Search results for: functional state
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9658

Search results for: functional state

9658 Relations of Progression in Cognitive Decline with Initial EEG Resting-State Functional Network in Mild Cognitive Impairment

Authors: Chia-Feng Lu, Yuh-Jen Wang, Yu-Te Wu, Sui-Hing Yan

Abstract:

This study aimed at investigating whether the functional brain networks constructed using the initial EEG (obtained when patients first visited hospital) can be correlated with the progression of cognitive decline calculated as the changes of mini-mental state examination (MMSE) scores between the latest and initial examinations. We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions, and the network analysis based on graph theory to investigate the organization of functional networks in aMCI. Our finding suggested that higher integrated functional network with sufficient connection strengths, dense connection between local regions, and high network efficiency in processing information at the initial stage may result in a better prognosis of the subsequent cognitive functions for aMCI. In conclusion, the functional connectivity can be a useful biomarker to assist in prediction of cognitive declines in aMCI.

Keywords: cognitive decline, functional connectivity, MCI, MMSE

Procedia PDF Downloads 345
9657 Differentiation of the Functional in an Optimization Problem for Coefficients of Elliptic Equations with Unbounded Nonlinearity

Authors: Aigul Manapova

Abstract:

We consider an optimal control problem in the higher coefficient of nonlinear equations with a divergent elliptic operator and unbounded nonlinearity, and the Dirichlet boundary condition. The conditions imposed on the coefficients of the state equation are assumed to hold only in a small neighborhood of the exact solution to the original problem. This assumption suggests that the state equation involves nonlinearities of unlimited growth and considerably expands the class of admissible functions as solutions of the state equation. We obtain formulas for the first partial derivatives of the objective functional with respect to the control functions. To calculate the gradients the numerical solutions of the state and adjoint problems are used. We also prove that the gradient of the cost function is Lipchitz continuous.

Keywords: cost functional, differentiability, divergent elliptic operator, optimal control, unbounded nonlinearity

Procedia PDF Downloads 141
9656 Estimation of Functional Response Model by Supervised Functional Principal Component Analysis

Authors: Hyon I. Paek, Sang Rim Kim, Hyon A. Ryu

Abstract:

In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised functional principal component analysis method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method.

Keywords: supervised, functional principal component analysis, functional response, functional linear regression

Procedia PDF Downloads 40
9655 Functional English: Enhancing Competencies at the Undergraduate Level in Nagaland, India

Authors: Arenkala Kichu

Abstract:

This paper consolidates and tries to bring out the findings that investigated in Kohima and Mokokchung districts in Nagaland, which is in the northeastern part of India. The aim of this paper is to test the speaking and writing skills of the undergraduate learners who opt functional English as one of their papers. functional English is taught in just two colleges; Fazl Ali College and Kohima Colleges, out of 15 government and 36 private colleges in the state. This research (based on several observations made by Naga researchers) hypothesizes that functional English enhances competencies at the undergraduate level, which would open doors to work, learn more and better prospects. It is expected that learners in Functional English class, which follows the communicative language teaching method, might be the answers to those problems, as to why proficiency level still leaves much to be desired, in spite of the advent of the education over a hundred years ago. This type of teaching follows only in functional English class in these two colleges.

Keywords: enhancing competencies, speaking skills, undergraduate level, writing skills

Procedia PDF Downloads 297
9654 Bound State Problems and Functional Differential Geometry

Authors: S. Srednyak

Abstract:

We study a class of functional partial differential equations(FPDEs). This class is suggested by Quantum Field Theory. We derive general properties of solutions to such equations. In particular, we demonstrate that they lead to systems of coupled integral equations with singular kernels. We show that solutions to such hierarchies can be sought among functions with regular singularities at a countable set of subvarieties of the physical space. We also develop a formal analogy of basic constructions of differential geometry on functional manifolds, as this is necessary for in depth study of FPDEs. We also consider the case of linear overdetermined systems of functional differential equations and show that it can be completely solved in terms of formal solutions of a functional equation that is a functional analogy of a system of determined algebraic equations. This development leads us to formally define the functional analogy of algebraic geometry, which we call functional algebraic geometry. We study basic properties of functional algebraic varieties. In particular, we investigate the case of a formally discrete set of solutions. We also define and study functional analogy of discriminants. In the case of fully determined systems such that the defining functionals have regular singularities, we demonstrate that formal solutions can be sought in the class of functions with regular singularities. This case provides a practical way to apply our results to physics problems.

Keywords: functional equations, quantum field theory, holomorphic functions, Yang Mills mass gap problem, quantum chaos

Procedia PDF Downloads 40
9653 BingleSeq: A User-Friendly R Package for Single-Cell RNA-Seq Data Analysis

Authors: Quan Gu, Daniel Dimitrov

Abstract:

BingleSeq was developed as a shiny-based, intuitive, and comprehensive application that enables the analysis of single-Cell RNA-Sequencing count data. This was achieved via incorporating three state-of-the-art software packages for each type of RNA sequencing analysis, alongside functional annotation analysis and a way to assess the overlap of differential expression method results. At its current state, the functionality implemented within BingleSeq is comparable to that of other applications, also developed with the purpose of lowering the entry requirements to RNA Sequencing analyses. BingleSeq is available on GitHub and will be submitted to R/Bioconductor.

Keywords: bioinformatics, functional annotation analysis, single-cell RNA-sequencing, transcriptomics

Procedia PDF Downloads 165
9652 Glushkov's Construction for Functional Subsequential Transducers

Authors: Aleksander Mendoza

Abstract:

Glushkov's construction has many interesting properties, and they become even more evident when applied to transducers. This article strives to show the vast range of possible extensions and optimisations for this algorithm. Special flavour of regular expressions is introduced, which can be efficiently converted to e-free functional subsequential weighted finite state transducers. Produced automata are very compact, as they contain only one state for each symbol (from input alphabet) of original expression and only one transition for each range of symbols, no matter how large. Such compactified ranges of transitions allow for efficient binary search lookup during automaton evaluation. All the methods and algorithms presented here were used to implement open-source compiler of regular expressions for multitape transducers.

Keywords: weighted automata, transducers, Glushkov, follow automata, regular expressions

Procedia PDF Downloads 131
9651 Evaluation of the MCFLIRT Correction Algorithm in Head Motion from Resting State fMRI Data

Authors: V. Sacca, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

In the last few years, resting-state functional MRI (rs-fMRI) was widely used to investigate the architecture of brain networks by investigating the Blood Oxygenation Level Dependent response. This technique represented an interesting, robust and reliable approach to compare pathologic and healthy subjects in order to investigate neurodegenerative diseases evolution. On the other hand, the elaboration of rs-fMRI data resulted to be very prone to noise due to confounding factors especially the head motion. Head motion has long been known to be a source of artefacts in task-based functional MRI studies, but it has become a particularly challenging problem in recent studies using rs-fMRI. The aim of this work was to evaluate in MS patients a well-known motion correction algorithm from the FMRIB's Software Library - MCFLIRT - that could be applied to minimize the head motion distortions, allowing to correctly interpret rs-fMRI results.

Keywords: head motion correction, MCFLIRT algorithm, multiple sclerosis, resting state fMRI

Procedia PDF Downloads 181
9650 Gender Effects in EEG-Based Functional Brain Networks

Authors: Mahdi Jalili

Abstract:

Functional connectivity in the human brain can be represented as a network using electroencephalography (EEG) signals. Network representation of EEG time series can be an efficient vehicle to understand the underlying mechanisms of brain function. Brain functional networks – whose nodes are brain regions and edges correspond to functional links between them – are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which graph theory metrics are sex dependent. To this end, EEGs from 24 healthy female subjects and 21 healthy male subjects were recorded in eyes-closed resting state conditions. The connectivity matrices were extracted using correlation analysis and were further binarized to obtain binary functional networks. Global and local efficiency measures – as graph theory metrics– were computed for the extracted networks. We found that male brains have a significantly greater global efficiency (i.e., global communicability of the network) across all frequency bands for a wide range of cost values in both hemispheres. Furthermore, for a range of cost values, female brains showed significantly greater right-hemispheric local efficiency (i.e., local connectivity) than male brains.

Keywords: EEG, brain, functional networks, network science, graph theory

Procedia PDF Downloads 419
9649 Automotive Quality Engineering: A Roadmap for Functional Safety

Authors: Hugo d’Albert, Udo Lindemann

Abstract:

The number of automotive electronic systems that allow realizing new functions, like driver assistance systems, has been increasing extremely in the last decade. Although they bring several benefits, their malfunctions can lead to severe consequences, such as personal injury of road users. Functional safety is an approach to identify these critical malfunctions and arrange technical systems that include only tolerable risk. This approach is– in comparison with other technical areas– relatively new in the automotive sector. For a long time, the automotive systems have based on mechanical components and approved principles, like robust design. With a growing number of electric and electronic components in the modern cars and realizing by software of the system functions, the need for new standards and methods to assure the functional safety has arisen. This paper described the current state of engineering for safety in automotive sector and discusses new directions to meet the challenges of the future.

Keywords: automotive systems, functional safety, quality engineering, quality management

Procedia PDF Downloads 274
9648 A Fundamental Functional Equation for Lie Algebras

Authors: Ih-Ching Hsu

Abstract:

Inspired by the so called Jacobi Identity (x y) z + (y z) x + (z x) y = 0, the following class of functional equations EQ I: F [F (x, y), z] + F [F (y, z), x] + F [F (z, x), y] = 0 is proposed, researched and generalized. Research methodologies begin with classical methods for functional equations, then evolve into discovering of any implicit algebraic structures. One of this paper’s major findings is that EQ I, under two additional conditions F (x, x) = 0 and F (x, y) + F (y, x) = 0, proves to be a fundamental functional equation for Lie Algebras. Existence of non-trivial solutions for EQ I can be proven by defining F (p, q) = [p q] = pq –qp, where p and q are quaternions, and pq is the quaternion product of p and q. EQ I can be generalized to the following class of functional equations EQ II: F [G (x, y), z] + F [G (y, z), x] + F [G (z, x), y] = 0. Concluding Statement: With a major finding proven, and non-trivial solutions derived, this research paper illustrates and provides a new functional equation scheme for studies in two major areas: (1) What underlying algebraic structures can be defined and/or derived from EQ I or EQ II? (2) What conditions can be imposed so that conditional general solutions to EQ I and EQ II can be found, investigated and applied?

Keywords: fundamental functional equation, generalized functional equations, Lie algebras, quaternions

Procedia PDF Downloads 195
9647 Time-Dependent Density Functional Theory of an Oscillating Electron Density around a Nanoparticle

Authors: Nilay K. Doshi

Abstract:

A theoretical probe describing the excited energy states of the electron density surrounding a nanoparticle (NP) is presented. An electromagnetic (EM) wave interacts with a NP much smaller than the incident wavelength. The plasmon that oscillates locally around the NP comprises of excited conduction electrons. The system is based on the Jellium model of a cluster of metal atoms. Hohenberg-Kohn (HK) equations and the variational Kohn-Sham (SK) scheme have been used to obtain the NP electron density in the ground state. Furthermore, a time-dependent density functional (TDDFT) theory is used to treat the excited states in a density functional theory (DFT) framework. The non-interacting fermionic kinetic energy is shown to be a functional of the electron density. The time dependent potential is written as the sum of the nucleic potential and the incoming EM field. This view of the quantum oscillation of the electron density is a part of the localized surface plasmon resonance.

Keywords: electron density, energy, electromagnetic, DFT, TDDFT, plasmon, resonance

Procedia PDF Downloads 293
9646 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model

Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok

Abstract:

The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.

Keywords: functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity

Procedia PDF Downloads 127
9645 The Estimation of Human Vital Signs Complexity

Authors: L. Bikulciene, E. Venskaityte, G. Jarusevicius

Abstract:

Non-stationary and nonlinear signals generated by living complex systems defy traditional mechanistic approaches, which are based on homeostasis. Previous our studies have shown that the evaluation of the interactions of physiological signals by using special analysis methods is suitable for observation of physiological processes. It is demonstrated the possibility of using deep physiological model, based interpretation of the changes of the human body’s functional states combined with an application of the analytical method based on matrix theory for the physiological signals analysis, which was applied on high risk cardiac patients. It is shown that evaluation of cardiac signals interactions show peculiar for each individual functional changes at the onset of hemodynamic restoration procedure. Therefore we suggest that the alterations of functional state of the body, after patients overcome surgery can be complemented by the data received from the suggested approach of the evaluation of functional variables interactions.

Keywords: cardiac diseases, complex systems theory, ECG analysis, matrix analysis

Procedia PDF Downloads 316
9644 Consumer Choice Determinants in Context of Functional Food

Authors: E. Grochowska-Niedworok, K. Brukało, M. Kardas

Abstract:

The aim of this study was to analyze and evaluate the consumption of functional food by consumers by: age, sex, formal education level, place of residence and diagnosed diseases. The study employed an ad hoc questionnaire in a group of 300 inhabitants of Upper Silesia voivodship. Knowledge of functional food among the group covered in the study was far from satisfactory. The choice of functional food was of intuitive character. In addition, the group covered was more likely to choose pharmacotherapy instead of diet-related prevention then, which can be associated with presumption of too distant effects and a long period of treatment.

Keywords: consumer choice, functional food, healthy lifestyle, consumer knowledge

Procedia PDF Downloads 233
9643 The Integrated Strategy of Maintenance with a Scientific Analysis

Authors: Mahmoud Meckawey

Abstract:

This research is dealing with one of the most important aspects of maintenance fields, that is Maintenance Strategy. It's the branch which concerns the concepts and the schematic thoughts in how to manage maintenance and how to deal with the defects in the engineering products (buildings, machines, etc.) in general. Through the papers we will act with the followings: i) The Engineering Product & the Technical Systems: When we act with the maintenance process, in a strategic view, we act with an (engineering product) which consists of multi integrated systems. In fact, there is no engineering product with only one system. We will discuss and explain this topic, through which we will derivate a developed definition for the maintenance process. ii) The factors or basis of the functionality efficiency: That is the main factors affect the functional efficiency of the systems and the engineering products, then by this way we can give a technical definition of defects and how they occur. iii) The legality of occurrence of defects (Legal defects and Illegal defects): with which we assume that all the factors of the functionality efficiency been applied, and then we will discuss the results. iv) The Guarantee, the Functional Span Age and the Technical surplus concepts: In the complementation with the above topic, and associated with the Reliability theorems, where we act with the Probability of Failure state, with which we almost interest with the design stages, that is to check and adapt the design of the elements. But in Maintainability we act in a different way as we act with the actual state of the systems. So, we act with the rest of the story that means we have to act with the complementary part of the probability of failure term which refers to the actual surplus of the functionality for the systems.

Keywords: engineering product and technical systems, functional span age, legal and illegal defects, technical and functional surplus

Procedia PDF Downloads 451
9642 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG

Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan

Abstract:

Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.

Keywords: EEG, functional connectivity, graph theory, TFCMI

Procedia PDF Downloads 399
9641 Monotonicity of the Jensen Functional for f-Divergences via the Zipf-Mandelbrot Law

Authors: Neda Lovričević, Đilda Pečarić, Josip Pečarić

Abstract:

The Jensen functional in its discrete form is brought in relation to the Csiszar divergence functional, this time via its monotonicity property. This approach presents a generalization of the previously obtained results that made use of interpolating Jensen-type inequalities. Thus the monotonicity property is integrated with the Zipf-Mandelbrot law and applied to f-divergences for probability distributions that originate from the Csiszar divergence functional: Kullback-Leibler divergence, Hellinger distance, Bhattacharyya distance, chi-square divergence, total variation distance. The Zipf-Mandelbrot and the Zipf law are widely used in various scientific fields and interdisciplinary and here the focus is on the aspect of the mathematical inequalities.

Keywords: Jensen functional, monotonicity, Csiszar divergence functional, f-divergences, Zipf-Mandelbrot law

Procedia PDF Downloads 114
9640 Functional Dyspepsia and Irritable Bowel Syndrome: Life sketches of Functional Illnesses (Non-Organic) in West Bengal, India

Authors: Urmita Chakraborty

Abstract:

To start with, Organic Illnesses are no longer considered as only health difficulties. Functional Illnesses that are emotional in origin have become the search areas in many investigations. In the present study, an attempt has made to study the psychological nature of Functional Gastro-Intestinal Disorders (FGID) in West Bengal. In the specialty of Gastroenterology, the medically unexplained symptom-based conditions are known as Functional Gastrointestinal Disorder (FGID). In the present study, Functional Dyspepsia (FD) and Irritable Bowel Syndrome (IBS) have been taken for investigations. 72 cases have been discussed in this context. Results of the investigation have been analyzed in terms of a qualitative framework. Theoretical concepts on persistent thoughts and behaviors will be delineated in the analysis. Processes of self-categorization will be implemented too. Aspects of Attachments and controlling of affect as well as meta-cognitive appraisals are further considered for the depiction.

Keywords: functional dyspepsia, irritable bowel syndrome, self-categorization

Procedia PDF Downloads 544
9639 A Comparative Density Functional Theory Study of Hydrocarbon Combustion on Metal Surfaces

Authors: Abas Mohsenzadeh, Mina Arya, Kim Bolton

Abstract:

Catalytic combustion of hydrocarbons is an important technology developed to produce energy with minimum pollutant formation. The catalyst plays a key role in this process which operates at lower temperatures compared to conventional flame combustion. The energetics of the direct combustion of hydrocarbons (CH → C + H) on a series of metal surfaces including Ag, Au, Al, Cu, Rh, Pt, Pd, Ni, Fe and Co were investigated using density functional theory (DFT). Brønsted-Evans-Polanyi (BEP) and transition state scaling (TSS) correlations were proposed based on DFT calculations on the Ag, Au, Al, Cu, Rh, Pt and Pd surfaces. These correlations were then used to estimate the energetics on Fe, Ni and Co surfaces. Results showed that the estimated reaction and activation energies by BEP and TSS correlations on Fe, Ni and Co surfaces are in an excellent agreement with those obtained by DFT calculations. Therefore these correlations can be efficiently used to predict energetics of similar reactions on these surfaces without doing computationally costly transition state calculations. It was found that the activation barrier for CH dissociation follows the order Ag ˃ Au ˃ Al ˃ Cu ˃ Pt ˃ Pd ˃ Ni > Co > Rh > Fe. Also, BEP (with R2 value of 0.96) and TSS correlations (with R2 value of 0.99) support the results.

Keywords: BEP, DFT, hydrocarbon combustion, metal surfaces, TSS

Procedia PDF Downloads 231
9638 Linking Enhanced Resting-State Brain Connectivity with the Benefit of Desirable Difficulty to Motor Learning: A Functional Magnetic Resonance Imaging Study

Authors: Chien-Ho Lin, Ho-Ching Yang, Barbara Knowlton, Shin-Leh Huang, Ming-Chang Chiang

Abstract:

Practicing motor tasks arranged in an interleaved order (interleaved practice, or IP) generally leads to better learning than practicing tasks in a repetitive order (repetitive practice, or RP), an example of how desirable difficulty during practice benefits learning. Greater difficulty during practice, e.g. IP, is associated with greater brain activity measured by higher blood-oxygen-level dependent (BOLD) signal in functional magnetic resonance imaging (fMRI) in the sensorimotor areas of the brain. In this study resting-state fMRI was applied to investigate whether increase in resting-state brain connectivity immediately after practice predicts the benefit of desirable difficulty to motor learning. 26 healthy adults (11M/15F, age = 23.3±1.3 years) practiced two sets of three sequences arranged in a repetitive or an interleaved order over 2 days, followed by a retention test on Day 5 to evaluate learning. On each practice day, fMRI data were acquired in a resting state after practice. The resting-state fMRI data was decomposed using a group-level spatial independent component analysis (ICA), yielding 9 independent components (IC) matched to the precuneus network, primary visual networks (two ICs, denoted by I and II respectively), sensorimotor networks (two ICs, denoted by I and II respectively), the right and the left frontoparietal networks, occipito-temporal network, and the frontal network. A weighted resting-state functional connectivity (wRSFC) was then defined to incorporate information from within- and between-network brain connectivity. The within-network functional connectivity between a voxel and an IC was gauged by a z-score derived from the Fisher transformation of the IC map. The between-network connectivity was derived from the cross-correlation of time courses across all possible pairs of ICs, leading to a symmetric nc x nc matrix of cross-correlation coefficients, denoted by C = (pᵢⱼ). Here pᵢⱼ is the extremum of cross-correlation between ICs i and j; nc = 9 is the number of ICs. This component-wise cross-correlation matrix C was then projected to the voxel space, with the weights for each voxel set to the z-score that represents the above within-network functional connectivity. The wRSFC map incorporates the global characteristics of brain networks measured by the between-network connectivity, and the spatial information contained in the IC maps measured by the within-network connectivity. Pearson correlation analysis revealed that greater IP-minus-RP difference in wRSFC was positively correlated with the RP-minus-IP difference in the response time on Day 5, particularly in brain regions crucial for motor learning, such as the right dorsolateral prefrontal cortex (DLPFC), and the right premotor and supplementary motor cortices. This indicates that enhanced resting brain connectivity during the early phase of memory consolidation is associated with enhanced learning following interleaved practice, and as such wRSFC could be applied as a biomarker that measures the beneficial effects of desirable difficulty on motor sequence learning.

Keywords: desirable difficulty, functional magnetic resonance imaging, independent component analysis, resting-state networks

Procedia PDF Downloads 177
9637 Functional Silos in a Cross-functional Scrum Team: A Study on How to Kill the Silo Mindset and Achieve a Fully Cross Functional Team for Excellence in Agile Project Delivery

Authors: Harihara Subramaniam Salem Chandrasekaran

Abstract:

Scrum framework is built upon emphasises on self-management and cross-functionality around which the framework is built upon. However, in reality, many organisations that adapt scrum are having functional structures and hierarchy. In such cases, the scrum teams are built with a mixture of people from different functionalities to deliver specific products and projects. For instance, every scrum team would be having a designer, developer or tester, etc.; who will make their own contribution to an increment. This results in people centric dependencies for delivering an increment and thus creating bottlenecks at certain times. This paper presents in detail how functional silos are a challenge to the scrum teams and hinder the incremental deliver of value to customers. The study has been conducted with 14 individuals from the software industry from different functional departments, and the findings summarize that functional silos are naturally formed due to the organizational dynamics and hierarchy and the mindset of being confined within the silos is detrimental to the fundamental values of agile and scrum. The paper also sheds light on what the individuals propose to overcome the silo mindset within the scrum team and focus on continuous improvement in delivery excellence.

Keywords: agile, scrum, cross-functional, functional silos

Procedia PDF Downloads 108
9636 Investigating the Effects of Two Functional and Extra-Functional Stretching Methods of the Leg Muscles on a Selection of Kinematical and Kinetic Indicators in Women with Ankle Instability

Authors: Parvin Malhami

Abstract:

The purpose of the present study was to investigate the effects of two functional and functional stretching methods of the leg muscles on a selection of kinematical and kinetic indicators among women with ankle instability. Twenty-four persons were targeted and randomly divided into the functional exercise (8 persons), extra-functional exercise (8 persons) and control (8 persons) groups on the basis of inclusion and exclusion criteria. The experimental groups received stretching for eight weeks, 3 sessions each week, and the control group merely performed its daily activities. Then, in order to measure the pre -test and post -test variables, the dorsi flexion, Plantar flexion and ground reaction force were investigated and measured. Data were analyzed using paired T-test and independent T-tests at a significant level of 0.05. All statistical analyses were conducted using SPSS 25 software. The results of the T-test showed the significant effect of eight weeks of functional and Extra functional exercises on dorsi Flexion, Plantar Flexion and ground reaction force. (P≤ 0/001). The results of this study showed that the implementation of the functional and Extra-functional exercise protocol had an impact on the amount of Ankle dorsi Flexion and the Plantar felxion of women with an ankle instability. It was also found that muscle flexibility following the stretch ability of the gastrocnemius muscles facilitates the walking of the wrist installation by affecting the amount of wrist flexion, so these people are recommended to use the functional and extra-functional exercise protocol.

Keywords: functional stretching, extra functional stretching, dorsi flexion, plantar flexion

Procedia PDF Downloads 49
9635 Antiglycemic Activity of Raw Plant Materials as Potential Components of Functional Food

Authors: Ewa Flaczyk, Monika Przeor, Joanna Kobus-Cisowska, Józef Korczak

Abstract:

The aim of this paper was to collect the information concerning the most popular raw plant materials of antidiabetic activity, in a context of functional food developing production. The elaboration discusses morphological elements possible for an application in functional food production of the plants such as: common bean, ginger, Ceylon cinnamon, white mulberry, fenugreek, French lilac, ginseng, jambolão, and bitter melon. An activity of bioactive substances contained in these raw plant materials was presented, pointing their antiglycemic and also hypocholesterolemic, antiarthritic, antirheumatic, antibacterial, and antiviral activity in the studies on humans and animals. Also the genesis of functional food definition was presented.

Keywords: antiglycemic activity, raw plant materials, functional food, food, nutritional sciences

Procedia PDF Downloads 446
9634 Density functional (DFT), Study of the Structural and Phase Transition of ThC and ThN: LDA vs GGA Computational

Authors: Hamza Rekab Djabri, Salah Daoud

Abstract:

The present paper deals with the computational of structural and electronic properties of ThC and ThN compounds using density functional theory within generalized-gradient (GGA) apraximation and local density approximation (LDA). We employ the full potential linear muffin-tin orbitals (FP-LMTO) as implemented in the Lmtart code. We have used to examine structure parameter in eight different structures such as in NaCl (B1), CsCl (B2), ZB (B3), NiAs (B8), PbO (B10), Wurtzite (B4) , HCP (A3) βSn (A5) structures . The equilibrium lattice parameter, bulk modulus, and its pressure derivative were presented for all calculated phases. The calculated ground state properties are in good agreement with available experimental and theoretical results.

Keywords: DFT, GGA, LDA, properties structurales, ThC, ThN

Procedia PDF Downloads 71
9633 Study on Fabrication of Surface Functional Micro and Nanostructures by Femtosecond Laser

Authors: Shengzhu Cao, Hui Zhou, Gan Wu, Lanxi Wanhg, Kaifeng Zhang, Rui Wang, Hu Wang

Abstract:

The functional micro and nanostructures, which can endow material surface with unique properties such as super-absorptance, hydrophobic and drag reduction. Recently, femtosecond laser ablation has been demonstrated to be a promising technology for surface functional micro and nanostructures fabrication. In this paper, using femtosecond laser ablation processing technique, we fabricated functional micro and nanostructures on Ti and Al alloy surfaces, test results showed that processed surfaces have 82%~96% absorptance over a broad wavelength range from ultraviolet to infrared. The surface function properties, which determined by micro and nanostructures, could be modulated by variation laser parameters. These functional surfaces may find applications in such areas as photonics, plasmonics, spaceborne devices, thermal radiation sources, solar energy absorbers and biomedicine.

Keywords: surface functional, micro and nanostructures, femtosecond laser, ablation

Procedia PDF Downloads 340
9632 Systematic Review of Functional Analysis in Brazil

Authors: Felipe Magalhaes Lemos

Abstract:

Functional behavior analysis is a procedure that has been studied for several decades by behavior analysts. In Brazil, we still have few studies in the area, so it was decided to carry out a systematic review of the articles published in the area by Brazilians. A search was done on the following scientific article registration sites: PsycINFO, ERIC, ISI Web of Science, Virtual Health Library. The research includes (a) peer-reviewed studies that (b) have been carried out in Brazil containing (c) functional assessment as a pre-treatment through (d) experimental procedures, direct or indirect observation and measurement of behavior problems (e) demonstrating a relationship between environmental events and behavior. During the review, 234 papers were found; however, only 9 were included in the final analysis. Of the 9 articles extracted, only 2 presented functional analysis procedures with manipulation of environmental variables, while the other 7 presented different procedures for a descriptive behavior assessment. Only the two studies using "functional analysis" used graphs to demonstrate the prevalent function of the behavior. Other studies described procedures and did not make clear the causal relationship between environment and behavior. There is still confusion in Brazil regarding the terms "functional analysis", "descriptive assessment" and "contingency analysis," which are generally treated in the same way. This study shows that few articles are published with a focus on functional analysis in Brazil.

Keywords: behavior, contingency, descriptive assessment, functional analysis

Procedia PDF Downloads 116
9631 The Influence of Winding Angle on Functional Failure of FRP Pipes

Authors: Roham Rafiee, Hadi Hesamsadat

Abstract:

In this study, a parametric finite element modeling is developed to analyze failure modes of FRP pipes subjected to internal pressure. First-ply failure pressure and functional failure pressure was determined by a progressive damage modeling and then it is validated using experimental observations. The influence of both winding angle and fiber volume fraction is studied on the functional failure of FRP pipes and it corresponding pressure. It is observed that despite the fact that increasing fiber volume fraction will enhance the mechanical properties, it will be resulted in lower values for functional failure pressure. This shortcoming can be compensated by modifying the winding angle in angle plies of pipe wall structure.

Keywords: composite pipe, functional failure, progressive modeling, winding angle

Procedia PDF Downloads 521
9630 AI Predictive Modeling of Excited State Dynamics in OPV Materials

Authors: Pranav Gunhal., Krish Jhurani

Abstract:

This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.

Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling

Procedia PDF Downloads 80
9629 Quantitative Analysis of the Functional Characteristics of Urban Complexes Based on Station-City Integration: Fifteen Case Studies of European, North American, and East Asian Railway Stations

Authors: Dai Yizheng, Chen-Yang Zhang

Abstract:

As station-city integration has been widely accepted as a strategy for mixed-use development, a quantitative analysis of the functional characteristics of urban complexes based on station-city integration is urgently needed. Taking 15 railway stations in European, North American, and East Asian cities as the research objects, this study analyzes their functional proportion, functional positioning, and functional correlation with respect to four categories of functional facilities for both railway passenger flow and subway passenger flow. We found that (1) the functional proportion of urban complexes was mainly concentrated in three models: complementary, dominant, and equilibrium. (2) The mathematical model affected by the functional proportion was created to evaluate the functional positioning of an urban complex at three scales: station area, city, and region. (3) The strength of the correlation between the functional area and passenger flow was revealed via data analysis using Pearson’s correlation coefficient. Finally, the findings of this study provide a valuable reference for research on similar topics in other countries that are developing station-city integration.

Keywords: urban complex, station-city integration, mixed-use, function, quantitative analysis

Procedia PDF Downloads 84