Search results for: external gear pump
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2673

Search results for: external gear pump

1953 A Case Study on Machine Learning-Based Project Performance Forecasting for an Urban Road Reconstruction Project

Authors: Soheila Sadeghi

Abstract:

In construction projects, predicting project performance metrics accurately is essential for effective management and successful delivery. However, conventional methods often depend on fixed baseline plans, disregarding the evolving nature of project progress and external influences. To address this issue, we introduce a distinct approach based on machine learning to forecast key performance indicators, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category within an urban road reconstruction project. Our proposed model leverages time series forecasting techniques, namely Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance by analyzing historical data and project progress. Additionally, the model incorporates external factors, including weather patterns and resource availability, as features to improve forecast accuracy. By harnessing the predictive capabilities of machine learning, our performance forecasting model enables project managers to proactively identify potential deviations from the baseline plan and take timely corrective measures. To validate the effectiveness of the proposed approach, we conduct a case study on an urban road reconstruction project, comparing the model's predictions with actual project performance data. The outcomes of this research contribute to the advancement of project management practices in the construction industry by providing a data-driven solution for enhancing project performance monitoring and control.

Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, schedule variance, earned value management

Procedia PDF Downloads 35
1952 School-Based Oral Assessment in Malaysian Schools

Authors: Sedigheh Abbasnasab Sardareh

Abstract:

The current study investigates ESL teachers' voices in order to formulate further research on the effectiveness of the SBOA practices. It is an attempt to find out (1) what are ESL experienced teachers’ perceptions, experiences, attitudes, and beliefs of SBOA; (2) what teaching and learning aspects of SBOA needs focus to enhance its effectiveness; (3) external issues related to the implementation of SBOA; (4) internal issues related to the implementation of SBOA; and also (5) perceived recommendations on SBOA. The study utilized focus group discussion sessions. 9 experienced ESL (5 females and 4 males) teachers were selected based on the consent letters sent to them. These teachers had over 20 years experience in both traditional and SBOA-type assessment and the train-the-trainer experts recommended by the Ministry of Education. Respondents were guided with open-ended questions to extracts their perceived experiences implementing SBOA guided structurally by the author as the moderator. Data were first discussed with the respondents for further clarifications and then only analyzed and re-confirmed with some recommendations before the final presentation of this preliminary results were presented here. The focus group discussions yielded some important perceived views on the SBOA implementation. Some of the themes were discussed and some recommendations were proposed for further in-depth study by the Ministry of Education. Some of the future directions based on the results were also put forward. Some external and internal variables were important in order for successful implementation of SBOA. Mere implementing a policy should be taken into consideration because this might impede some of the teaching and learning processes both by the classroom stakeholders such as teachers and student. More research methods such as the use of questionnaires could be utilized to further investigate to large populations of teacher educators in Malaysia.

Keywords: school based oral assessment, Malaysia, ESL, focus group discussion

Procedia PDF Downloads 323
1951 Optimisation of Energy Harvesting for a Composite Aircraft Wing Structure Bonded with Discrete Macro Fibre Composite Sensors

Authors: Ali H. Daraji, Ye Jianqiao

Abstract:

The micro electrical devices of the wireless sensor network are continuously developed and become very small and compact with low electric power requirements using limited period life conventional batteries. The low power requirement for these devices, cost of conventional batteries and its replacement have encouraged researcher to find alternative power supply represented by energy harvesting system to provide an electric power supply with infinite period life. In the last few years, the investigation of energy harvesting for structure health monitoring has increased to powering wireless sensor network by converting waste mechanical vibration into electricity using piezoelectric sensors. Optimisation of energy harvesting is an important research topic to ensure a flowing of efficient electric power from structural vibration. The harvesting power is mainly based on the properties of piezoelectric material, dimensions of piezoelectric sensor, its position on a structure and value of an external electric load connected between sensor electrodes. Larger surface area of sensor is not granted larger power harvesting when the sensor area is covered positive and negative mechanical strain at the same time. Thus lead to reduction or cancellation of piezoelectric output power. Optimisation of energy harvesting is achieved by locating these sensors precisely and efficiently on the structure. Limited published work has investigated the energy harvesting for aircraft wing. However, most of the published studies have simplified the aircraft wing structure by a cantilever flat plate or beam. In these studies, the optimisation of energy harvesting was investigated by determination optimal value of an external electric load connected between sensor electrode terminals or by an external electric circuit or by randomly splitting piezoelectric sensor to two segments. However, the aircraft wing structures are complex than beam or flat plate and mostly constructed from flat and curved skins stiffened by stringers and ribs with more complex mechanical strain induced on the wing surfaces. This aircraft wing structure bonded with discrete macro fibre composite sensors was modelled using multiphysics finite element to optimise the energy harvesting by determination of the optimal number of sensors, location and the output resistance load. The optimal number and location of macro fibre sensors were determined based on the maximization of the open and close loop sensor output voltage using frequency response analysis. It was found different optimal distribution, locations and number of sensors bounded on the top and the bottom surfaces of the aircraft wing.

Keywords: energy harvesting, optimisation, sensor, wing

Procedia PDF Downloads 296
1950 Proactive Change or Adaptive Response: A Study on the Impact of Digital Transformation Strategy Modes on Enterprise Profitability From a Configuration Perspective

Authors: Jing-Ma

Abstract:

Digital transformation (DT) is an important way for manufacturing enterprises to shape new competitive advantages, and how to choose an effective DT strategy is crucial for enterprise growth and sustainable development. Rooted in strategic change theory, this paper incorporates the dimensions of managers' digital cognition, organizational conditions, and external environment into the same strategic analysis framework and integrates the dynamic QCA method and PSM method to study the antecedent grouping of the DT strategy mode of manufacturing enterprises and its impact on corporate profitability based on the data of listed manufacturing companies in China from 2015 to 2019. We find that the synergistic linkage of different dimensional elements can form six equivalent paths of high-level DT, which can be summarized as the proactive change mode of resource-capability dominated as well as adaptive response mode such as industry-guided resource replenishment. Capacity building under complex environments, market-industry synergy-driven, forced adaptation under peer pressure, and the managers' digital cognition play a non-essential but crucial role in this process. Except for individual differences in the market industry collaborative driving mode, other modes are more stable in terms of individual and temporal changes. However, it is worth noting that not all paths that result in high levels of DT can contribute to enterprise profitability, but only high levels of DT that result from matching the optimization of internal conditions with the external environment, such as industry technology and macro policies, can have a significant positive impact on corporate profitability.

Keywords: digital transformation, strategy mode, enterprise profitability, dynamic QCA, PSM approach

Procedia PDF Downloads 15
1949 Effect of Two Types of Shoe Insole on the Dynamics of Lower Extremities Joints in Individuals with Leg Length Discrepancy during Stance Phase of Walking

Authors: Mansour Eslami, Fereshte Habibi

Abstract:

Limb length discrepancy (LLD), or anisomeric, is defined as a condition in which paired limbs are noticeably unequal. Individuals with LLD during walking use compensatory mechanisms to dynamically lengthen the short limb and shorten the long limb to minimize the displacement of the body center of mass and consequently reduce body energy expenditure. Due to the compensatory movements created, LLD greater than 1 cm increases the odds of creating lumbar problems and hip and knee osteoarthritis. Insoles are non-surgical therapies that are recommended to improve the walking pattern, pain and create greater symmetry between the two lower limbs. However, it is not yet clear what effect insoles have on the variables related to injuries during walking. The aim of the present study was to evaluate the effect of internal and external heel lift insoles on pelvic kinematic in sagittal and frontal planes and lower extremity joint moments in individuals with mild leg length discrepancy during the stance phase of walking. Biomechanical data of twenty-eight men with structural leg length discrepancy of 10-25 mm were collected while they walked under three conditions: shoes without insole (SH), with internal heel lift insoles (IHLI) in shoes, and with external heal lift insole (EHLI). The tests were performed for both short and long legs. The pelvic kinematic and joint moment were measured with a motion capture system and force plate. Five walking trials were performed for each condition. The average value of five successful trials was used for further statistical analysis. Repeated measures ANCOVA with Bonferroni post hoc test were used for between-group comparisons (p ≤ 0.05). In both internal and external heel lift insoles (IHLI, EHLI), there was a significant decrease in the peak values of lateral and anterior pelvic tilts of the long leg, hip, and knee moments of a long leg and ankle moment of short leg (p ≤ 0.05). Furthermore, significant increases in peak values of lateral and anterior pelvic tilt of short leg in IHLI and EHLI were observed as compared to Shoe (SH) condition (p ≤ 0.01). In addition, a significant difference was observed between the IHLI and EHLI conditions in peak anterior pelvic tilt of long leg and plantar flexor moment of short leg (p=0.04; p= 0.04 respectively). Our findings indicate that both IHLI and EHLI can play an important role in controlling excessive pelvic movements in the sagittal and frontal planes in individuals with mild LLD during walking. Furthermore, the EHLI may have a better effect in preventing musculoskeletal injuries compared to the IHLI.

Keywords: kinematic, leg length discrepancy, shoe insole, walking

Procedia PDF Downloads 115
1948 Hybrid Bimodal Magnetic Force Microscopy

Authors: Fernández-Brito David, Lopez-Medina Javier Alonso, Murillo-Bracamontes Eduardo Antonio, Palomino-Ovando Martha Alicia, Gervacio-Arciniega José Juan

Abstract:

Magnetic Force Microscopy (MFM) is an Atomic Force Microscopy (AFM) technique that characterizes, at a nanometric scale, the magnetic properties of ferromagnetic materials. Conventional MFM works by scanning in two different AFM modes. The first one is tapping mode, in which the cantilever has short-range force interactions with the sample, with the purpose to obtain the topography. Then, the lift AFM mode starts, raising the cantilever to maintain a fixed distance between the tip and the surface of the sample, only interacting with the magnetic field forces of the sample, which are long-ranged. In recent years, there have been attempts to improve the MFM technique. Bimodal MFM was first theoretically developed and later experimentally proven. In bimodal MFM, the AFM internal piezoelectric is used to cause the cantilever oscillations in two resonance modes simultaneously, the first mode detects the topography, while the second is more sensitive to the magnetic forces between the tip and the sample. However, it has been proven that the cantilever vibrations induced by the internal AFM piezoelectric ceramic are not optimal, affecting the bimodal MFM characterizations. Moreover, the Secondary Resonance Magnetic Force Microscopy (SR-MFM) was developed. In this technique, a coil located below the sample generates an external magnetic field. This alternating magnetic field excites the cantilever at a second frequency to apply the Bimodal MFM mode. Nonetheless, for ferromagnetic materials with a low coercive field, the external field used in SR-MFM technique can modify the magnetic domains of the sample. In this work, a Hybrid Bimodal MFM (HB-MFM) technique is proposed. In HB-MFM, the bimodal MFM is used, but the first resonance frequency of the cantilever is induced by the magnetic field of the ferromagnetic sample due to its vibrations caused by a piezoelectric element placed under the sample. The advantages of this new technique are demonstrated through the preliminary results obtained by HB-MFM on a hard disk sample. Additionally, traditional two pass MFM and HB-MFM measurements were compared.

Keywords: magnetic force microscopy, atomic force microscopy, magnetism, bimodal MFM

Procedia PDF Downloads 69
1947 Influence of Sintering Temperatures in Er³⁺/Yb³⁺/Tm³⁺ Tri-Doped Y₂O₃ Nanophosphors

Authors: Hyeon Mi Noh, Ju Hyun Oh, Jung Hyun Jeong, Haeyoung Choi, Jung Hwan Kim

Abstract:

The Er³⁺/Yb³⁺/Tm³⁺ tri-doped Y₂O₃ nanophosphors were synthesized by solvothermal method and its temperature dependence of the white upconversion emission has been studied by using 975 nm laser diode. The upconversion emission spectra in 1 mol% Er³⁺/5 mol% Yb³⁺/xTm³ tri-doped Y₂O₃ nanophosphors sintered at 1000 °C with x from 0 to 0.5 mol%. The blue emission intensity increase with Tm³⁺ concentration from 0 to 0.5 mol%, it is due to the 2F7/2→2F5/2 transition of Yb³⁺ around 10,000 cm-1 could easily reach the Tm³⁺ sates. The white light is composed with the blue (1G4→3H6 of Tm³⁺), green (2H11/2, 4S3/2→4I15/2 of Er³⁺), and red (4F9/2→4I15/2 of Er³⁺) upconversion radiations. The Y₂O₃: Er³⁺/Yb³⁺/Tm³⁺ nanophosphors show from white to green upconversion emission at power of 600 mW/cm² as sintering temperature increased. The calculated Commission Internationale de l’Eclairage (CIE) coordinates can be located in the white area with various sintering temperatures, in sintered at 1000 °C, and their color coordinates are very close to the standard white-light emission (0.33, 0.33). Their upconversion processes were explained by measuring the upconversion luminescence spectra and pump power dependence and energy level diagram.

Keywords: white upconversion emission, nanophosphors, energy transfer, solvothermal method

Procedia PDF Downloads 331
1946 Verification of Low-Dose Diagnostic X-Ray as a Tool for Relating Vital Internal Organ Structures to External Body Armour Coverage

Authors: Natalie A. Sterk, Bernard van Vuuren, Petrie Marais, Bongani Mthombeni

Abstract:

Injuries to the internal structures of the thorax and abdomen remain a leading cause of death among soldiers. Body armour is a standard issue piece of military equipment designed to protect the vital organs against ballistic and stab threats. When configured for maximum protection, the excessive weight and size of the armour may limit soldier mobility and increase physical fatigue and discomfort. Providing soldiers with more armour than necessary may, therefore, hinder their ability to react rapidly in life-threatening situations. The capability to determine the optimal trade-off between the amount of essential anatomical coverage and hindrance on soldier performance may significantly enhance the design of armour systems. The current study aimed to develop and pilot a methodology for relating internal anatomical structures with actual armour plate coverage in real-time using low-dose diagnostic X-ray scanning. Several pilot scanning sessions were held at Lodox Systems (Pty) Ltd head-office in South Africa. Testing involved using the Lodox eXero-dr to scan dummy trunk rigs at various degrees and heights of measurement; as well as human participants, wearing correctly fitted body armour while positioned in supine, prone shooting, seated and kneeling shooting postures. The verification of sizing and metrics obtained from the Lodox eXero-dr were then confirmed through a verification board with known dimensions. Results indicated that the low-dose diagnostic X-ray has the capability to clearly identify the vital internal structures of the aortic arch, heart, and lungs in relation to the position of the external armour plates. Further testing is still required in order to fully and accurately identify the inferior liver boundary, inferior vena cava, and spleen. The scans produced in the supine, prone, and seated postures provided superior image quality over the kneeling posture. The X-ray-source and-detector distance from the object must be standardised to control for possible magnification changes and for comparison purposes. To account for this, specific scanning heights and angles were identified to allow for parallel scanning of relevant areas. The low-dose diagnostic X-ray provides a non-invasive, safe, and rapid technique for relating vital internal structures with external structures. This capability can be used for the re-evaluation of anatomical coverage required for essential protection while optimising armour design and fit for soldier performance.

Keywords: body armour, low-dose diagnostic X-ray, scanning, vital organ coverage

Procedia PDF Downloads 119
1945 Study of Cavitation Phenomena Based on Flow Visualization Test in 3-Way Reversing Valve

Authors: Hyo Lim Kang, Tae An Kim, Seung Ho Han

Abstract:

A 3-way reversing valve has been used in automotive washing machines to remove remaining oil and dirt on machined engine and transmission blocks. It provides rapid and accurate changes of water flow direction without any precise control device. However, due to its complicated bottom-plug shape, a cavitation occurs in a wide range of the bottom-plug in a downstream. In this study, the cavitation index and POC (percent of cavitation) were used to evaluate quantitatively the cavitation phenomena occurring at the bottom-plug. An optimal shape design was carried out via parametric study for geometries of the bottom-plug, in which a simple CAE-model was used in order to avoid time-consuming CFD analysis and hard to achieve convergence. To verify the results of numerical analysis, a flow visualization test was carried out using a test specimen with a transparent acryl pipe according to ISA-RP75.23. The flow characteristics such as the cavitation occurring in the downstream were investigated by using a flow test equipment with valve and pump including a flow control system and high-speed camera.

Keywords: cavitation, flow visualization test, optimal shape design, percent of cavitation, reversing valve

Procedia PDF Downloads 298
1944 Predicting Long-Term Performance of Concrete under Sulfate Attack

Authors: Elakneswaran Yogarajah, Toyoharu Nawa, Eiji Owaki

Abstract:

Cement-based materials have been using in various reinforced concrete structural components as well as in nuclear waste repositories. The sulfate attack has been an environmental issue for cement-based materials exposed to sulfate bearing groundwater or soils, and it plays an important role in the durability of concrete structures. The reaction between penetrating sulfate ions and cement hydrates can result in swelling, spalling and cracking of cement matrix in concrete. These processes induce a reduction of mechanical properties and a decrease of service life of an affected structure. It has been identified that the precipitation of secondary sulfate bearing phases such as ettringite, gypsum, and thaumasite can cause the damage. Furthermore, crystallization of soluble salts such as sodium sulfate crystals induces degradation due to formation and phase changes. Crystallization of mirabilite (Na₂SO₄:10H₂O) and thenardite (Na₂SO₄) or their phase changes (mirabilite to thenardite or vice versa) due to temperature or sodium sulfate concentration do not involve any chemical interaction with cement hydrates. Over the past couple of decades, an intensive work has been carried out on sulfate attack in cement-based materials. However, there are several uncertainties still exist regarding the mechanism for the damage of concrete in sulfate environments. In this study, modelling work has been conducted to investigate the chemical degradation of cementitious materials in various sulfate environments. Both internal and external sulfate attack are considered for the simulation. In the internal sulfate attack, hydrate assemblage and pore solution chemistry of co-hydrating Portland cement (PC) and slag mixing with sodium sulfate solution are calculated to determine the degradation of the PC and slag-blended cementitious materials. Pitzer interactions coefficients were used to calculate the activity coefficients of solution chemistry at high ionic strength. The deterioration mechanism of co-hydrating cementitious materials with 25% of Na₂SO₄ by weight is the formation of mirabilite crystals and ettringite. Their formation strongly depends on sodium sulfate concentration and temperature. For the external sulfate attack, the deterioration of various types of cementitious materials under external sulfate ingress is simulated through reactive transport model. The reactive transport model is verified with experimental data in terms of phase assemblage of various cementitious materials with spatial distribution for different sulfate solution. Finally, the reactive transport model is used to predict the long-term performance of cementitious materials exposed to 10% of Na₂SO₄ for 1000 years. The dissolution of cement hydrates and secondary formation of sulfate-bearing products mainly ettringite are the dominant degradation mechanisms, but not the sodium sulfate crystallization.

Keywords: thermodynamic calculations, reactive transport, radioactive waste disposal, PHREEQC

Procedia PDF Downloads 158
1943 The Respiration Indices of the High Skilled Orienteer Athletes

Authors: Penchuk A. Vovkanych

Abstract:

The adaptive changes in the respiratory system provide the background for the increase of aerobic capacity and sport results on the middle and long distances runners. Effect of such adaptive changes in the sport orienteering remains poorly investigated. Therefore our study was undertaken to reveal the adaptive changes in the respiration indices of high skilled orienteer athletes.

Keywords: adaptation, external, functional state, respiration, running, sport orienteering

Procedia PDF Downloads 480
1942 Partial Triphallia: The First Case Report of External and Internal Penile Triplication in a Cadaver

Authors: Madeleine Gadd, Rose How, Edward Mathews, John Buchanan, Vicky Cottrell, Andre Coetzee, Karuna Katti

Abstract:

Introduction: Triphallia, a congenital anomaly describing the presence of three distinct penile shafts, has been reported only once in the literature. This case report describes the serendipitous discovery of the first reported human case of partial orthotopic triphallia during cadaveric dissection. Case Summary: Despite the normal appearance of external genitalia on examination, the dissection of a 78-year-old male revealed a remarkable anatomical variation: two small supernumerary penises situated in a transverse orientation postero inferiorly to the primary penis. The main and the larger supernumerary penile shafts displayed their own corpora cavernosa and glans penis, sharing a single urethra, which coursed through the secondary penis prior to its passage through the primary penis. The smallest of the supernumerary penises was similar in dimension to the secondary penis, at 3.7cm long and 1.2cm wide (compared to the secondary penis at 3.8cm long and 1.3cm wide). However, it lacked a urethra and a typical arrangement of the corpora cavernosa and spongiosum, making this a case of partial triphallia rather than true triphallia. Conclusion: This case report provides a comprehensive anatomical description of partial triphallia in a cadaver, shedding light on the morphology, embryology, and clinical implications of this anomaly. This case report underscores the importance of meticulous anatomical dissections, particularly since, without dissection, this anatomical variation would have remained undiscovered. Although we can only speculate the functional implications of this condition, understanding such anatomical variations contributes to both knowledge of human anatomy and clinical management, should the condition be encountered in living individuals.

Keywords: triphallia, diphallia, congenital abnormalities, genitourinary abnormalities, urology

Procedia PDF Downloads 65
1941 The Symbolic Power of the IMF: Looking through Argentina’s New Period of Indebtedness

Authors: German Ricci

Abstract:

The research aims to analyse the symbolic power of the International Monetary Fund (IMF) in its relationship with a borrowing country, drawing upon Pierre Bourdieu’s Field Theory. This theory of power, typical of constructivist structuralism, has been minor used in international relations. Thus, selecting this perspective offers a new understanding of how the IMF's power operates and is structured. The IMF makes periodic economic reviews in which the staff evaluates the Government's performance. It also offers “last instance” loans when private external credit is not accessible. This relationship generates great expectations in financial agents because the IMF’s statements indicate the capacity of the Nation-State to meet its payment obligations (or not). Therefore, it is argued that the IMF is a legitimate actor for financial agents concerned about a government facing an economic crisis both for the effects of its immediate economic contribution through loans and the promotion of adjustment programs, helpful to guarantee the payment of the external debt. This legitimacy implies a symbolic power relationship in addition to the already known economic power relationship. Obtaining the IMF's consent implies that the government partially puts its political-economic decisions into play since the monetary policy must be agreed upon with the Fund. This has consequences at the local level. First, it implies that the debtor state must establish a daily relationship with the Fund. This everyday interaction with the Fund influences how officials and policymakers internalize the meaning of political management. On the other hand, if the Government has access to the IMF's seal of approval, the State will be again in a position to re-enter the financial market and go back into debt to face external debt. This means that private creditors increase the chances of collecting the debt and, again, grant credits. Thus, it is argued that the borrowing country submits to the relationship with the IMF in search of the latter's economic and symbolic capital. Access to this symbolic capital has objective and subjective repercussions at the national level that might tend to reproduce the relevance of the financial market and legitimizes the IMF’s intervention during economic crises. The paper has Argentina as its case study, given its historical relationship with the IMF and the relevance of the current indebtedness period, which remains largely unexplored. Argentina’s economy is characterized by recurrent financial crises, and it is the country to which the Fund has lent the most in its entire history. It surpasses more than three times the second, Egypt. In addition, Argentina is currently the country that owes the most to the Fund after receiving the largest loan ever granted by the IMF in 2018, and a new agreement in 2022. While the historical strong association with the Fund culminated in the most acute economic and social crisis in the country’s contemporary history, producing an unprecedented political and institutional crisis in 2001, Argentina still recognized the IMF as the only way out during economic crises.

Keywords: IMF, fields theory, symbolic power, Argentina, Bourdieu

Procedia PDF Downloads 68
1940 Multiple-Material Flow Control in Construction Supply Chain with External Storage Site

Authors: Fatmah Almathkour

Abstract:

Managing and controlling the construction supply chain (CSC) are very important components of effective construction project execution. The goals of managing the CSC are to reduce uncertainty and optimize the performance of a construction project by improving efficiency and reducing project costs. The heart of much SC activity is addressing risk, and the CSC is no different. The delivery and consumption of construction materials is highly variable due to the complexity of construction operations, rapidly changing demand for certain components, lead time variability from suppliers, transportation time variability, and disruptions at the job site. Current notions of managing and controlling CSC, involve focusing on one project at a time with a push-based material ordering system based on the initial construction schedule and, then, holding a tremendous amount of inventory. A two-stage methodology was proposed to coordinate the feed-forward control of advanced order placement with a supplier to a feedback local control in the form of adding the ability to transship materials between projects to improve efficiency and reduce costs. It focused on the single supplier integrated production and transshipment problem with multiple products. The methodology is used as a design tool for the CSC because it includes an external storage site not associated with one of the projects. The idea is to add this feature to a highly constrained environment to explore its effectiveness in buffering the impact of variability and maintaining project schedule at low cost. The methodology uses deterministic optimization models with objectives that minimizing the total cost of the CSC. To illustrate how this methodology can be used in practice and the types of information that can be gleaned, it is tested on a number of cases based on the real example of multiple construction projects in Kuwait.

Keywords: construction supply chain, inventory control supply chain, transshipment

Procedia PDF Downloads 119
1939 Code Embedding for Software Vulnerability Discovery Based on Semantic Information

Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson

Abstract:

Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.

Keywords: code representation, deep learning, source code semantics, vulnerability discovery

Procedia PDF Downloads 153
1938 Eco-Friendly Electricity Production from the Waste Heat of Air Conditioners

Authors: Anvesh Rajak

Abstract:

This is a new innovation that can be developed. Here I am going to use the waste heat of air conditioner so as to produce the electricity by using the Stirling engine because this waste heat creates the thermal pollution in the environment. The waste heat from the air conditioners has caused a temperature rise of 1°–2°C or more on weekdays in the Tokyo office areas. This heating promotes the heat-island phenomenon in Tokyo on weekdays. Now these air conditioners creates the thermal pollution in the environment and hence rising the temperature of the environment. Air conditioner generally emit the waste heat air whose temperature is about 50°C which heat the environment. Today the demand of energy is increasing tremendously, but available energy lacks in supply. Hence, there is no option for proper and efficient utilization and conservation of energy. In this paper the main stress is given on energy conservation by using technique of utilizing waste heat from Air-conditioning system. Actually the focus is on the use of the waste heat rather than improving the COP of the air- conditioners; if also we improve the COP of air conditioners gradually it would emit some waste heat so I want that waste heat to be used up. As I have used air conditioner’s waste heat to produce electricity so similarly there are various other appliances which emit the waste heat in the surrounding so here also we could use the Stirling engines and Geothermal heat pump concept to produce the electricity and hence can reduce the thermal pollution in the environment.

Keywords: stirling engine, geothermal heat pumps, waste heat, air conditioners

Procedia PDF Downloads 355
1937 A High Amylose-Content and High-Yielding Elite Line Is Favorable to Cook 'Nanhan' (Semi-Soft Rice) for Nursing Care Food Particularly for Serving Aged Persons

Authors: M. Kamimukai, M. Bhattarai, B. B. Rana, K. Maeda, H. B. Kc, T. Kawano, M. Murai

Abstract:

Most of the aged people older than 70 have difficulty in chewing and swallowing more or less. According to magnitude of this difficulty, gruel, “nanhan” (semi-soft rice) and ordinary cooked rice are served in general, particularly in sanatoriums and homes for old people in Japan. Nanhan is the name of a cooked rice used in Japan, having softness intermediate between gruel and ordinary cooked rice, which is boiled with intermediate amount of water between those of the latter two kinds of cooked rice. In the present study, nanhan was made in the rate of 240g of water to 100g of milled rice with an electric rice cooker. Murai developed a high amylose-content and high-yielding elite line ‘Murai 79’. Sensory eating-quality test was performed for nanhan and ordinary cooked rice of Murai 79 and the standard variety ‘Hinohikari’ which is a high eating-quality variety representative in southern Japan. Panelists (6 to 14 persons) scored each cooked rice in six items viz. taste, stickiness, hardness, flavor, external appearance and overall evaluation. Grading (-3 ~ +3) in each trait was performed, regarding the value of the standard variety Hinohikari as 0. Paddy rice produced in a farmer’s field in 2013 and 2014 and in an experimental field of Kochi University in 2015 and 2016 were used for the sensory test. According to results of the sensory eating-quality test for nanhan, Murai 79 is higher in overall evaluation than Hinohikari in the four years. The former was less sticky than the latter in the four years, but the former was statistically significantly harder than the latter throughout the four years. In external appearance, the former was significantly higher than the latter in the four years. In the taste, the former was significantly higher than the latter in 2014, but significant difference was not noticed between them in the other three years. There were no significant differences throughout the four years in flavor. Regarding amylose content, Murai 79 is higher by 3.7 and 5.7% than Hinohikari in 2015 and 2016, respectively. As for protein content, Murai 79 was higher than Hinohikari in 2015, but the former was lower than the latter in 2016. Consequently, the nanhan of Murai 79 was harder and less sticky, keeping the shape of grains as compared with that of Hinohikari, which may be due to its higher amylose content. Hence, the nanhan of Murai 79 may be recognized as grains more easily in a human mouth, which could make easier the continuous performance of mastication and deglutition particularly in aged persons. Regarding ordinary cooked rice, Murai 79 was similar to or higher in both overall evaluation and external appearance as compared with Hinohikari, despite its higher hardness and lower stickiness. Additionally, Murai 79 had brown-rice yield of 1.55 times as compared with Hinohikari, suggesting that it would enable to supply inexpensive rice for making nanhan with high quality particularly for aged people in Japan.

Keywords: high-amylose content, high-yielding rice line, nanhan, nursing care food, sensory eating quality test

Procedia PDF Downloads 136
1936 Public Debt and Fiscal Stability in Nigeria

Authors: Abdulkarim Yusuf

Abstract:

Motivation: The Nigerian economy has seen significant macroeconomic instability, fuelled mostly by an overreliance on fluctuating oil revenues. The rising disparity between tax receipts and government spending in Nigeria necessitates government borrowing to fund the anticipated pace of economic growth. Rising public debt and fiscal sustainability are limiting the government's ability to invest in key infrastructure that promotes private investment and growth in Nigeria. Objective: This paper fills an empirical research vacuum by examining the impact of public debt on fiscal sustainability in Nigeria, given the significance of fiscal stability in decreasing poverty and the constraints that an unsustainable debt burden imposes on it. Data and method: Annual time series data covering the period 1980 to 2022 exposed to conventional and structural breaks stationarity tests and the Autoregressive Distributed Lag estimation approach were adopted for this study. Results: The results reveal that domestic debt stock, debt service payment, foreign reserve stock, exchange rate, and private investment all had a major adverse effect on fiscal stability in the long and short run, corroborating the debt overhang and crowding-out hypothesis. External debt stock, prime lending rate, and degree of trade openness, which boosted fiscal stability in the long run, had a major detrimental effect on fiscal stability in the short run, whereas foreign direct investment inflows had an important beneficial impact on fiscal stability in both the long and short run. Implications: The results indicate that fiscal measures that inspire domestic resource mobilization, sustainable debt management techniques, and dependence on external debt to boost deficit financing will improve fiscal stability and drive growth.

Keywords: ARDL co-integration, debt overhang, debt servicing, fiscal stability, public debt

Procedia PDF Downloads 53
1935 Constitution and Self-Consciousness in Hegel's Philosophy

Authors: Akbar Jamali

Abstract:

According to Hegel’s philosophy, constitution of any given nation is the best expression of its national Self-Consciousness. Since constitution is the place in which freedom and Universal Rights is expressed, and since the essence of Self-consciousness is freedom, the development of self-consciousness and consequently freedom, is the direct cause of the development of constitution. Self-consciousness develops in the human history according to its own internal and external dialectic; therefore, it is essentially a dynamic phenomenon. However, constitution is supposed to be a stable foundation for the legal system of state and society. Therefore, the dilemma is: how the dynamic and contradictory nature of Self-Consciousness is the foundation of constitution that supposed to be the stable base of legal system of state and society. According to Hegel’s philosophy, the contradiction between the dynamic self- consciousness and the static constitution and state has an essential role in the formation of social movements within any given state. Self-consciousness is the phenomenology of Spirit in the human history. Subjective Spirit expresses itself in the different shapes of Self-consciousness in human spirit. These different shapes of self-consciousness must be identical with its contradiction; Objective Spirit. State is the highest form of the objective Spirit. Therefore, state and its foundation namely ‘constitution’ must be identical with Self-consciousness. "Spirit cannot remain forever alienated from its expression." Hegel states. Self-consciousness is the Subjective Spirit, it freely develops according to its internal and external contradictions, but since it must be always identical with its expression namely constitution, its development results to alienation. They way by which self-consciousness became again identical with the constitution determines the nature of legal and political development of any given society and state. In the democratic states, self-consciousness shows itself partially in the public opinion. In the process of election, this public opinion changes the ruling parties that construct the government. In democracies, self-consciousness or subjective spirit is in a dialectical relationship with state or the Objective Spirit. Therefore, it cannot remain alienated with its expression that is political system and its constitution. But, in the autocracies Self-consciousness cannot easily express itself in the government and its constitution. More Self-consciousness develops more it becomes alienated with its expression that is the state and its constitution. Rebel and revolution are the symptom of alienation of Spirit (self-consciousness) with its expression (state and its constitution).

Keywords: alienation, constitution, self-consciousness, spirit

Procedia PDF Downloads 361
1934 Communicating Through Symbolisms in Anthropoligical Medicine with Reference to Traditional Performances of Wayang Kulit, Main Puteri and Kuda Kepang

Authors: M. G. Nasuruddin, S. Ishak

Abstract:

In anthropological medicine (traditional therapeutic healing) symbolic interface are used to connect with the cognitive and metacognitive mechanisms to activate conscious and unconscious response of patients or other recipients. At the same time they are used to communicate with the inhabitants of the nether world to whom are ascribed almost all cases of psychosomatic illness. The symbols, which are cultural specific, are divided into verbal and non-verbal forms of communication. The verbal forms are chanting of mantra and doa and the invocation to invoke the spirits while the non-verbal ones are the physical materials such as the offerings, props and decorative elements, music, movements, olfactory sensation and the performance space. The process of communication through these symbols is affected by the Shaman who is a link or intermediary between the healer (Shaman) and the patients and between the healer and the spirits of the nether world. The paper also examines the scientific perspective of the traditional healing through the use of these symbols. The response to these symbols as external stimuli is embedded in the genes that are linked to the hereditary factor in the person’s DNA. When the patients are tuned in to external stimuli such as music, chanting and singing (sonic orders), it can triggers a response from the brain, which may activate its inner pharmacy by releasing drugs such as dopamine and/or opiodsto ameliorate pain and counter depression, anxiety and create a feel good feeling. These symbols act like placebo, evoking the power of the mind over the body and triggering the innate self-healing energy. At the same time they could also be used as nocebo, for example black magic, which has the opposite effect of placebo. In whatever capacity they operate these symbols, which are either visual or auditory, is an integral part of anthropological medicine. For they communicate and conjure emotional responses that are conducive to healing by activating the internal brain pharmacy.

Keywords: communication, healing, placebo, nacebo, symbol

Procedia PDF Downloads 435
1933 Control of Single Axis Magnetic Levitation System Using Fuzzy Logic Control

Authors: A. M. Benomair, M. O. Tokhi

Abstract:

This paper presents the investigation on a system model for the stabilization of a Magnetic Levitation System (Maglev’s). The magnetic levitation system is a challenging nonlinear mechatronic system in which an electromagnetic force is required to suspend an object (metal sphere) in air space. The electromagnetic force is very sensitive to the noise which can create acceleration forces on the metal sphere, causing the sphere to move into the unbalanced region. Maglev’s give the contribution in industry and this system has reduce the power consumption, has increase the power efficiency and reduce the cost maintenance. The common applications for Maglev’s Power Generation (e.g. wind turbine), Maglev’s trains and Medical Device (e.g. Magnetically suspended Artificial Heart Pump). This paper presents the comparison between dynamic response and robust characteristic for both conventional PD and Fuzzy PD controller. The main contribution of this paper is the proof of fuzzy PD type stabilization and robustness. By use of a method to tune the scaling factors of the linear PD type fuzzy controller from an equivalent tuned conventional PD.

Keywords: magnetic levitation system, PD controller, Fuzzy Logic Control, Fuzzy PD

Procedia PDF Downloads 269
1932 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7

Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit

Abstract:

In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.

Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety

Procedia PDF Downloads 63
1931 Agent-Based Modeling Investigating Self-Organization in Open, Non-equilibrium Thermodynamic Systems

Authors: Georgi Y. Georgiev, Matthew Brouillet

Abstract:

This research applies the power of agent-based modeling to a pivotal question at the intersection of biology, computer science, physics, and complex systems theory about the self-organization processes in open, complex, non-equilibrium thermodynamic systems. Central to this investigation is the principle of Maximum Entropy Production (MEP). This principle suggests that such systems evolve toward states that optimize entropy production, leading to the formation of structured environments. It is hypothesized that guided by the least action principle, open thermodynamic systems identify and follow the shortest paths to transmit energy and matter, resulting in maximal entropy production, internal structure formation, and a decrease in internal entropy. Concurrently, it is predicted that there will be an increase in system information as more information is required to describe the developing structure. To test this, an agent-based model is developed simulating an ant colony's formation of a path between a food source and its nest. Utilizing the Netlogo software for modeling and Python for data analysis and visualization, self-organization is quantified by calculating the decrease in system entropy based on the potential states and distribution of the ants within the simulated environment. External entropy production is also evaluated for information increase and efficiency improvements in the system's action. Simulations demonstrated that the system begins at maximal entropy, which decreases as the ants form paths over time. A range of system behaviors contingent upon the number of ants are observed. Notably, no path formation occurred with fewer than five ants, whereas clear paths were established by 200 ants, and saturation of path formation and entropy state was reached at populations exceeding 1000 ants. This analytical approach identified the inflection point marking the transition from disorder to order and computed the slope at this point. Combined with extrapolation to the final path entropy, these parameters yield important insights into the eventual entropy state of the system and the timeframe for its establishment, enabling the estimation of the self-organization rate. This study provides a novel perspective on the exploration of self-organization in thermodynamic systems, establishing a correlation between internal entropy decrease rate and external entropy production rate. Moreover, it presents a flexible framework for assessing the impact of external factors like changes in world size, path obstacles, and friction. Overall, this research offers a robust, replicable model for studying self-organization processes in any open thermodynamic system. As such, it provides a foundation for further in-depth exploration of the complex behaviors of these systems and contributes to the development of more efficient self-organizing systems across various scientific fields.

Keywords: complexity, self-organization, agent based modelling, efficiency

Procedia PDF Downloads 62
1930 Experimental and Computational Investigation of Flow Field and Thermal Behavior of a Mechanical Seal

Authors: Hossein Shokouhmand, Masoomeh Shadab, Rohallah Torabi

Abstract:

Turbulent flow inside the seal chamber of a pump operating at nearly high Reynolds number is investigated. A comparison of a 3-D computational model for flow and thermal analysis of a mechanical seal with experimental thermal results is presented. The computational model adequately predicts the flow field in the seal chamber and thermal characteristics with the rotating and stationary rings and the twister flow around the seal parts by solving N-S and energy equations in ANSYS-CFX software. The Reynolds stress model (RSM) is applied as a turbulence model for this purpose. Experimental work is discussed which quantifies the temperature of five different points of the working fluid in chamber, mass flow at inlet and the fluid pressure at inlet and outlet. Experimental measurements are combined with computational modeling to obtain local and average heat transfer characteristics. Numerical results of three cases including different flush rates are reported.

Keywords: mechanical seal, CFD_CFX, reynolds stress model, flow field, heat transfer analysis, stream line, heat transfer coefficient, heat flux, nusselt

Procedia PDF Downloads 438
1929 Chronic Progressive External Ophthalmoplegia (CPEO)

Authors: Gagandeep Singh Digra, Pawan Kumar, Mandeep Kaur Sidhu

Abstract:

INTRODUCTION: Chronic Progressive External Ophthalmoplegia (CPEO), also known as Progressive External Ophthalmoplegia (PEO), is a type of eye disorder characterized by a loss of the muscle functions involved in eye and eyelid movement. CPEO can be caused by mutations in mitochondrial DNA. It typically manifests in young adults with bilateral and progressive ptosis as the most common presentation but can also present with difficulty swallowing (dysphagia) and general weakness of the skeletal muscles (myopathy), particularly in the neck, arms, or legs. CASE PRESENTATION: This is a case discussion of 3 cousins who presented to our clinic. A 23-year-old male with past surgical history (PSH) of ptosis repair 2 years ago presented with a chief complaint of nasal intonation for 1.5 years associated with difficulty swallowing. The patient also complained of nasal regurgitation of liquids. He denied any headaches, fever, seizures, weakness of arms or legs, urinary complaints or changes in bowel habits. Physical Examination was positive for facial muscle weakness, including an inability to lift eyebrows (Frontalis), inability to close eyes tightly (Orbicularis Oculi), corneal reflex absent bilaterally, difficulty clenching jaw (Masseter muscle), difficulty smiling (Zygomaticus major), inability to elevate upper lip (Zygomaticus minor). Another cousin of the first patient, a 25-year-old male with no past medical history, presented with complaints of nasal intonation for 2 years associated with difficulty swallowing. He denied a history of nasal regurgitation, headaches, fever, seizures, weakness, urinary complaints or changes in bowel habits. Physical Examination showed facial muscle weakness of the Frontalis muscle, Orbicularis Oculi muscle, Masseter Muscle, Zygomaticus Major, Zygomaticus Minor and absent corneal reflexes. A 28-year-old male, a cousin of the first two patients, presented with chief complaints of ptosis and nasal intonation for the last 8 years. He also complained of difficulty swallowing and nasal regurgitation of liquids. His physical examination showed facial muscle weakness, including frontalis muscle (inability to lift eyebrows), Orbicularis Oculi (inability to close eyes tightly), absent corneal reflexes bilaterally, Zygomaticus Major (difficulty smiling), and Zygomaticus Minor (inability to elevate upper lip). MRI brain and visual field of all the patients were normal. Differential diagnoses, including Grave’s disease, Myasthenia Gravis and Glioma, were ruled out. Due to financial reasons, muscle biopsy could not be pursued. Pedigree analysis revealed only males were affected, likely due to maternal inheritance, so the clinical diagnosis of CPEO was made. The patients underwent symptomatic management, including ptosis surgical correction for the third patient. CONCLUSION: Chronic Progressive External Ophthalmoplegia (CPEO), a rare case entity, occurs in young adults as a manifestation of mitochondrial myopathy. There are three modes of transmission- maternal transmission associated with mitochondrial point mutations, autosomal recessive, and autosomal dominant. CPEO can sometimes be difficult to diagnose, especially in asymmetric presentation. Therefore, it is crucial to keep it in differential diagnosis to avoid delay in diagnosis.

Keywords: neurology, chronic, progressive, ophthalmoplegia

Procedia PDF Downloads 107
1928 Investigating the Molecular Behavior of H₂O in Caso 4 -2h₂o Two-Dimensional Nanoscale System

Authors: Manal Alhazmi, Artem Mishchenko

Abstract:

A molecular fluids' behavior and interaction with other materials at the nanoscale is a complex process. Nanoscale fluids behave so differently than macroscale fluids and interact with other materials in unique ways. It is, therefore, feasible to understand the molecular behavior of H₂O in such two-dimensional nanoscale systems by studying (CaSO4-2H2O), commonly known as gypsum. In the present study, spectroscopic measurements on a 2D structure of exfoliated gypsum crystals are carried out by Raman and IR spectroscopy. An array of gypsum flakes with thicknesses ranging from 8nm to 100nm were observed and analyzed for their Raman and IR spectrum. Water molecules stretching modes spectra lines were also measured and observed in nanoscale gypsum flakes and compared with those of bulk crystals. CaSO4-2H2O crystals have Raman and infrared bands at 3341 cm-1 resulting from the weak hydrogen bonds between the water molecules. This internal vibration of water molecules, together with external vibrations with other atoms, are responsible for these bands. There is a shift of about 70 cm-1 In the peak position of thin flakes with respect to the bulk crystal, which is a result of the different atomic arrangement from bulk to thin flake on the nano scale. An additional peak was observed in Raman spectra around 2910-3137 cm⁻¹ in thin flakes but is missing in bulk crystal. This additional peak is attributed to a combined mode of water internal (stretching mode at 3394cm⁻¹) and external vibrations. In addition to Raman and infra- red analysis of gypsum 2D structure, electrical measurements were conducted to reveal the water molecules transport behavior in such systems. Electrical capacitance of the fabricated device is measured and found to be (0.0686 *10-12) F, and the calculated dielectric constant (ε) is (12.26).

Keywords: gypsum, infra-red spectroscopy, raman spectroscopy, H₂O behavior

Procedia PDF Downloads 97
1927 Developing Dynamic Capabilities: The Case of Western Subsidiaries in Emerging Market

Authors: O. A. Adeyemi, M. O. Idris, W. A. Oke, O. T. Olorode, S. O. Alayande, A. E. Adeoye

Abstract:

The purpose of this paper is to investigate the process of capability building at subsidiary level and the challenges to such process. The relevance of external factors for capability development, have not been explicitly addressed in empirical studies. Though, internal factors, acting as enablers, have been more extensively studied. With reference to external factors, subsidiaries are actively influenced by specific characteristics of the host country, implying a need to become fully immersed in local culture and practices. Specifically, in MNCs, there has been a widespread trend in management practice to increase subsidiary autonomy,  with subsidiary managers being encouraged to act entrepreneurially, and to take advantage of host country specificity. As such, it could be proposed that: P1: The degree at which subsidiary management is connected to the host country, will positively influence the capability development process. Dynamic capabilities reside to a large measure with the subsidiary management team, but are impacted by the organizational processes, systems and structures that the MNC headquarter has designed to manage its business. At the subsidiary level, the weight of the subsidiary in the network, its initiative-taking and its profile building increase the supportive attention of the HQs and are relevant to the success of the process of capability building. Therefore, our second proposition is that: P2: Subsidiary role and HQ support are relevant elements in capability development at the subsidiary level. Design/Methodology/Approach: This present study will adopt the multiple case studies approach. That is because a case study research is relevant when addressing issues without known empirical evidences or with little developed prior theory. The key definitions and literature sources directly connected with operations of western subsidiaries in emerging markets, such as China, are well established. A qualitative approach, i.e., case studies of three western subsidiaries, will be adopted. The companies have similar products, they have operations in China, and both of them are mature in their internationalization process. Interviews with key informants, annual reports, press releases, media materials, presentation material to customers and stakeholders, and other company documents will be used as data sources. Findings: Western Subsidiaries in Emerging Market operate in a way substantially different from those in the West. What are the conditions initiating the outsourcing of operations? The paper will discuss and present two relevant propositions guiding that process. Practical Implications: MNCs headquarter should be aware of the potential for capability development at the subsidiary level. This increased awareness could induce consideration in headquarter about the possible ways of encouraging such known capability development and how to leverage these capabilities for better MNC headquarter and/or subsidiary performance. Originality/Value: The paper is expected to contribute on the theme: drivers of subsidiary performance with focus on emerging market. In particular, it will show how some external conditions could promote a capability-building process within subsidiaries.

Keywords: case studies, dynamic capability, emerging market, subsidiary

Procedia PDF Downloads 118
1926 The Influence of Phosphate Fertilizers on Radiological Situation of Cultivated Lands: ²¹⁰Po, ²²⁶Ra, ²³²Th, ⁴⁰K and ¹³⁷Cs Concentrations in Soil

Authors: Grzegorz Szaciłowski, Marta Konop, Małgorzata Dymecka, Jakub Ośko

Abstract:

In 1996, the European Council Directive 96/29/EURATOM pointed phosphate fertilizers to have a potentially negative influence on the environment from the radiation protection point of view. Fertilizers along with irrigation and crop rotation were the milestones that allowed to increase agricultural productivity. Firstly based on natural materials such as compost, manure, fish processing waste, etc., and since the 19th century created synthetically, fertilizers caused a boom in crop yield and helped to propel global food production, especially after World War II. In this work the concentrations of ²¹⁰Po, ²²⁶Ra, ²³²Th, ⁴⁰K, and ¹³⁷Cs in selected fertilizers and soil samples were determined. The results were used to calculate the annual addition of natural radionuclides and increment of the external radiation exposure caused by the use of studied fertilizers. Soils intended for different types of crops were sampled in early spring when no vegetation had occurred yet. Analysed fertilizers were those with which the soil was previously fertilized. For gamma radionuclides, a high purity germanium detector GX3520 from Canberra was used. The polonium concentration was determined by radiochemical separation followed by measurement by means of alpha spectrometry. The spectrometer used in this study was equipped with 450 cm² PIPS detector from Canberra. Obtained results showed significant differences in radionuclide composition between phosphate and nitrogenous fertilizers (e.g. the radium equivalent activity for phosphate fertilizer was 207.7 Bq/kg in comparison to <5.6 Bq/kg for nitrogenous fertilizer). The calculated increase of external radiation exposure due to use of phosphate fertilizer ranged between 3.4 and 5.4 nG/h, which represents up to 10% of the polish average outdoor exposure due to terrestrial gamma radiation (45 nGy/h).

Keywords: ²¹⁰Po, alpha spectrometry, exposure, gamma spectrometry, phosphate fertilizer, soil

Procedia PDF Downloads 293
1925 Development of Piezoelectric Gas Micropumps with the PDMS Check Valve Design

Authors: Chiang-Ho Cheng, An-Shik Yang, Hon-Yi Cheng, Ming-Yu Lai

Abstract:

This paper presents the design and fabrication of a novel piezoelectric actuator for a gas micropump with check valve having the advantages of miniature size, light weight and low power consumption. The micropump is designed to have eight major components, namely a stainless steel upper cover layer, a piezoelectric actuator, a stainless steel diaphragm, a PDMS chamber layer, two stainless steel channel layers with two valve seats, a PDMS check valve layer with two cantilever-type check valves and an acrylic substrate. A prototype of the gas micropump, with a size of 52 mm × 50 mm × 5.0 mm, is fabricated by precise manufacturing. This device is designed to pump gases with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micropump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micropump and the displacement of the piezoelectric actuator, simultaneously. The gas micropump obtained higher output performance under the sinusoidal waveform of 250 Vpp. The micropump achieved the maximum pumping rates of 1185 ml/min and back pressure of 7.14 kPa at the corresponding frequency of 120 and 50 Hz.

Keywords: PDMS, check valve, micropump, piezoelectric

Procedia PDF Downloads 446
1924 Modelling of Organic Rankine Cycle for Waste Heat Recovery Process in Supercritical Condition

Authors: Jahedul Islam Chowdhury, Bao Kha Nguyen, David Thornhill, Roy Douglas, Stephen Glover

Abstract:

Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.

Keywords: Organic Rankine cycle, supercritical condition, steady state model, waste heat recovery

Procedia PDF Downloads 403