials (SCMs) with concrete pore solution on the protective properties of the oxide films that form on reinforcing steel bars has been experimentally investigated using electrochemical impedance spectroscopy (EIS) and Tafel Scan. The tests were conducted on oxide films grown in saturated calcium hydroxide solutions that included different representative amounts of NaOH and KOH. In addition to that, commonly used supplementary cementitious materials (natural pozzolan and fly ash) were also added. The results of electrochemical tests show that supplementary cementitious materials do have an effect on the protective properties of the passive oxide film. In particular, natural pozzolans has been shown to have a highly positive influence on the film quality. Fly ash also increases the protective qualities of the passive film.

Keywords: supplementary cementitious materials (SCMs), passive film, EIS, Tafel scan, rebar, concrete, simulated concrete pore solution (SPS)

Procedia PDF Downloads 429
999 Structural Behavior of Composite Hollow RC Column under Combined Loads

Authors: Abdul Qader Melhm, Hussein Elrafidi

Abstract:

This paper is dealing with studying the structural behavior of a steel-composite hollow reinforced concrete (RC) column model under combined eccentric loading. The composite model consists of an inner steel tube surrounded via a concrete core with longitudinal and circular transverse reinforcement. The radius of gyration according to American and Euro specifications be calculated, in order to calculate the thinnest ratio for this type of composite column model, in addition to the flexural rigidity. Formulas for interaction diagram is given for this type of model, which is a general loading conditions in which an element is exposed to an axial load with bending at the same time. The structural capacity of this model, elastic, plastic loads and strains will be computed and compared with experimental results. The total eccentric axial load of the column model is calculated based on the effective length KL available from several relationships provided in the paper. Furthermore, the inner tube experiences buckling failure after reaching its maximum strength will be investigated.

Keywords: column, composite, eccentric, inner tube, interaction, reinforcement

Procedia PDF Downloads 176
998 Effect of Retained Austenite Stability in Corrosion Mechanism of Dual Phase High Carbon Steel

Authors: W. Handoko, F. Pahlevani, V. Sahajwalla

Abstract:

Dual-phase high carbon steels (DHCS) are commonly known for their improved strength, hardness, and abrasive resistance properties due to co-presence of retained austenite and martensite at the same time. Retained austenite is a meta-stable phase at room temperature, and stability of this phase governs the response of DHCS at different conditions. This research paper studies the effect of RA stability on corrosion behaviour of high carbon steels after they have been immersed into 1.0 M NaCl solution for various times. For this purpose, two different steels with different RA stabilities have been investigated. The surface morphology of the samples before and after corrosion attack was observed by secondary electron microscopy (SEM) and atomic force microscopy (AFM), along with the weight loss and Vickers hardness analysis. Microstructural investigations proved the preferential attack to retained austenite phase during corrosion. Hence, increase in the stability of retained austenite in dual-phase steels led to decreasing the weight loss rate.

Keywords: high carbon steel, austenite stability, atomic force microscopy, corrosion

Procedia PDF Downloads 192
997 NaCl Erosion-Corrosion of Mild Steel under Submerged Impingement Jet

Authors: M. Sadique, S. Ainane, Y. F. Yap, P. Rostron, E. Al Hajri

Abstract:

The presence of sand in production lines in the oil and gas industries causes material degradation due to erosion-corrosion. The material degradation caused by erosion-corrosion in pipelines can result in a high cost of monitoring and maintenance and in major accidents. The process of erosion-corrosion consists of erosion, corrosion, and their interactions. Investigating and understanding how the erosion-corrosion process affects the degradation process in certain materials will allow for a reduction in economic loss and help prevent accidents. In this study, material loss due to erosion-corrosion of mild steel under impingement of sand-laden water at 90˚ impingement angle is investigated using a submerged impingement jet (SIJ) test. In particular, effects of jet velocity and sand loading on TWL due to erosion-corrosion, weight loss due to pure erosion and erosion-corrosion interactions, at a temperature of 29-33 °C in sea water environment (3.5% NaCl), are analyzed. The results show that the velocity and sand loading have a great influence on the removal of materials, and erosion is more dominant under all conditions studied. Changes in the surface characteristics of the specimen after impingement test are also discussed.

Keywords: erosion-corrosion, flow velocity, jet impingement, sand loading

Procedia PDF Downloads 255
996 Effect of Nanostructure on Hydrogen Embrittlement Resistance of the Severely Deformed 316LN Austenitic Steel

Authors: Frank Jaksoni Mweta, Nozomu Adachi, Yoshikazu Todaka, Hirokazu Sato, Yuta Sato, Hiromi Miura, Masakazu Kobayashi, Chihiro Watanabe, Yoshiteru Aoyagi

Abstract:

Advances in the consumption of hydrogen fuel increase demands of high strength steel pipes and storage tanks. However, high strength steels are highly sensitive to hydrogen embrittlement. Because the introduction of hydrogen into steel during the fabrication process or from the environment is unavoidable, it is essential to improve hydrogen embrittlement resistance of high strength steels through microstructural control. In the present study, the heterogeneous nanostructure with a tensile strength of about 1.8 GPa and the homogeneous nanostructure with a tensile strength of about 2.0 GPa of 316LN steels were generated after 92% heavy cold rolling and high-pressure torsion straining, respectively. The heterogeneous nanostructure is composed of twin domains, shear bands, and lamellar grains. The homogeneous nanostructure is composed of uniformly distributed ultrafine nanograins. The influence of heterogeneous and homogenous nanostructures on the hydrogen embrittlement resistance was investigated. The specimen for each nanostructure was electrochemically charged with hydrogen for 3, 6, 12, and 24 hours, respectively. Under the same hydrogen charging time, both nanostructures show almost the same concentration of the diffusible hydrogen based on the thermal desorption analysis. The tensile properties of the homogenous nanostructure were severely affected by the diffusible hydrogen. However, the diffusible hydrogen shows less impact on the tensile properties of the heterogeneous nanostructure. The difference in embrittlement behavior between the heterogeneous and homogeneous nanostructures was elucidated based on the mechanism of the cracks' growth observed in the tensile fractography. The hydrogen embrittlement was suppressed in the heterogeneous nanostructure because the twin domain became an obstacle for crack growth. The homogeneous nanostructure was not consisting an obstacle such as a twin domain; thus, the crack growth resistance was low in this nanostructure.

Keywords: diffusible hydrogen, heterogeneous nanostructure, homogeneous nanostructure, hydrogen embrittlement

Procedia PDF Downloads 105
995 Studying Frame-Resistant Steel Structures under Near Field Ground Motion

Authors: S. A. Hashemi, A. Khoshraftar

Abstract:

This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectly-plastic behavior was performed using Ram Perform-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of the ground motion may increase the axial load significantly in the interior columns and consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.

Keywords: inelastic behavior, non-linear dynamic analysis, steel structure, vertical component

Procedia PDF Downloads 295
994 Prediction of Welding Induced Distortion in Thin Metal Plates Using Temperature Dependent Material Properties and FEA

Authors: Rehan Waheed, Abdul Shakoor

Abstract:

Distortion produced during welding of thin metal plates is a problem in many industries. The purpose of this research was to study distortion produced during welding in 2mm Mild Steel plate by simulating the welding process using Finite Element Analysis. Simulation of welding process requires a couple field transient analyses. At first a transient thermal analysis is performed and the temperature obtained from thermal analysis is used as input in structural analysis to find distortion. An actual weld sample is prepared and the weld distortion produced is measured. The simulated and actual results were in quite agreement with each other and it has been found that there is profound deflection at center of plate. Temperature dependent material properties play significant role in prediction of weld distortion. The results of this research can be used for prediction and control of weld distortion in large steel structures by changing different weld parameters.

Keywords: welding simulation, FEA, welding distortion, temperature dependent mechanical properties

Procedia PDF Downloads 372
993 Failure Cases Analysis in Petrochemical Industry

Authors: S. W. Liu, J. H. Lv, W. Z. Wang

Abstract:

In recent years, the failure accidents in petrochemical industry have been frequent, and have posed great security problems in personnel and property. The improvement of petrochemical safety is highly requested in order to prevent re-occurrence of severe accident. This study focuses on surveying the failure cases occurred in petrochemical field, which were extracted from journals of engineering failure, including engineering failure analysis and case studies in engineering failure analysis. The relation of failure mode, failure mechanism, type of components, and type of materials was analyzed in this study. And the analytical results showed that failures occurred more frequently in vessels and piping among the petrochemical equipment. Moreover, equipment made of carbon steel and stainless steel accounts for the majority of failures compared to other materials. This may be related to the application of the equipment and the performance of the material. In addition, corrosion failures were the largest in number of occurrence in the failure of petrochemical equipment, in which stress corrosion cracking accounts for a large proportion. This may have a lot to do with the service environment of the petrochemical equipment. Therefore, it can be concluded that the corrosion prevention of petrochemical equipment is particularly important.

Keywords: cases analysis, corrosion, failure, petrochemical industry

Procedia PDF Downloads 278
992 Low-Level Forced and Ambient Vibration Tests on URM Building Strengthened by Dampers

Authors: Rafik Taleb, Farid Bouriche, Mehdi Boukri, Fouad Kehila

Abstract:

The aim of the paper is to investigate the dynamic behavior of an unreinforced masonry (URM) building strengthened by DC-90 dampers by ambient and low-level forced vibration tests. Ambient and forced vibration techniques are usually applied to reinforced concrete or steel buildings to understand and identify their dynamic behavior, however, less is known about their applicability for masonry buildings. Ambient vibrations were measured before and after strengthening of the URM building by DC-90 dampers system. For forced vibration test, a series of low amplitude steady state harmonic forced vibration tests were conducted after strengthening using eccentric mass shaker. The resonant frequency curves, mode shapes and damping coefficients as well as stress distribution in the steel braces of the DC-90 dampers have been investigated and could be defined. It was shown that the dynamic behavior of the masonry building, even if not regular and with deformable floors, can be effectively represented. It can be concluded that the strengthening of the building does not change the dynamic properties of the building due to the fact of low amplitude excitation which do not activate the dampers.

Keywords: ambient vibrations, masonry buildings, forced vibrations, structural dynamic identification

Procedia PDF Downloads 392
991 Seismic Behavior of Concrete Filled Steel Tube Reinforced Concrete Column

Authors: Raghabendra Yadav, Baochun Chen, Huihui Yuan, Zhibin Lian

Abstract:

Pseudo-dynamic test (PDT) method is an advanced seismic test method that combines loading technology with computer technology. Large-scale models or full scale seismic tests can be carried out by using this method. CFST-RC columns are used in civil engineering structures because of their better seismic performance. A CFST-RC column is composed of four CFST limbs which are connected with RC web in longitudinal direction and with steel tube in transverse direction. For this study, a CFST-RC pier is tested under Four different earthquake time histories having scaled PGA of 0.05g. From the experiment acceleration, velocity, displacement and load time histories are observed. The dynamic magnification factors for acceleration due to Elcentro, Chi-Chi, Imperial Valley and Kobe ground motions are observed as 15, 12, 17 and 14 respectively. The natural frequency of the pier is found to be 1.40 Hz. The result shows that this type of pier has excellent static and earthquake resistant properties.

Keywords: bridge pier, CFST-RC pier, pseudo dynamic test, seismic performance, time history

Procedia PDF Downloads 167
990 Stability Design by Geometrical Nonlinear Analysis Using Equivalent Geometric Imperfections

Authors: S. Fominow, C. Dobert

Abstract:

The present article describes the research that deals with the development of equivalent geometric imperfections for the stability design of steel members considering lateral-torsional buckling. The application of these equivalent imperfections takes into account the stiffness-reducing effects due to inelasticity and residual stresses, which lead to a reduction of the load carrying capacity of slender members and structures. This allows the application of a simplified design method, that is performed in three steps. Application of equivalent geometric imperfections, determination of internal forces using geometrical non-linear analysis (GNIA) and verification of the cross-section resistance at the most unfavourable location. All three verification steps are closely related and influence the results. The derivation of the equivalent imperfections was carried out in several steps. First, reference lateral-torsional buckling resistances for various rolled I-sections, slenderness grades, load shapes and steel grades were determined. This was done either with geometric and material non-linear analysis with geometrical imperfections and residual stresses (GMNIA) or for standard cases based on the equivalent member method. With the aim of obtaining identical lateral-torsional buckling resistances as the reference resistances from the application of the design method, the required sizes for equivalent imperfections were derived. For this purpose, a program based on the FEM method has been developed. Based on these results, several proposals for the specification of equivalent geometric imperfections have been developed. These differ in the shape of the applied equivalent geometric imperfection, the model of the cross-sectional resistance and the steel grade. The proposed design methods allow a wide range of applications and a reliable calculation of the lateral-torsional buckling resistances, as comparisons between the calculated resistances and the reference resistances have shown.

Keywords: equivalent geometric imperfections, GMNIA, lateral-torsional buckling, non-linear finite element analysis

Procedia PDF Downloads 141
989 Brittle Fracture Tests on Steel Bridge Bearings: Application of the Potential Drop Method

Authors: Natalie Hoyer

Abstract:

Usually, steel structures are designed for the upper region of the steel toughness-temperature curve. To address the reduced toughness properties in the temperature transition range, additional safety assessments based on fracture mechanics are necessary. These assessments enable the appropriate selection of steel materials to prevent brittle fracture. In this context, recommendations were established in 2011 to regulate the appropriate selection of steel grades for bridge bearing components. However, these recommendations are no longer fully aligned with more recent insights: Designing bridge bearings and their components in accordance with DIN EN 1337 and the relevant sections of DIN EN 1993 has led to an increasing trend of using large plate thicknesses, especially for long-span bridges. However, these plate thicknesses surpass the application limits specified in the national appendix of DIN EN 1993-2. Furthermore, compliance with the regulations outlined in DIN EN 1993-1-10 regarding material toughness and through-thickness properties requires some further modifications. Therefore, these standards cannot be directly applied to the material selection for bearings without additional information. In addition, recent findings indicate that certain bridge bearing components are subjected to high fatigue loads, necessitating consideration in structural design, material selection, and calculations. To address this issue, the German Center for Rail Traffic Research initiated a research project aimed at developing a proposal to enhance the existing standards. This proposal seeks to establish guidelines for the selection of steel materials for bridge bearings to prevent brittle fracture, particularly for thick plates and components exposed to specific fatigue loads. The results derived from theoretical analyses, including finite element simulations and analytical calculations, are verified through component testing on a large-scale. During these large-scale tests, where a brittle failure is deliberately induced in a bearing component, an artificially generated defect is introduced into the specimen at the predetermined hotspot. Subsequently, a dynamic load is imposed until the crack initiation process transpires, replicating realistic conditions akin to a sharp notch resembling a fatigue crack. To stop the action of the dynamic load in time, it is important to precisely determine the point at which the crack size transitions from stable crack growth to unstable crack growth. To achieve this, the potential drop measurement method is employed. The proposed paper informs about the choice of measurement method (alternating current potential drop (ACPD) or direct current potential drop (DCPD)), presents results from correlations with created FE models, and may proposes a new approach to introduce beach marks into the fracture surface within the framework of potential drop measurement.

Keywords: beach marking, bridge bearing design, brittle fracture, design for fatigue, potential drop

Procedia PDF Downloads 19
988 Process Optimization for 2205 Duplex Stainless Steel by Laser Metal Deposition

Authors: Siri Marthe Arbo, Afaf Saai, Sture Sørli, Mette Nedreberg

Abstract:

This work aims to establish a reliable approach for optimizing a Laser Metal Deposition (LMD) process for a critical maritime component, based on the material properties and structural performance required by the maritime industry. The component of interest is a water jet impeller, for which specific requirements for material properties are defined. The developed approach is based on the assessment of the effects of LMD process parameters on microstructure and material performance of standard AM 2205 duplex stainless steel powder. Duplex stainless steel offers attractive properties for maritime applications, combining high strength, enhanced ductility and excellent corrosion resistance due to the specific amounts of ferrite and austenite. These properties are strongly affected by the microstructural characteristics in addition to microstructural defects such as porosity and welding defects, all strongly influenced by the chosen LMD process parameters. In this study, the influence of deposition speed and heat input was evaluated. First, the influences of deposition speed and heat input on the microstructure characteristics, including ferrite/austenite fraction, amount of porosity and welding defects, were evaluated. Then, the achieved mechanical properties were evaluated by standard testing methods, measuring the hardness, tensile strength and elongation, bending force and impact energy. The measured properties were compared to the requirements of the water jet impeller. The results show that the required amounts of ferrite and austenite can be achieved directly by the LMD process without post-weld heat treatments. No intermetallic phases were observed in the material produced by the investigated process parameters. A high deposition speed was found to reduce the ductility due to the formation of welding defects. An increased heat input was associated with reduced strength due to the coarsening of the ferrite/austenite microstructure. The microstructure characterizations and measured mechanical performance demonstrate the great potential of the LMD process and generate a valuable database for the optimization of the LMD process for duplex stainless steels.

Keywords: duplex stainless steel, laser metal deposition, process optimization, microstructure, mechanical properties

Procedia PDF Downloads 199
987 Effect of Fiber Types and Elevated Temperatures on the Bond Characteristic of Fiber Reinforced Concretes

Authors: Erdoğan Özbay, Hakan T. Türker, Müzeyyen Balçıkanlı, Mohamed Lachemi

Abstract:

In this paper, the effects of fiber types and elevated temperatures on compressive strength, modulus of rapture and the bond characteristics of fiber reinforced concretes (FRC) are presented. By using the three different types of fibers (steel fiber-SF, polypropylene-PPF and polyvinyl alcohol-PVA), FRC specimens were produced and exposed to elevated temperatures up to 800 ºC for 1.5 hours. In addition, a plain concrete (without fiber) was produced and used as a control. Test results obtained showed that the steel fiber reinforced concrete (SFRC) had the highest compressive strength, modulus of rapture and bond stress values at room temperatures, the residual bond, flexural and compressive strengths of both FRC and plain concrete dropped sharply after exposure to high temperatures. The results also indicated that the reduction of bond, flexural and compressive strengths with increasing the exposed temperature was relatively less for SFRC than for plain, and FRC with PPF and PVA.

Keywords: bond stress, compressive strength, elevated temperatures, fiber reinforced concrete, modulus of rapture

Procedia PDF Downloads 398
986 Simulation of Binary Nitride Inclusions Effect on Tensile Properties of Steel

Authors: Ali Dalirbod, Peyman Ahmadian

Abstract:

Inclusions are unavoidable part of all steels. Non-metallic inclusions have significant effects on mechanical properties of steel. The effects of inclusion on stress concentration around the matrix/inclusion have been extensively studied. The results relating to single inclusion behavior, describe properly the behavior of stress but not the elongation drop. The raised stress in inclusion/matrix results in crack initiation. The influence of binary inclusions on stress concentration around matrix is a major aim of this work which is representative of the simple pattern distribution of non-metallic inclusions. Stress concentration around inclusions in this case depends on parameters like distance between two inclusions (d), angle between centrally linking line of two inclusions, load axis (φ), and rotational angle of inclusion (θ). FEM analysis was applied to investigate the highest and lowest ductility versus varying parameters above. The simulation results show that there is a critical distance between two cubic inclusions in which bigger than the threshold, the stress, and strain field in matrix/inclusions interface converts into individual fields around each inclusion.

Keywords: nitride inclusion, simulation, tensile properties, inclusion-matrix interface

Procedia PDF Downloads 306
985 Seismic Retrofitting of Structures Using Steel Plate Slit Dampers Based on Genetic Algorithm

Authors: Mohamed Noureldin, Jinkoo Kim

Abstract:

In this study, a genetic algorithm was used to find out the optimum locations of the slit dampers satisfying a target displacement. A seismic retrofit scheme for a building structure was presented using steel plate slit dampers. A cyclic loading test was used to verify the energy dissipation capacity of the slit damper. The seismic retrofit of the model structure using the slit dampers was compared with the retrofit with enlarging shear walls. The capacity spectrum method was used to propose a simple damper distribution scheme proportional to the inter-story drifts. The validity of the simple story-wise damper distribution procedure was verified by comparing the results of the genetic algorithm. It was observed that the proposed simple damper distribution pattern was in a good agreement with the optimum distribution obtained from the genetic algorithm. Acknowledgment: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032809).

Keywords: slit dampers, seismic retrofit, genetic algorithm, optimum design

Procedia PDF Downloads 205
984 Optimization of Surface Finish in Milling Operation Using Live Tooling via Taguchi Method

Authors: Harish Kumar Ponnappan, Joseph C. Chen

Abstract:

The main objective of this research is to optimize the surface roughness of a milling operation on AISI 1018 steel using live tooling on a HAAS ST-20 lathe. In this study, Taguchi analysis is used to optimize the milling process by investigating the effect of different machining parameters on surface roughness. The L9 orthogonal array is designed with four controllable factors with three different levels each and an uncontrollable factor, resulting in 18 experimental runs. The optimal parameters determined from Taguchi analysis were feed rate – 76.2 mm/min, spindle speed 1150 rpm, depth of cut – 0.762 mm and 2-flute TiN coated high-speed steel as tool material. The process capability Cp and process capability index Cpk values were improved from 0.62 and -0.44 to 1.39 and 1.24 respectively. The average surface roughness values from the confirmation runs were 1.30 µ, decreasing the defect rate from 87.72% to 0.01%. The purpose of this study is to efficiently utilize the Taguchi design to optimize the surface roughness in a milling operation using live tooling.

Keywords: live tooling, surface roughness, taguchi analysis, CNC milling operation, CNC turning operation

Procedia PDF Downloads 120
983 Corrosion Behavior of Organic-Inorganic Hybrid Coatings Fabricated by Electrostatic Method

Authors: Mohammed Ahmed, Ziba Nazarlou

Abstract:

Mild steels have a limited alloying content which makes them vulnerable to excessive corrosion rates in the harsh medium. To overcome this issue, some protective coatings are used to prevent corrosion on the steel surface. The use of specialized coatings, mainly organic coatings (such as epoxies, polyurethanes, and acrylics) and inorganic coatings (such as Polysiloxanes) is the most common method of mitigating corrosion of carbon steel. Incorporating the benefits of organic and inorganic hybrid (OIH) compounds for the designing of hybrid protective coatings is still challenging for industrial applications. There are advantages of inorganic coatings have, but purely inorganic siloxane-based coatings are difficult to use on industrial applications unless they are used at extremely low thicknesses (< 1-2 microns). Hence, most industrial applications try to have a combination of Polysiloxanes with organic compounds.  A hybrid coating possesses an organic section, which transports flexibility and impact resistance, and an inorganic section, which usually helps in the decreasing of porosity and increasing thermal stability and hardness. A number of polymers including polyethylene glycol and polyvinyl pyrrolidone have been reported to inhibit the corrosion mild steel in acidic media. However, reports on the effect of polyethylene oxide (PEO) or its blends on corrosion inhibition of metals is very scarce. Different composition of OIH coatings was synthesized by using silica sol-gel, epoxy, and PEO. The effect of different coating types on the corrosion behavior of carbon steel in harsh solution has been studied by weight loss and electrochemical measurements using Gamry 1000 Interface Potentiostat. Coating structures were investigated by SEM. İt revealed a considerable reduction in corrosion rate for coated sample. Based on these results, OIH coating prepared by epoxy-silica sol gel-PEO and epoxy-silica sol-gel exhibit had a %99.5 and %98 reduction of (Corrosion rate) CR compares to baseline. Cathodic Tafel constant (βc) shows that coatings change both Tafel constants but had more effect on the cathodic process. The evolution of the Potentiostatic scan with time displays stability in potential, some of them in a high value while the other in a low value which can be attributed to the formation of an oxide film covering substrate surface. The coated samples with the group of epoxy coating have a lower potential along with the time test, while the silica group shows higher in potential with respect to time.

Keywords: electrostatic, hybrid coating, corrosion tests, silica sol gel

Procedia PDF Downloads 106
982 Microstructure and Mechanical Properties of Low Alloy Steel with Double Austenitizing Tempering Heat Treatment

Authors: Jae-Ho Jang, Jung-Soo Kim, Byung-Jun Kim, Dae-Geun Nam, Uoo-Chang Jung, Yoon-Suk Choi

Abstract:

Low alloy steels are widely used for pressure vessels, spent fuel storage, and steam generators required to withstand the internal pressure and prevent unexpected failure in nuclear power plants, which these may suffer embrittlement by high levels of radiation and heat for a long period. Therefore, it is important to improve mechanical properties of low alloy steels for the integrity of structure materials at an early stage of fabrication. Recently, it showed that a double austenitizing and tempering (DTA) process resulted in a significant improvement of strength and toughness by refinement of prior austenite grains. In this study, it was investigated that the mechanism of improving mechanical properties according to the change of microstructure by the second fully austenitizing temperature of the DAT process for low alloy steel required the structural integrity. Compared to conventional single austenitizing and tempering (SAT) process, the tensile elongation properties have improved about 5%, DBTTs have obtained result in reduction of about -65℃, and grain size has decreased by about 50% in the DAT process conditions. Grain refinement has crack propagation interference effect due to an increase of the grain boundaries and amount of energy absorption at low temperatures. The higher first austenitizing temperature in the DAT process, the more increase the spheroidized carbides and strengthening the effect of fine precipitates in the ferrite grain. The area ratio of the dimple in the transition area has increased by proportion to the effect of spheroidized carbides. This may the primary mechanisms that can improve low-temperature toughness and elongation while maintaining a similar hardness and strength.

Keywords: double austenitizing, Ductile Brittle transition temperature, grain refinement, heat treatment, low alloy steel, low-temperature toughness

Procedia PDF Downloads 495
981 Evaluation of Chitin Filled Epoxy Coating for Corrosion Protection of Q235 Steel in Saline Environment

Authors: Innocent O. Arukalam, Emeka E. Oguzie

Abstract:

Interest in the development of eco-friendly anti-corrosion coatings using bio-based renewable materials is gaining momentum recently. To this effect, chitin biopolymer, which is non-toxic, biodegradable, and inherently possesses anti-microbial property, was successfully synthesized from snail shells and used as a filler in the preparation of epoxy coating. The chitin particles were characterized with contact angle goniometer, scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectrophotometer, and X-ray diffractometer (XRD). The performance of the coatings was evaluated by immersion and electrochemical impedance spectroscopy (EIS) tests. Electronic structure properties of the coating ingredients and molecular level interaction of the corrodent and coated Q235 steel were appraised by quantum chemical computations (QCC) and molecular dynamics (MD) simulation techniques, respectively. The water contact angle (WCA) measurement of chitin particles was found to be 129.3o while that of chitin particles modified with amino trimethoxy silane (ATMS) was 149.6o, suggesting it is highly hydrophobic. Immersion and EIS analyses revealed that epoxy coating containing silane-modified chitin exhibited lowest water absorption and highest barrier as well as anti-corrosion performances. The QCC showed that quantum parameters for the coating containing silane-modified chitin are optimum and therefore corresponds to high corrosion protection. The high negative value of adsorption energies (Eads) for the coating containing silane-modified chitin indicates the coating molecules interacted and adsorbed strongly on the steel surface. The observed results have shown that silane-modified epoxy-chitin coating would perform satisfactorily for surface protection of metal structures in saline environment.

Keywords: chitin, EIS, epoxy coating, hydrophobic, molecular dynamics simulation, quantum chemical computation

Procedia PDF Downloads 69
980 New Techniques to Decrease the Interfacial Stress in Steel Beams Strengthened With FRP Laminates

Authors: A. S. Bouchikhi, A. Megueni, S. Habibi

Abstract:

One major problem when using bonded Fiber Reinforced Polymer is the presence of high inter facial stresses near the end of the composite laminate which might govern the failure of the strengthening schedule. It is known that the decrease of FRP plate thickness and the fitness of adhesive reduce the stress concentration at plate ends. Another way is to use a plate with a non uniform section or tapered ends and softer adhesive at the edges. In this paper, a comprehensive finite element (FE) study has been conducted to investigate the effect of mixed adhesive joints (MAJ) and tapering plate on the inter facial stress distribution in the adhesive layer, this paper presents the results of a study of application of two adhesives with different stiffnesses (bi-adhesive) along the joint strength length between the CFRP-strengthened steel beam for tapered and untapered plate on the distribution of inter facial stresses. A stiff adhesive was applied in the middle portion of the joint strength, while a low modulus adhesive was applied towards the edges prone to stress concentrations.

Keywords: FRP, mixed adhesive joints, stresses, tapered plate, retrofitted beams bonded

Procedia PDF Downloads 480
979 Wear Progress and -Mechanisms in Torpedo Ladles in Steel Industry

Authors: Mattahias Maj, Fabio Tatzgern, Karl Adam, Damir Kahrimanovic, Markus Varga

Abstract:

Torpedo ladles are necessary transport carriages in steel production to move the molten crude iron from the blast furnace to the steel refining plant. This requires the ladles to be high temperature resistant and insulate well to preserve the temperature and hold the risk of solidification at bay. Therefore, the involved refractories lining the inside of the torpedo ladles are chosen mostly according to their thermal properties, although wear of the materials by the liquid iron is also of major importance. In this work, we combined investigations of the thermal behaviour with wear studies of the lining over the whole lifetime of a torpedo ladle. Additional numerical simulations enabled a detailed model of the mechanical loads and temperature propagation at the various stations (heating, filling, emptying, cooling). The core of the investigation were detailed 3D measurements of the ladle’s cavity and thereby quantitative information of the wear progress at different time intervals during the lifetime of the ladles. The measurements allowed for a separation of different wear zones according to severity, namely the “splash zone” where the melt directly hits the ladle, the “melt zone” where during transport always liquid melt is present, and the “slag zone”, where the slag floats on the melt causing the most severe wear loss. Numerical simulations of the filling process were taken to calculate stress levels and temperature gradients, which led to the different onset of wear on those zones. Thermal imaging and punctual temperature measurements allowed for a study of the thermal consequences entailed by the wear onset. Additional “classical” damage analysis of the worn refractories complete the investigation. Thereby the wear mechanisms leading to the substantial wear loss were disclosed.

Keywords: high temperature, tribology, liquid-solid interaction, refractories, thermography

Procedia PDF Downloads 202
978 Earthquake Retrofitting Methods of Steel and Concrete Structures and Investigating Strategies to Deal With Destructive Earthquakes

Authors: Ehsan Sadie

Abstract:

Today, after devastating earthquakes and many deaths due to the destruction of residential buildings, the scientific community has attracted the attention of the existing structures to strengthen and standardize construction. Due to the fact that the existing buildings are sometimes constructed without sufficient knowledge of the correct design, and even the buildings built according to the old standards today need to be reinforced due to changes in some provisions of the regulations. The location of some countries in the seismic zone has always caused a lot of human and economic damage throughout history, and attention to the strengthening of buildings, important facilities, and vital arteries is the result of this situation. Engineers' efforts to design earthquake-resistant buildings began when decades had passed since the development of design criteria and ensuring the safety of buildings against loads. New methods, mass reduction, reducing the weight of the building, use of moving structures to deal with earthquakes, as well as the use of new technologies in this field, including the use of dampers, composites in the reinforcement of structures are discussed, and appropriate solutions have been provided in each of the fields.

Keywords: brace, concrete structure, damper, earthquake, FRP reinforcement, lightweight material, retrofitting, seismic isolator, shear wall, steel structure

Procedia PDF Downloads 57
977 An Experimental and Numerical Study on the Pultruded GFRP I-Sections Beams

Authors: Parinaz Arashnia, Farzad Hatami, Saeed Ghaffarpour Jahromi

Abstract:

Using steel in bridges’ construction because of their desired tensile and compressive strength and light weight especially in large spans was widely popular. Disadvantages of steel such as corrosion, buckling and weaknesses in high temperature and unsuitable weld could be solve with using Fibres Reinforced Polymer (FRP) profiles. The FRP is a remarkable class of composite polymers that can improve structural elements behaviour like corrosion resistance, fir resistance with good proofing and electricity and magnetic non-conductor. Nowadays except FRP reinforced bars and laminates, FRP I-beams are made and studied. The main reason for using FRP profiles is, prevent of corrosion and increase the load carrying capacity and durability, especially in large spans in bridges’ deck. In this paper, behaviour of I-section glass fibres reinforced polymer (GFRP) beam is discussed under point loads with numerical models and results has been compared and verified with experimental tests.

Keywords: glass fibres reinforced polymer, composite, I-section beam, durability, finite element method, numerical model

Procedia PDF Downloads 246
976 Unusual Weld Failures of Rotary Compressor during Hydraulic Tests: Analysis revealed Boron Induced Cracking in Fusion Zone

Authors: Kaushal Kishore, Vaibhav Jain, Hrishikesh Jugade, Saurabh Hadas, Manashi Adhikary, Goutam Mukhopadhyay, Sandip Bhattacharyya

Abstract:

Rotary air compressors in air conditioners are used to suck excessive volume of air from the atmosphere in a small space to provide drive to the components attached to them. Hydraulic test is one of the most important methods to decide the suitability of these components for usage. In the present application, projection welding is used to join the hot rolled steel sheets after forming for manufacturing of air compressors. These sheets belong to two different high strength low alloy (HSLA) steel grades. It was observed that one batch of compressors made of a particular grade was cracking from the weld, whereas those made of another grade were passing the hydraulic tests. Cracking was repeatedly observed from the weld location. A detailed comparative study of the compressors which failed and successfully passed pressure tests has been presented. Location of crack initiation was identified to be the interface of fusion zone/heat affected zone. Shear dimples were observed on the fracture surface confirming the ductile mode of failure. Hardness profile across the weld revealed a sharp rise in hardness in the fusion zone. This was attributed to the presence of untempered martensitic lath in the fusion zone. A sharp metallurgical notch existed at the heat affected zone/fusion zone interface due to transition in microstructure from acicular ferrite and bainite in HAZ to untempered martensite in the fusion zone. In contrast, welds which did not fail during the pressure tests showed a smooth hardness profile with no abnormal rise in hardness in the fusion zone. The bainitic microstructure was observed in the fusion zone of successful welds. This difference in microstructural constituents in the fusion zone was attributed to the presence of a small amount of boron (0.002 wt. %) in the sheets which were cracking. Trace amount of boron is known to substantially increase the hardenability of HSLA steel, and cooling rate during resolidification in the fusion zone is sufficient to form martensite. Post-weld heat treatment was recommended to transform untempered martensite to tempered martensite with lower hardness.

Keywords: compressor, cracking, martensite, weld, boron, hardenability, high strength low alloy steel

Procedia PDF Downloads 144
975 Carbon Sequestering and Structural Capabilities of Eucalyptus Cloeziana

Authors: Holly Sandberg, Christina McCoy, Khaled Mansy

Abstract:

Eucalyptus Cloeziana, commonly known as Gympie Messmate, is a fast-growing hardwood native to Australia. Its quick growth makes it advantageous for carbon sequestering, while its strength class lends itself to structural applications. Market research shows that the demand for timber is growing, especially mass timber. An environmental product declaration, or EPD, for eucalyptus Cloeziana in the Australian market has been evaluated and compared to the EPD’s of steel and Douglas fir of the same region. An EPD follows a product throughout its life cycle, stating values for global warming potential, ozone depletion potential, acidification potential, eutrophication potential, photochemical ozone creation potential, and abiotic depletion potential. This paper highlights the market potential, as well as the environmental benefits and challenges to using Gympie Messmate as a structural building material. In addition, a case study is performed to compare steel, Douglas fir, and eucalyptus in terms of embodied carbon and structural weight within a single structural bay. Comparisons among the three materials highlight both the differences in structural capabilities as well as environmental impact.

Keywords: eucalyptus, timber, construction, structural, material

Procedia PDF Downloads 158