Search results for: micro data
25879 Ion Beam Writing and Implantation in Graphene Oxide, Reduced Graphene Oxide and Polyimide Through Polymer Mask for Sensorics Applications
Authors: Jan Luxa, Vlastimil Mazanek, Petr Malinsky, Alexander Romanenko, Mariapompea Cutroneo, Vladimir Havranek, Josef Novak, Eva Stepanovska, Anna Mackova, Zdenek Sofer
Abstract:
Using accelerated energetic ions is an interesting method for the introduction of structural changes in various carbon-based materials. This way, the properties can be altered in two ways: a) the ions lead to the formation of conductive pathways in graphene oxide structures due to the elimination of oxygen functionalities and b) doping with selected ions to form metal nanoclusters, thus increasing the conductivity. In this work, energetic beams were employed in two ways to prepare capacitor structures in graphene oxide (GO), reduced graphene oxide (rGO) and polyimide (PI) on a micro-scale. The first method revolved around using ion beam writing with a focused ion beam, and the method involved ion implantation via a polymeric mask. To prepare the polymeric mask, a direct spin-coating of PMMA on top of the foils was used. Subsequently, proton beam writing and development in isopropyl alcohol were employed. Finally, the mask was removed using acetone solvent. All three materials were exposed to ion beams with an energy of 2.5-5 MeV and an ion fluence of 3.75x10¹⁴ cm-² (1800 nC.mm-²). Thus, prepared microstructures were thoroughly characterized by various analytical methods, including Scanning electron microscopy (SEM) with Energy-Dispersive X-ray spectroscopy (EDS), X-ray Photoelectron spectroscopy (XPS), micro-Raman spectroscopy, Rutherford Back-scattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis (ERDA) spectroscopy. Finally, these materials were employed and tested as sensors for humidity using electrical conductivity measurements. The results clearly demonstrate that the type of ions, their energy and fluence all have a significant influence on the sensory properties of thus prepared sensors.Keywords: graphene, graphene oxide, polyimide, ion implantation, sensors
Procedia PDF Downloads 8525878 Carbon-Based Electrochemical Detection of Pharmaceuticals from Water
Authors: M. Ardelean, F. Manea, A. Pop, J. Schoonman
Abstract:
The presence of pharmaceuticals in the environment and especially in water has gained increasing attention. They are included in emerging class of pollutants, and for most of them, legal limits have not been set-up due to their impact on human health and ecosystem was not determined and/or there is not the advanced analytical method for their quantification. In this context, the development of various advanced analytical methods for the quantification of pharmaceuticals in water is required. The electrochemical methods are known to exhibit the great potential for high-performance analytical methods but their performance is in direct relation to the electrode material and the operating techniques. In this study, two types of carbon-based electrodes materials, i.e., boron-doped diamond (BDD) and carbon nanofiber (CNF)-epoxy composite electrodes have been investigated through voltammetric techniques for the detection of naproxen in water. The comparative electrochemical behavior of naproxen (NPX) on both BDD and CNF electrodes was studied by cyclic voltammetry, and the well-defined peak corresponding to NPX oxidation was found for each electrode. NPX oxidation occurred on BDD electrode at the potential value of about +1.4 V/SCE (saturated calomel electrode) and at about +1.2 V/SCE for CNF electrode. The sensitivities for NPX detection were similar for both carbon-based electrode and thus, CNF electrode exhibited superiority in relation to the detection potential. Differential-pulsed voltammetry (DPV) and square-wave voltammetry (SWV) techniques were exploited to improve the electroanalytical performance for the NPX detection, and the best results related to the sensitivity of 9.959 µA·µM-1 were achieved using DPV. In addition, the simultaneous detection of NPX and fluoxetine -a very common antidepressive drug, also present in water, was studied using CNF electrode and very good results were obtained. The detection potential values that allowed a good separation of the detection signals together with the good sensitivities were appropriate for the simultaneous detection of both tested pharmaceuticals. These results reclaim CNF electrode as a valuable tool for the individual/simultaneous detection of pharmaceuticals in water.Keywords: boron-doped diamond electrode, carbon nanofiber-epoxy composite electrode, emerging pollutans, pharmaceuticals
Procedia PDF Downloads 28125877 Linkage between Trace Element Distribution and Growth Ring Formation in Japanese Red Coral (Paracorallium japonicum)
Authors: Luan Trong Nguyen, M. Azizur Rahman, Yusuke Tamenori, Toshihiro Yoshimura, Nozomu Iwasaki, Hiroshi Hasegawa
Abstract:
This study investigated the distribution of magnesium (Mg), phosphorus (P), sulfur (S) and strontium (Sr) using micro X-ray fluorescence (µ-XRF) along the annual growth rings in the skeleton of Japanese red coral Paracorallium japonicum. The Mg, P and S distribution in µ-XRF mapping images correspond to the dark and light bands along the annual growth rings observed in microscopic images of the coral skeleton. The µ-XRF mapping data showed a positive correlation (r = 0.6) between P and S distribution in the coral skeleton. A contrasting distribution pattern of S and Mg along the axial skeleton of P. japonicum indicates a weak negative correlation (r = -0.2) between these two trace elements. The distribution pattern of S, P and Mg reveals linkage between their distributions and the formation of dark/light bands along the annual growth rings in the axial skeleton of P. japonicum. Sulfur and P were distributed in the organic matrix rich dark bands, while Mg was distributed in the light bands of the annual growth rings.Keywords: µ-XRF, trace element, precious coral, Paracorallium japonicum
Procedia PDF Downloads 44225876 Improving the Statistics Nature in Research Information System
Authors: Rajbir Cheema
Abstract:
In order to introduce an integrated research information system, this will provide scientific institutions with the necessary information on research activities and research results in assured quality. Since data collection, duplication, missing values, incorrect formatting, inconsistencies, etc. can arise in the collection of research data in different research information systems, which can have a wide range of negative effects on data quality, the subject of data quality should be treated with better results. This paper examines the data quality problems in research information systems and presents the new techniques that enable organizations to improve their quality of research information.Keywords: Research information systems (RIS), research information, heterogeneous sources, data quality, data cleansing, science system, standardization
Procedia PDF Downloads 15725875 Data Mining Meets Educational Analysis: Opportunities and Challenges for Research
Authors: Carla Silva
Abstract:
Recent development of information and communication technology enables us to acquire, collect, analyse data in various fields of socioeconomic – technological systems. Along with the increase of economic globalization and the evolution of information technology, data mining has become an important approach for economic data analysis. As a result, there has been a critical need for automated approaches to effective and efficient usage of massive amount of educational data, in order to support institutions to a strategic planning and investment decision-making. In this article, we will address data from several different perspectives and define the applied data to sciences. Many believe that 'big data' will transform business, government, and other aspects of the economy. We discuss how new data may impact educational policy and educational research. Large scale administrative data sets and proprietary private sector data can greatly improve the way we measure, track, and describe educational activity and educational impact. We also consider whether the big data predictive modeling tools that have emerged in statistics and computer science may prove useful in educational and furthermore in economics. Finally, we highlight a number of challenges and opportunities for future research.Keywords: data mining, research analysis, investment decision-making, educational research
Procedia PDF Downloads 35825874 Synthesis of Liposomal Vesicles by a Novel Supercritical Fluid Process
Authors: Wen-Chyan Tsai, Syed S. H. Rizvi
Abstract:
Organic solvent residues are always associated with liposomes produced by the traditional techniques like the thin film hydration and reverse phase evaporation methods, which limit the applications of these vesicles in the pharmaceutical, food and cosmetic industries. Our objective was to develop a novel and benign process of liposomal microencapsulation by using supercritical carbon dioxide (SC-CO2) as the sole phospholipid-dissolving medium and a green substitute for organic solvents. This process consists of supercritical fluid extraction followed by rapid expansion via a nozzle and automatic cargo suction. Lecithin and cholesterol mixed in 10:1 mass ratio were dissolved in SC-CO2 at 20 ± 0.5 MPa and 60 oC. After at least two hours of equilibrium, the lecithin/cholesterol-laden SC-CO2 was passed through a 1000-micron nozzle and immediately mixed with the cargo solution to form liposomes. Liposomal micro-encapsulation was conducted at three pressures (8.27, 12.41, 16.55 MPa), three temperatures (75, 83 and 90 oC) and two flow rates (0.25 ml/sec and 0.5 ml/sec). Liposome size, zeta potential and encapsulation efficiency were characterized as functions of the operating parameters. The average liposomal size varied from 400-500 nm to 1000-1200 nm when the pressure was increased from 8.27 to 16.55 MPa. At 12.41 MPa, 90 oC and 0.25 ml per second of 0.2 M glucose cargo loading rate, the highest encapsulation efficiency of 31.65 % was achieved. Under a confocal laser scanning microscope, large unilamellar vesicles and multivesicular vesicles were observed to make up a majority of the liposomal emulsion. This new approach is a rapid and continuous process for bulk production of liposomes using a green solvent. Based on the results to date, it is feasible to apply this technique to encapsulate hydrophilic compounds inside the aqueous core as well as lipophilic compounds in the phospholipid bilayers of the liposomes for controlled release, solubility improvement and targeted therapy of bioactive compounds.Keywords: liposome, micro encapsulation, supercritical carbon dioxide, non-toxic process
Procedia PDF Downloads 43125873 Structural and Morphological Characterization of Inorganic Deposits in Spinal Ligaments
Authors: Sylwia Orzechowska, Andrzej Wróbel, Eugeniusz Rokita
Abstract:
The mineralization is a curious problem of connective tissues. Factors which may play a decisive role in the regulation of the yellow ligaments (YL) mineralization are still open questions. The aim of the studies was a detailed description of the chemical composition and morphology of mineral deposits in the human yellow ligaments. Investigations of the structural features of deposits were used to explain the impact of various factors on mineralization process. The studies were carried out on 24 YL samples, surgically removed from patients suffer from spinal canal stenosis and the patients who sustained a trauma. The micro-computed tomography was used to describe the morphology of mineral deposits. The X-ray fluorescence method and Fourier transform infrared spectroscopy were applied to determine the chemical composition of the samples. In order to eliminate the effect of blur in microtomographic images, the correction method of partial volume effect was used. The mineral deposits appear in 60% of YL samples, both in patients with a stenosis and following injury. The mineral deposits have a heterogeneous structure and they are a mixture of the tissue and mineral grains. The volume of mineral grains amounts to (1.9 ± 3.4)*10-3 mm3 while the density distribution of grains occurs in two distinct ranges (1.75 - 2.15 and 2.15-2.5) g/cm3. Application of the partial volume effect correction allows accurate calculations by eliminating the averaging effect of gray levels in tomographic images. The B-type carbonate-containing hydroxyapatite constitutes the mineral phase of majority YLs. The main phase of two samples was calcium pyrophosphate dihydrate (CPPD). The elemental composition of minerals in all samples is almost identical. This pathology may be independent on the spine diseases and it does not evoke canal stenosis. The two ranges of grains density indicate two stages of grains growth and the degree of maturity. The presence of CPPD crystals may coexist with other pathologies.Keywords: FTIR, micro-tomography, mineralization, spinal ligaments
Procedia PDF Downloads 37725872 A Method of Detecting the Difference in Two States of Brain Using Statistical Analysis of EEG Raw Data
Authors: Digvijaysingh S. Bana, Kiran R. Trivedi
Abstract:
This paper introduces various methods for the alpha wave to detect the difference between two states of brain. One healthy subject participated in the experiment. EEG was measured on the forehead above the eye (FP1 Position) with reference and ground electrode are on the ear clip. The data samples are obtained in the form of EEG raw data. The time duration of reading is of one minute. Various test are being performed on the alpha band EEG raw data.The readings are performed in different time duration of the entire day. The statistical analysis is being carried out on the EEG sample data in the form of various tests.Keywords: electroencephalogram(EEG), biometrics, authentication, EEG raw data
Procedia PDF Downloads 46425871 Nose Macroneedling Tie Suture Hidden Technique
Authors: Mohamed Ghoz, Hala Alsabeh
Abstract:
Context: Macroscopic Nose Macroneedling (MNM) is a new non-surgical procedure for lifting and tightening the nose. It is a tissue-non-invasive technique that uses a needle to create micro-injuries in the skin. These injuries stimulate the production of collagen and elastin, which results in the tightening and lifting of the skin. Research Aim: The research aim of this study was to investigate the efficacy and safety of MNM for the treatment of nasal deformities. Methodology A total of 100 patients with nasal deformities were included in this study. The patients were randomly assigned to either the MNM group or the control group. The MNM group received a single treatment of MNM, while the control group received no treatment. The patients were evaluated at baseline, 6 months, and 12 months after treatment. Findings: The results of this study showed that MNM was effective in improving the appearance of the nose in patients with nasal deformities. At 6 months after treatment, the patients in the MNM group had significantly improved nasal tip projection, nasal bridge height, and nasal width compared to the patients in the control group. The improvements in nasal appearance were maintained at 12 months after treatment. Theoretical Importance: The findings of this study provide support for the use of MNM as a safe and effective treatment for nasal deformities. MNM is a non-surgical procedure that is associated with minimal downtime and no risk of scarring. This makes it an attractive option for patients who are looking for a minimally invasive treatment for their nasal deformities. Data Collection: Data was collected from the patients using a variety of methods, including clinical assessments, photographic assessments, and patient-reported outcome measures. Analysis Procedures: The data was analyzed using a variety of statistical methods, including descriptive statistics, inferential statistics, and meta-analysis. Question Addressed: The research question addressed in this study was whether MNM is an effective and safe treatment for nasal deformities. Conclusion: The findings of this study suggest that MNM is an effective and safe treatment for nasal deformities. MNM is a non-surgical procedure that is associated with minimal downtime and no risk of scarring. This makes it an attractive option for patients who are looking for a minimally invasive treatment for their nasal deformities.Keywords: nose, surgery, tie, suture
Procedia PDF Downloads 7525870 Influence of Structured Capillary-Porous Coatings on Cryogenic Quenching Efficiency
Authors: Irina P. Starodubtseva, Aleksandr N. Pavlenko
Abstract:
Quenching is a term generally accepted for the process of rapid cooling of a solid that is overheated above the thermodynamic limit of the liquid superheat. The main objective of many previous studies on quenching is to find a way to reduce the total time of the transient process. Computational experiments were performed to simulate quenching by a falling liquid nitrogen film of an extremely overheated vertical copper plate with a structured capillary-porous coating. The coating was produced by directed plasma spraying. Due to the complexities in physical pattern of quenching from chaotic processes to phase transition, the mechanism of heat transfer during quenching is still not sufficiently understood. To our best knowledge, no information exists on when and how the first stable liquid-solid contact occurs and how the local contact area begins to expand. Here we have more models and hypotheses than authentically established facts. The peculiarities of the quench front dynamics and heat transfer in the transient process are studied. The created numerical model determines the quench front velocity and the temperature fields in the heater, varying in space and time. The dynamic pattern of the running quench front obtained numerically satisfactorily correlates with the pattern observed in experiments. Capillary-porous coatings with straight and reverse orientation of crests are investigated. The results show that the cooling rate is influenced by thermal properties of the coating as well as the structure and geometry of the protrusions. The presence of capillary-porous coating significantly affects the dynamics of quenching and reduces the total quenching time more than threefold. This effect is due to the fact that the initialization of a quench front on a plate with a capillary-porous coating occurs at a temperature significantly higher than the thermodynamic limit of the liquid superheat, when a stable solid-liquid contact is thermodynamically impossible. Waves present on the liquid-vapor interface and protrusions on the complex micro-structured surface cause destabilization of the vapor film and the appearance of local liquid-solid micro-contacts even though the average integral surface temperature is much higher than the liquid superheat limit. The reliability of the results is confirmed by direct comparison with experimental data on the quench front velocity, the quench front geometry, and the surface temperature change over time. Knowledge of the quench front velocity and total time of transition process is required for solving practically important problems of nuclear reactors safety.Keywords: capillary-porous coating, heat transfer, Leidenfrost phenomenon, numerical simulation, quenching
Procedia PDF Downloads 13025869 Engagement Analysis Using DAiSEE Dataset
Authors: Naman Solanki, Souraj Mondal
Abstract:
With the world moving towards online communication, the video datastore has exploded in the past few years. Consequently, it has become crucial to analyse participant’s engagement levels in online communication videos. Engagement prediction of people in videos can be useful in many domains, like education, client meetings, dating, etc. Video-level or frame-level prediction of engagement for a user involves the development of robust models that can capture facial micro-emotions efficiently. For the development of an engagement prediction model, it is necessary to have a widely-accepted standard dataset for engagement analysis. DAiSEE is one of the datasets which consist of in-the-wild data and has a gold standard annotation for engagement prediction. Earlier research done using the DAiSEE dataset involved training and testing standard models like CNN-based models, but the results were not satisfactory according to industry standards. In this paper, a multi-level classification approach has been introduced to create a more robust model for engagement analysis using the DAiSEE dataset. This approach has recorded testing accuracies of 0.638, 0.7728, 0.8195, and 0.866 for predicting boredom level, engagement level, confusion level, and frustration level, respectively.Keywords: computer vision, engagement prediction, deep learning, multi-level classification
Procedia PDF Downloads 11425868 A Study on Big Data Analytics, Applications and Challenges
Authors: Chhavi Rana
Abstract:
The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.Keywords: big data, big data analytics, machine learning, review
Procedia PDF Downloads 8325867 A Study on Big Data Analytics, Applications, and Challenges
Authors: Chhavi Rana
Abstract:
The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.Keywords: big data, big data analytics, machine learning, review
Procedia PDF Downloads 9525866 Experimental Study of Boost Converter Based PV Energy System
Authors: T. Abdelkrim, K. Ben Seddik, B. Bezza, K. Benamrane, Aeh. Benkhelifa
Abstract:
This paper proposes an implementation of boost converter for a resistive load using photovoltaic energy as a source. The model of photovoltaic cell and operating principle of boost converter are presented. A PIC micro controller is used in the close loop control to generate pulses for controlling the converter circuit. To performance evaluation of boost converter, a variation of output voltage of PV panel is done by shading one and two cells.Keywords: boost converter, microcontroller, photovoltaic power generation, shading cells
Procedia PDF Downloads 87725865 Improved K-Means Clustering Algorithm Using RHadoop with Combiner
Authors: Ji Eun Shin, Dong Hoon Lim
Abstract:
Data clustering is a common technique used in data analysis and is used in many applications, such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing. K-means clustering is a well-known clustering algorithm aiming to cluster a set of data points to a predefined number of clusters. In this paper, we implement K-means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. The main idea is to introduce a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. The experimental results demonstrated that K-means algorithm using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also showed that our K-means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases.Keywords: big data, combiner, K-means clustering, RHadoop
Procedia PDF Downloads 43825864 Host Cell Membrane Lipid Rafts Are Required for Influenza A Virus Adsorption to Host Cell Surface
Authors: Dileep K. Verma, Sunil K. Lal
Abstract:
Influenza still remains one of the most challenging diseases posing significant threat to public health causing seasonal epidemics and pandemics. Previous studies suggest that influenza hemagglutinin is essential for viral attachment to host sialic acid receptors and concentrate in lipid rafts for efficient viral fusion. Studies also reported selective nature of Influenza virus to utilize rafts micro-domain for efficient virus assembly and budding. However, the detailed mechanism of Influenza A Virus (IAV) binding to host cell membrane and entry inside the host remains elusive. In the present study, we investigated if host membrane lipid rafts play any significant role in early life cycle events of influenza A virus. Role of host lipid rafts was studied using raft disruption method by extraction of cholesterol and Methyl-β-Cyclodextrin was used to remove membrane cholesterol. We observed co-localization of Influenza A Virus to lipid rafts by visualization of known lipid raft marker GM1 on host cell membrane. Co-localization suggest direct involvement of these micro-domain in initiation of IAV life cycle. We found significant reduction in influenza A virus adsorption in raft disrupted target host cells indicating poor binding and attachment in absence of coherent membrane rafts. Taken together, the results of present study provide evidence for critical involvement of host lipid rafts and its constituents in adsorption process of Influenza A Virus and suggests crucial involvement in other early events of IAV life cycle. The present study opens a new domain to study influenza virus-host interaction and to combat flu at the very early steps of viral life cycle.Keywords: lipid raft, adsorption, cholesterol, methyl-β-cyclodextrin, GM1
Procedia PDF Downloads 29725863 Framework for Integrating Big Data and Thick Data: Understanding Customers Better
Authors: Nikita Valluri, Vatcharaporn Esichaikul
Abstract:
With the popularity of data-driven decision making on the rise, this study focuses on providing an alternative outlook towards the process of decision-making. Combining quantitative and qualitative methods rooted in the social sciences, an integrated framework is presented with a focus on delivering a much more robust and efficient approach towards the concept of data-driven decision-making with respect to not only Big data but also 'Thick data', a new form of qualitative data. In support of this, an example from the retail sector has been illustrated where the framework is put into action to yield insights and leverage business intelligence. An interpretive approach to analyze findings from both kinds of quantitative and qualitative data has been used to glean insights. Using traditional Point-of-sale data as well as an understanding of customer psychographics and preferences, techniques of data mining along with qualitative methods (such as grounded theory, ethnomethodology, etc.) are applied. This study’s final goal is to establish the framework as a basis for providing a holistic solution encompassing both the Big and Thick aspects of any business need. The proposed framework is a modified enhancement in lieu of traditional data-driven decision-making approach, which is mainly dependent on quantitative data for decision-making.Keywords: big data, customer behavior, customer experience, data mining, qualitative methods, quantitative methods, thick data
Procedia PDF Downloads 16225862 Measurement of CES Production Functions Considering Energy as an Input
Authors: Donglan Zha, Jiansong Si
Abstract:
Because of its flexibility, CES attracts much interest in economic growth and programming models, and the macroeconomics or micro-macro models. This paper focuses on the development, estimating methods of CES production function considering energy as an input. We leave for future research work of relaxing the assumption of constant returns to scale, the introduction of potential input factors, and the generalization method of the optimal nested form of multi-factor production functions.Keywords: bias of technical change, CES production function, elasticity of substitution, energy input
Procedia PDF Downloads 28225861 Incremental Learning of Independent Topic Analysis
Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda
Abstract:
In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.Keywords: text mining, topic extraction, independent, incremental, independent component analysis
Procedia PDF Downloads 30925860 Open Data for e-Governance: Case Study of Bangladesh
Authors: Sami Kabir, Sadek Hossain Khoka
Abstract:
Open Government Data (OGD) refers to all data produced by government which are accessible in reusable way by common people with access to Internet and at free of cost. In line with “Digital Bangladesh” vision of Bangladesh government, the concept of open data has been gaining momentum in the country. Opening all government data in digital and customizable format from single platform can enhance e-governance which will make government more transparent to the people. This paper presents a well-in-progress case study on OGD portal by Bangladesh Government in order to link decentralized data. The initiative is intended to facilitate e-service towards citizens through this one-stop web portal. The paper further discusses ways of collecting data in digital format from relevant agencies with a view to making it publicly available through this single point of access. Further, possible layout of this web portal is presented.Keywords: e-governance, one-stop web portal, open government data, reusable data, web of data
Procedia PDF Downloads 35525859 Anti-Bacterial Activity Studies of Derivatives of 6β-Hydroxy Betunolic Acid against Selected Stains of Gram (+) and Gram (-) Bacteria
Authors: S. Jayasinghe, W. G. D. Wickramasingha, V. Karunaratne, D. N. Karunaratne, A. Ekanayake
Abstract:
Multi-drug resistant microbial pathogens are a serious global health problem, and hence, there is an urgent necessity for discovering new drug therapeutics. However, finding alternatives is a one of the biggest challenges faced by the global drug industry due to the spiraling high cost and serious side effects associated with modern medicine. On the other hand, plants and their secondary metabolites can be considered as good sources of scaffolds to provide structurally diverse bioactive compounds as potential therapeutic agents. 6β-hydroxy betunolic acid is a triterpenoid isolated from bark of Schumacheria castaneifolia which is an endemic plant to Sri Lanka which has shown antibacterial activity against both Staphylococcus aureus (ATCC 29213) and methicillin-resistant S. aureus with Minimum Inhibition Concentration (MIC) of 16 µg/ml. The objective of this study was to determine the anti-bacterial activity for the derivatives of 6β- hydroxy betunolic acid against standard strains of Staphylococcus aureus (ATCC 29213 and ATCC 25923), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 35218 and ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), carbepenemas produce Kebsiella pneumonia (ATCC BAA 1705) and carbepenemas non produce Kebsiella pneumonia (ATCC BAA 1706) and four stains of clinically isolated methicillin resistance S. aureus and Acinetobacter. Structural analogues of 6β-hydroxy betunolic acid were synthesized by modifying the carbonyl group at C-3 to obtain olefin and oxime, the hydroxyl group at C-6 position to a ketone, the carboxylic acid at C-17 to obtain amide and halo ester and the olefin group at C-20 position to obtain epoxide. Chemical structures of the synthesized analogues were confirmed with spectroscopic data and antibacterial activity was determined through broth micro dilution assay. Results revealed that 6β- hydroxy betunolic acid shows significant antibacterial activity only against the Gram positive strains and it was inactive against all the tested Gram negative strains for the tested concentration range. However, structural modifications into oxime and olefin at C-3, ketone at C-6 and epoxide at C-20 decreased its antibacterial activity against the gram positive organisms and it was totally lost with the both modifications at C-17 into amide and ester. These results concluded that the antibacterial activity of 6β- hydroxy betunolic acid and derivatives is predominantly depending on the cell wall difference of the bacteria and the presence of carboxylic acid at C-17 is highly important for the antibacterial activity against Gram positive organisms.Keywords: antibacterial activity, 6β- hydroxy betunolic acid, broth micro dilution assay, structure activity relationship
Procedia PDF Downloads 12625858 Improved Benzene Selctivity for Methane Dehydroaromatization via Modifying the Zeolitic Pores by Dual Templating Approach
Authors: Deepti Mishra, K. K Pant, Xiu Song Zhao, Muxina Konarova
Abstract:
Catalytic transformation of simplest hydrocarbon methane into benzene and valuable chemicals over Mo/HZSM-5 has a great economic potential, however, it suffers serious hurdles due to the blockage in the micropores because of extensive coking at high temperature during methane dehydroaromatization (MDA). Under such conditions, it necessitates the design of micro/mesoporous ZSM-5, which has the advantages viz. uniform dispersibility of MoOx species, consequently the formation of active Mo sites in the micro/mesoporous channel and lower carbon deposition because of improved mass transfer rate within the hierarchical pores. In this study, we report a unique strategy to control the porous structures of ZSM-5 through a dual templating approach, utilizing C6 and C12 -surfactants as porogen. DFT studies were carried out to correlate the ZSM-5 framework development using the C6 and C12 surfactants with structure directing agent. The structural and morphological parameters of the synthesized ZSM-5 were explored in detail to determine the crystallinity, porosity, Si/Al ratio, particle shape, size, and acidic strength, which were further correlated with the physicochemical and catalytic properties of Mo modified HZSM-5 catalysts. After Mo incorporation, all the catalysts were tested for MDA reaction. From the activity test, it was observed that C6 surfactant-modified hierarchically porous Mo/HZSM-5(H) showed the highest benzene formation rate (1.5 μmol/gcat. s) and longer catalytic stability up to 270 min of reaction as compared to the conventional microporous Mo/HZSM-5(C). In contrary, C12 surfactant modified Mo/HZSM-5(D) is inferior towards MDA reaction (benzene formation rate: 0.5 μmol/gcat. s). We ascribed that the difference in MDA activity could be due to the hierarchically interconnected meso/microporous feature of Mo/HZSM-5(H) that precludes secondary reaction of coking from benzene and hence contributing substantial stability towards MDA reaction.Keywords: hierarchical pores, Mo/HZSM-5, methane dehydroaromatization, coke deposition
Procedia PDF Downloads 8225857 Comparison of Fuel Properties from Species of Microalgae and Selected Second-Generation Oil Feedstocks
Authors: Andrew C. Eloka Eboka, Freddie L. Inambao
Abstract:
Comparative investigation and assessment of microalgal technology as a biodiesel production option was studied alongside other second generation feedstocks. This was carried out by comparing the fuel properties of species of Chlorella vulgaris, Duneliella spp, Synechococus spp and Senedesmus spp with the feedstock of Jatropha (ex-basirika variety), Hura crepitans, rubber and Natal mahogany seed oils. The micro-algae were cultivated in an open pond using a photobioreactor (New Brunsink set-up model BF-115 Bioflo/CelliGen made in the US) with operating parameters: 14L capacity, working volume of 7.5L media, including 10% inoculum, at optical density of 3.144 @540nm and light intensity of 200 lux, for 23 and 16 days respectively. Various produced/accumulated biomasses were harvested by draining, flocculation, centrifugation, drying and then subjected to lipid extraction processes. The oils extracted from the algae and feedstocks were characterised and used to produce biodiesel fuels, by the transesterification method, using modified optimization protocol. Fuel properties of the final biodiesel products were evaluated for chemo-physical and fuel properties. Results revealed Chlorella vulgaris as the best strain for biomass cultivation, having the highest lipid productivity (5.2mgL-1h-1), the highest rate of CO2 absorption (17.85mgL-1min-1) and the average carbon sequestration in the form of CO2 was 76.6%. The highest biomass productivity was 35.1mgL-1h-1 (Chlorella), while Senedesmus had the least output (3.75mgL-1h-1, 11.73mgL-1min-1). All species had good pH value adaptation, ranging from 6.5 to 8.5. The fuel properties of the micro-algal biodiesel in comparison with Jatropha, rubber, Hura and Natal mahogany were within ASTM specification and AGO used as the control. Fuel cultivation from microalgae is feasible and will revolutionise the biodiesel industry.Keywords: biodiesel, fuel properties, microalgae, second generation, seed oils, feedstock, photo-bioreactor, open pond
Procedia PDF Downloads 36325856 Resource Framework Descriptors for Interestingness in Data
Authors: C. B. Abhilash, Kavi Mahesh
Abstract:
Human beings are the most advanced species on earth; it's all because of the ability to communicate and share information via human language. In today's world, a huge amount of data is available on the web in text format. This has also resulted in the generation of big data in structured and unstructured formats. In general, the data is in the textual form, which is highly unstructured. To get insights and actionable content from this data, we need to incorporate the concepts of text mining and natural language processing. In our study, we mainly focus on Interesting data through which interesting facts are generated for the knowledge base. The approach is to derive the analytics from the text via the application of natural language processing. Using semantic web Resource framework descriptors (RDF), we generate the triple from the given data and derive the interesting patterns. The methodology also illustrates data integration using the RDF for reliable, interesting patterns.Keywords: RDF, interestingness, knowledge base, semantic data
Procedia PDF Downloads 16225855 Data Mining Practices: Practical Studies on the Telecommunication Companies in Jordan
Authors: Dina Ahmad Alkhodary
Abstract:
This study aimed to investigate the practices of Data Mining on the telecommunication companies in Jordan, from the viewpoint of the respondents. In order to achieve the goal of the study, and test the validity of hypotheses, the researcher has designed a questionnaire to collect data from managers and staff members from main department in the researched companies. The results shows improvements stages of the telecommunications companies towered Data Mining.Keywords: data, mining, development, business
Procedia PDF Downloads 49725854 Effects of Electric Field on Diffusion Coefficients and Share Viscosity in Dusty Plasmas
Authors: Muhammad Asif ShakoorI, Maogang He, Aamir Shahzad
Abstract:
Dusty (complex) plasmas contained micro-sized charged dust particles in addition to ions, electrons, and neutrals. It is typically low-temperature plasma and exists in a wide variety of physical systems. In this work, the effects of an external electric field on the diffusion coefficient and share viscosity are investigated through equilibrium molecular dynamics (EMD) simulations in three-dimensional (3D) strongly coupled (SC) dusty plasmas (DPs). The effects of constant and varying normalized electric field strength (E*) have been computed along with different combinations of plasma states on the diffusion of dust particles using EMD simulations. Diffusion coefficient (D) and share viscosity (η) along with varied system sizes, in the limit of varying E* values, is accounted for an appropriate range of plasma coupling (Γ) and screening strength (κ) parameters. At varying E* values, it is revealed that the 3D diffusion coefficient increases with increasing E* and κ; however, it decreases with an increase of Γ but within statistical limits. The share viscosity increases with increasing E*and Γ and decreases with increasing κ. New simulation results are outstanding that the combined effects of electric field and screening strengths give well-matched values of Dandη at low-intermediate to large Γ with varying small-intermediate to large N. The current EMD simulation outcomes under varying electric field strengths are in satisfactory well-matched with previous known simulation data of EMD simulations of the SC-DPs. It has been shown that the present EMD simulation data enlarged the range of E* strength up to 0.1 ≤ E*≤ 1.0 in order to find the linear range of the DPs system and to demonstrate the fundamental nature of electric field linearity of 3D SC-DPs.Keywords: strongly coupled dusty plasma, diffusion coefficient, share viscosity, molecular dynamics simulation, electric field strength
Procedia PDF Downloads 18725853 Design of Nanoreinforced Polyacrylamide-Based Hybrid Hydrogels for Bone Tissue Engineering
Authors: Anuj Kumar, Kummara M. Rao, Sung S. Han
Abstract:
Bone tissue engineering has emerged as a potentially alternative method for localized bone defects or diseases, congenital deformation, and surgical reconstruction. The designing and the fabrication of the ideal scaffold is a great challenge, in restoring of the damaged bone tissues via cell attachment, proliferation, and differentiation under three-dimensional (3D) biological micro-/nano-environment. In this case, hydrogel system composed of high hydrophilic 3D polymeric-network that is able to mimic some of the functional physical and chemical properties of the extracellular matrix (ECM) and possibly may provide a suitable 3D micro-/nano-environment (i.e., resemblance of native bone tissues). Thus, this proposed hydrogel system is highly permeable and facilitates the transport of the nutrients and metabolites. However, the use of hydrogels in bone tissue engineering is limited because of their low mechanical properties (toughness and stiffness) that continue to posing challenges in designing and fabrication of tough and stiff hydrogels along with improved bioactive properties. For this purpose, in our lab, polyacrylamide-based hybrid hydrogels were synthesized by involving sodium alginate, cellulose nanocrystals and silica-based glass using one-step free-radical polymerization. The results showed good in vitro apatite-forming ability (biomineralization) and improved mechanical properties (under compression in the form of strength and stiffness in both wet and dry conditions), and in vitro osteoblastic (MC3T3-E1 cells) cytocompatibility. For in vitro cytocompatibility assessment, both qualitative (attachment and spreading of cells using FESEM) and quantitative (cell viability and proliferation using MTT assay) analyses were performed. The obtained hybrid hydrogels may potentially be used in bone tissue engineering applications after establishment of in vivo characterization.Keywords: bone tissue engineering, cellulose nanocrystals, hydrogels, polyacrylamide, sodium alginate
Procedia PDF Downloads 15125852 The Impact of System and Data Quality on Organizational Success in the Kingdom of Bahrain
Authors: Amal M. Alrayes
Abstract:
Data and system quality play a central role in organizational success, and the quality of any existing information system has a major influence on the effectiveness of overall system performance.Given the importance of system and data quality to an organization, it is relevant to highlight their importance on organizational performance in the Kingdom of Bahrain. This research aims to discover whether system quality and data quality are related, and to study the impact of system and data quality on organizational success. A theoretical model based on previous research is used to show the relationship between data and system quality, and organizational impact. We hypothesize, first, that system quality is positively associated with organizational impact, secondly that system quality is positively associated with data quality, and finally that data quality is positively associated with organizational impact. A questionnaire was conducted among public and private organizations in the Kingdom of Bahrain. The results show that there is a strong association between data and system quality, that affects organizational success.Keywords: data quality, performance, system quality, Kingdom of Bahrain
Procedia PDF Downloads 49325851 Cloud Computing in Data Mining: A Technical Survey
Authors: Ghaemi Reza, Abdollahi Hamid, Dashti Elham
Abstract:
Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Due to immense number of users seeking data on daily basis, there is a serious security concerns to cloud providers as well as data providers who put their data on the cloud computing environment. Big data analytics use compute intensive data mining algorithms (Hidden markov, MapReduce parallel programming, Mahot Project, Hadoop distributed file system, K-Means and KMediod, Apriori) that require efficient high performance processors to produce timely results. Data mining algorithms to solve or optimize the model parameters. The challenges that operation has to encounter is the successful transactions to be established with the existing virtual machine environment and the databases to be kept under the control. Several factors have led to the distributed data mining from normal or centralized mining. The approach is as a SaaS which uses multi-agent systems for implementing the different tasks of system. There are still some problems of data mining based on cloud computing, including design and selection of data mining algorithms.Keywords: cloud computing, data mining, computing models, cloud services
Procedia PDF Downloads 47925850 Cross-border Data Transfers to and from South Africa
Authors: Amy Gooden, Meshandren Naidoo
Abstract:
Genetic research and transfers of big data are not confined to a particular jurisdiction, but there is a lack of clarity regarding the legal requirements for importing and exporting such data. Using direct-to-consumer genetic testing (DTC-GT) as an example, this research assesses the status of data sharing into and out of South Africa (SA). While SA laws cover the sending of genetic data out of SA, prohibiting such transfer unless a legal ground exists, the position where genetic data comes into the country depends on the laws of the country from where it is sent – making the legal position less clear.Keywords: cross-border, data, genetic testing, law, regulation, research, sharing, South Africa
Procedia PDF Downloads 125