Search results for: effective radiation dose
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11681

Search results for: effective radiation dose

10961 Effect of Withania Somnifera in Alloxan Induced Diabetic Rabbits

Authors: Farah Ali, Tehreem Fayyaz, Musadiq Idris

Abstract:

The present work was undertaken to investigate effects of various extracts of W. somniferafor anti-diabetic activity in alloxan induced diabetic rabbits. Rabbits were acclimatized for a week to standard laboratory temperature. Animals were fed according to a strict schedule (8 am, 3 pm and 10 pm) with green fodder (Medicago sativa) and tap water ad libitum. Animals were divided into nine groups of six rabbits each in a random manner. Body weights and physical activities of all rabbits were recorded before start of experiments. The animals of group 1 and 2 were given lactose (250 mg/kg,p.o) and Withaniasomniferaroot powder (100 mg/kg, p.o) respectively daily from day 1-20. Animals of group 3 were given alloxan (100 mg/kg,i.v) as a single dose on day 1. Powdered root of Withaniasomnifera in the doses of 100, 150, 200 mg/kg and its aqueous and ethanol extracts (equivalent to 200 mg/kg of crude drug) were given to the treated animals (groups 4-8), respectively by oral route for three weeks (day 1-20o.d), along with alloxan (100 mg/kg, i.v) as a single dose on day 1. Group 9 was treated with metformin (200 mg/kg, p.o) daily from day 1-20, along with a single dose of alloxan (100 mg/ kg, i.v) on day 1. Fasting serum glucose concentration in groups 3-9 was increased significantly (p<0.05) on day 3, with a maximum increase (215.3 mg/dl) in animals of toxic control (TC) group (3) on day 21 of the experiment as compared to normal control (NC) group (1). Effects of different doses (100, 150, 200 mg/kg, p.o) of W. somnifera root powder (WS) decreased the fasting serum glucose concentration as compared to toxic control group, with a maximum decrease (88.3 mg/dl) in group 2 (treated control) on day 21 of the experiment. Metformin (200 mg/kg, p.o) (reference control), aqueous extract (AWS) and ethanol extract (EWS) of W. somnifera (equivalent to 100 mg/kg W.somnifera root, p.o) antagonized the effects of alloxan as compared to toxic control group. These results indicate that the W. somnifera possess significant anti –diabetic activity.

Keywords: diabetes, serum, glucose, blood, sugar, rabbits

Procedia PDF Downloads 561
10960 Comparison of the Performance of GaInAsSb and GaSb Cells under Different Temperature Blackbody Radiations

Authors: Liangliang Tang, Chang Xu, Xingying Chen

Abstract:

GaInAsSb cells probably show better performance than GaSb cells in low-temperature thermophotovoltaic systems due to lower bandgap; however, few experiments proved this phenomenon so far. In this paper, numerical simulation is used to evaluate GaInAsSb and GaSb cells with similar structures under different radiation temperatures. We found that GaInAsSb cells with n-type emitters show slightly higher output power densities compared with that of GaSb cells with n-type emitters below 1,550 K-blackbody radiation, and the power density of the later cells will suppress the formers above this temperature point. During the temperature range of 1,000~2,000 K, the efficiencies of GaSb cells are about twice of GaInAsSb cells if perfect filters are used to prevent the emission of the non-absorbed long wavelength photons. Several parameters that affect the GaInAsSb cell were analyzed, such as doping profiles, thicknesses of GaInAsSb epitaxial layer and surface recombination velocity. The non-p junctions, i.e., n-type emitters are better for GaInAsSb cell fabrication, which is similar to that of GaSb cells.

Keywords: thermophotovoltaic cell, GaSb, GaInAsSb, diffused emitters

Procedia PDF Downloads 280
10959 Study of the Ambiguity of Effective Hamiltonian for the Fundamental Degenerate States V3 of the Molecule 12CD4

Authors: Ouardi Okkacha, Kaarour Abedlkrim, Meskine Mohamed

Abstract:

The effective Hamiltonians are widely used in molecular spectroscopy for the interpretation of the vibration-rotation spectra. Their construction is an ambiguous procedure due to the existence of unitary transformations that change the effective Hamiltonian but do not change its eigenvalues. As a consequence of this ambiguity, it may happen that some parameters of effective Hamiltonians cannot be recovered from experimental data in a unique way. The type of admissible transformations which keeps the operator form of the effective Hamiltonian unaltered and the number of empirically determinable parameters strongly depend on the symmetry type of a molecule (asymmetric top, spherical top, and so on) and on the degeneracy of the vibrational state. In this work, we report the study of the ambiguity of effective Hamiltonian for the fundamental degenerate states v3 of the Molecule 12CD4.

Keywords: 12CD4, high-resolution infrared spectra, tetrahedral tensorial formalism, vibrational states, rovibrational line position analysis, XTDS, SPVIEW

Procedia PDF Downloads 415
10958 Check Red Blood Cells Concentrations of a Blood Sample by Using Photoconductive Antenna

Authors: Ahmed Banda, Alaa Maghrabi, Aiman Fakieh

Abstract:

Terahertz (THz) range lies in the area between 0.1 to 10 THz. The process of generating and detecting THz can be done through different techniques. One of the most familiar techniques is done through a photoconductive antenna (PCA). The process of generating THz radiation at PCA includes applying a laser pump in femtosecond and DC voltage difference. However, photocurrent is generated at PCA, which its value is affected by different parameters (e.g., dielectric properties, DC voltage difference and incident power of laser pump). THz radiation is used for biomedical applications. However, different biomedical fields need new technologies to meet patients’ needs (e.g. blood-related conditions). In this work, a novel method to check the red blood cells (RBCs) concentration of a blood sample using PCA is presented. RBCs constitute 44% of total blood volume. RBCs contain Hemoglobin that transfers oxygen from lungs to body organs. Then it returns to the lungs carrying carbon dioxide, which the body then gets rid of in the process of exhalation. The configuration has been simulated and optimized using COMSOL Multiphysics. The differentiation of RBCs concentration affects its dielectric properties (e.g., the relative permittivity of RBCs in the blood sample). However, the effects of four blood samples (with different concentrations of RBCs) on photocurrent value have been tested. Photocurrent peak value and RBCs concentration are inversely proportional to each other due to the change of dielectric properties of RBCs. It was noticed that photocurrent peak value has dropped from 162.99 nA to 108.66 nA when RBCs concentration has risen from 0% to 100% of a blood sample. The optimization of this method helps to launch new products for diagnosing blood-related conditions (e.g., anemia and leukemia). The resultant electric field from DC components can not be used to count the RBCs of the blood sample.

Keywords: biomedical applications, photoconductive antenna, photocurrent, red blood cells, THz radiation

Procedia PDF Downloads 205
10957 Insecticidal Activity of Bacillus Thuringiensis Strain AH-2 Against Hemiptera Insects Pests: Aphis. Gossypii, and Lepidoptera Insect Pests: Plutella Xylostella and Hyphantria Cunea

Authors: Ajuna B. Henry

Abstract:

In recent decades, climate change has demanded biological pesticides; more Bt strains are being discovered worldwide, some containing novel insecticidal genes while others have been modified through molecular approaches for increased yield, toxicity, and wider host target. In this study, B. thuringiensis strain AH-2 (Bt-2) was isolated from the soil and tested for insecticidal activity against Aphis gossypii (Hemiptera: Aphididae) and Lepidoptera insect pests: fall webworm (Hyphantria cunea) and diamondback moth (Plutella xylostella). A commercial strain B. thuringiensis subsp. kurstaki (Btk), and a chemical pesticide, imidacloprid (for Hemiptera) and chlorantraniliprole (for Lepidoptera), were used as positive control and the same media (without bacterial inoculum) as a negative control. For aphidicidal activity, Bt-2 caused a mortality rate of 70.2%, 78.1% or 88.4% in third instar nymphs of A. gossypii (3N) at 10%, 25% or 50% culture concentrations, respectively. Moreover, Bt-2 was effectively produced in cost-effective (PB) supplemented with either glucose (PBG) or sucrose (PBS) and maintained high aphicidal efficacy with 3N mortality rates of 85.9%, 82.9% or 82.2% in TSB, PBG or PBS media, respectively at 50% culture concentration. Bt-2 also suppressed adult fecundity by 98.3% compared to only 65.8% suppression by Btk at similar concentrations but was slightly lower than chemical treatment, which caused 100% suppression. Partial purification of 60 – 80% (NH4)2SO4 fraction of Bt-2 aphicidal proteins purified on anion exchange (DEAE-FF) column revealed a 105 kDa aphicidal protein with LC50 = 55.0 ng/µℓ. For Lepidoptera pests, chemical pesticide, Bt-2, and Btk cultures, mortality of 86.7%, 60%, and 60% in 3rd instar larvae of P. xylostella, and 96.7%, 80.0%, and 93.3% in 6th instar larvae of H. cunea, after 72h of exposure. When the entomopathogenic strains were cultured in a cost-effective PBG or PBS, the insecticidal activity in all strains was not significantly different compared to the use of a commercial medium (TSB). Bt-2 caused a mortality rate of 60.0%, 63.3%, and 50.0% against P. xylostella larvae and 76.7%, 83.3%, and 73.3% against H. cunea when grown in TSB, PBG, and PBS media, respectively. Bt-2 (grown in cost-effective PBG medium) caused a dose-dependent toxicity of 26.7%, 40.0%, and 63.3% against P. xylostella and 46.7%, 53.3%, and 76.7% against H. cunea at 10%, 25% and 50% culture concentration, respectively. The partially purified Bt-2 insecticidal proteins fractions F1, F2, F3, and F4 (extracted at different ratios of organic solvent) caused low toxicity (50.0%, 40.0%, 36.7%, and 30.0%) against P. xylostella and relatively high toxicity (56.7%, 76.7%, 66.7%, and 63.3%) against H. cunea at 100 µg/g of artificial diets. SDS-PAGE analysis revealed that a128kDa protein is associated with toxicity of Bt-2. Our result demonstrates a medium and strong larvicidal activity of Bt-2 against P. xylostella and H. cunea, respectively. Moreover, Bt-2 could be potentially produced using a cost-effective PBG medium which makes it an effective alternative biocontrol strategy to reduce chemical pesticide application.

Keywords: biocontrol, insect pests, larvae/nymph mortality, cost-effective media, aphis gossypii, plutella xylostella, hyphantria cunea, bacillus thuringiensi

Procedia PDF Downloads 20
10956 Antitumor Activity of Gold Nanorods against Mammary Gland and Skin Carcinoma in Dogs and Cats

Authors: Abdoon A.S., El Ashkar E.A., Kandil O.M., Wael H. Eisa, Shaban A.M., Khaled H.M., El Ashkar M.R., El Shaer M., Hussein H., Shaalan A.H., El Sayed M.

Abstract:

Cancer is a major obstacle to human health and development worldwide. Conventional strategies for cancer intervention include surgery, chemotherapy, and radiation therapy. Recently, plasmon photothermal therapy (PPTT) was introduced as a promising treatment for the management of cancer and several non-cancerous diseases that are generally characterized by overgrowth of abnormal cells. The present work was conducted to evaluate the cytotoxic efficacy and toxicity of gold nanorods (AuNRs) in dogs and cats suffering from spontaneous mammary gland. AuNRs was injected intratumoral (IT, n=10, dose of 75 p.p.m/kg body weight) or by using spray method after surgical removal of cancer tissue (n=2) in dogs and cats. Then exposed to laser light after 60 min. Treated animals were observed every 2 days and the morphological changes in tumor size and shape were recorded. Blood samples were collected before and after treatment for checking CBC, liver and kidney functions. Results revealed that AuNRs successfully treat mammary gland tumor in dogs and cats (adenocarcinoma type 1 to IV). AuNRs induced sloughing of carcinogenic tissue within 5 to 15 days. AuNRs have no toxic effect on blood profile and the toxicity studies still under evaluation. Conclusion, AuNRs can be used for treatment of mammary gland carcinoma in dogs and cats.

Keywords: pet animals, mammary gland tumor, AuNRs, photothermal therapy, toxicity studies

Procedia PDF Downloads 384
10955 Comparative in vitro Anticancer Activity of Two Siddha Formulations: Neeradi Muthu Vallathymezugu and Thamira Kattu Chendooram

Authors: Vasudha Devi, Arul Amuthan, K. Narayanan, Praveen KS, Venkata Rao J

Abstract:

Background: Siddha Medicine is one of the Indian traditional medical systems, in which the cancer disease is mentioned as 'putrunoi' which literally means the disease of growth like termite mound. There are number of formulations available for the treatment of cancer disease. Neeradi muthu vallathymezugu (NMV) and thamira kattu chendooram (TKC) are two drugs commonly prescribed by Siddha physicians. These drugs have been clinically reported to be safe and effective when given orally. Though these formulations are in practice for centuries, no efforts have been made to standardize them and explore their anti-cancer potential systematically. Objective: To compare the cytotoxic activity of NMV and TKC with doxorubicin using cancer cell lines. Materials and methods: For this study, ethanol extract of NMV was taken, whereas TKC was used as such. In vitro cytotoxic activity was evaluated by sulphorhodamine (SRB) assay against human hepatic cancer cells (HepG2), human breast cancer cells (MCF-7) and human cervical cancer cells [KeLa]. Doxorubicin was used as the standard. The SRB assay is based on the ability of cellular proteins to bind with sulphorhodamine-B. The number of live cells in drug treated cell lines directly affects the color formation in the assay, which is estimated calorimetrically by measuring the absorbance at 540 nm to calculate the cytotoxicity (inhibitory concentration - IC50 value) of the drug. Results: The IC50values of NMV, TKC and doxorubicin against HepG2 were 3.08 µg/ml, 20.21 µg/ml and 1.21µg/ml respectively. In MCF-7, it was 11.75 µg/ml, 17.67 µg/ml and 2.8µg/ml. In HeLa, the values were 24.76 µg/ml, 73.35 µg/ml and 1.12µg/ml. Conclusions: The study proves the possible anti-cancer potential of these two formulations. Compared to TKC, NMV showed good cytotoxic effect even at low dose. Human hepatic cancer cells responded well even at very low dose, when compared to other cancer cells. Though, cytotoxic potential of these compounds was found to be less compared to doxorubicin, the isolated lead compound may have the potential to be used as an anticancer drug clinically.

Keywords: Neeradi muthu vallathymezugu (Hydnocarpus laurifolia), thamira kattu chendooram, cytotoxicity, in-vitro, Siddha Medicine

Procedia PDF Downloads 473
10954 Influence of Infrared Radiation on the Growth Rate of Microalgae Chlorella sorokiniana

Authors: Natalia Politaeva, Iuliia Smiatskaia, Iuliia Bazarnova, Iryna Atamaniuk, Kerstin Kuchta

Abstract:

Nowadays, the progressive decrease of primary natural resources and ongoing upward trend in terms of energy demand, have resulted in development of new generation technological processes which are focused on step-wise production and residues utilization. Thus, microalgae-based 3rd generation bioeconomy is considered one of the most promising approaches that allow production of value-added products and sophisticated utilization of residues biomass. In comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, and thus, addressing issues associated with negative social and environmental impacts. However, one of the most challenging tasks is to undergo seasonal variations and to achieve optimal growing conditions for indoor closed systems that can cover further demand for material and energetic utilization of microalgae. For instance, outdoor cultivation in St. Petersburg (Russia) is only suitable within rather narrow time frame (from mid-May to mid-September). At earlier and later periods, insufficient sunlight and heat for the growth of microalgae were detected. On the other hand, without additional physical effects, the biomass increment in summer is 3-5 times per week, depending on the solar radiation and the ambient temperature. In order to increase biomass production, scientists from all over the world have proposed various technical solutions for cultivators and have been studying the influence of various physical factors affecting biomass growth namely: magnetic field, radiation impact, and electric field, etc. In this paper, the influence of infrared radiation (IR) and fluorescent light on the growth rate of microalgae Chlorella sorokiniana has been studied. The cultivation of Chlorella sorokiniana was carried out in 500 ml cylindrical glass vessels, which were constantly aerated. To accelerate the cultivation process, the mixture was stirred for 15 minutes at 500 rpm following 120 minutes of rest time. At the same time, the metabolic needs in nutrients were provided by the addition of micro- and macro-nutrients in the microalgae growing medium. Lighting was provided by fluorescent lamps with the intensity of 2500 ± 300 lx. The influence of IR was determined using IR lamps with a voltage of 220 V, power of 250 W, in order to achieve the intensity of 13 600 ± 500 lx. The obtained results show that under the influence of fluorescent lamps along with the combined effect of active aeration and variable mixing, the biomass increment on the 2nd day was three times, and on the 7th day, it was eight-fold. The growth rate of microalgae under the influence of IR radiation was lower and has reached 22.6·106 cells·mL-1. However, application of IR lamps for the biomass growth allows maintaining the optimal temperature of microalgae suspension at approximately 25-28°C, which might especially be beneficial during the cold season in extreme climate zones.

Keywords: biomass, fluorescent lamp, infrared radiation, microalgae

Procedia PDF Downloads 187
10953 Influence of Synergistic/Antagonistic Mixtures of Oligomeric Stabilizers on the Biodegradation of γ-Sterilized Polyolefins

Authors: Sameh A. S. Thabit Alariqi

Abstract:

Our previous studies aimed to investigate the biodegradation of γ-sterilized polyolefins in composting and microbial culture environments at different doses and γ-dose rates. It was concluded from the previous studies that the pretreatment of γ-irradiation can accelerate the biodegradation of neat polymer matrix in biotic conditions significantly. A similar work was carried out to study the stabilization of γ-sterilized polyolefins using different mixtures of stabilizers which are approved for food-contact applications. Ethylene-propylene (EP) copolymer has been melt-mixed with hindered amine stabilizers (HAS), phenolic antioxidants and hydroperoxide decomposers. Results were discussed by comparing the stabilizing efficiency, combination and consumption of stabilizers and the synergistic and antagonistic effects was explained through the interaction between the stabilizers. In this attempt, we have aimed to study the influence of the synergistic and antagonistic mixtures of oligomeric stabilizers on the biodegradation of the γ-irradiated polyolefins in composting and microbial culture. Neat and stabilized films of EP copolymer irradiated under γ-radiation and incubated in compost and fungal culture environments. The changes in functional groups, surface morphology, mechanical properties and intrinsic viscosity in polymer chains were characterized by FT-IR spectroscopy, SEM, instron, and viscometric measurements respectively. Results were discussed by comparing the effect of different stabilizers, stabilizers mixtures on the biodegradation of the γ-irradiated polyolefins. It was found that the biodegradation significantly depends on the components of stabilization system, mobility, interaction, and consumption of stabilizers.

Keywords: biodegradation, γ-irradiation, polyolefins, stabilization

Procedia PDF Downloads 388
10952 Analgesic, Toxicity and Anti-Pyretic Activities of Methanolic Extract from Hyoscyamus albus Leaves in Albinos Rats

Authors: Yahia Massinissa, Henhouda Affaf, Yahia Mouloud

Abstract:

The aim of this study was to investigate the toxicity; analgesic and anti-pyretic properties of standardized HA methanolic extract (HAMeOH) in vivo. The acute toxicity study was performed on rats while adopting the OECD-420 Guidelines (fixed dose procedure). Assessment of analgesic activity was performed in rats with two analgesic models. One was acetic acid induced writhing response and the other formalin-induced paw licking. The anti-pyretic effect was tested by brewer’s yeast induced fever in rats. For the acute toxicity test, the higher dose administration of 2000 mg/kg bw. of Hyoscyamus albus did not produce any toxic signs or deaths in rats. There were no significant differences (p>0.05) in the body and organ weights between control and treated groups. The (LD50) of Hyoscyamus albus was higher than 2000 g/kg bw. In subacute toxicity study, no mortality and toxic signs were observed with the doses of 100 and 200 mg/kg bw. of extracts of for 28 consecutive days. These analgesic experimental results indicated that HAMeOH (100 mg/kg and 200 mg/kg) decreased the acetic acid-induced writhing responses and HAMeOH (100 mg/kg and 200 mg/kg) decreased the licking time in the second phase of the formalin test. Moreover, in the model of yeast induced elevation of the body temperature HAMeOH showed dose-dependent lowering of the body temperature up to 3h at both the doses these results obtained, were comparable to that of paracetamol. The present findings indicate that the leaves of Hyoscyamus albus L. possess potent analgesic and antipyretic activity.

Keywords: Hyoscyamus albus, methanolic extract, toxicity, analgesic activity, antipyretic activity, formalin test

Procedia PDF Downloads 339
10951 Synthesis and Application of Tamarind Hydroxypropane Sulphonic Acid Resin for Removal of Heavy Metal Ions from Industrial Wastewater

Authors: Aresh Vikram Singh, Sarika Nagar

Abstract:

The tamarind based resin containing hydroxypropane sulphonic acid groups has been synthesized and their adsorption behavior for heavy metal ions has been investigated using batch and column experiments. The hydroxypropane sulphonic acid group has been incorporated onto tamarind by a modified Porath's method of functionalisation of polysaccharides. The tamarind hydroxypropane sulphonic acid (THPSA) resin can selectively remove of heavy metal ions, which are contained in industrial wastewater. The THPSA resin was characterized by FTIR and thermogravimetric analysis. The effects of various adsorption conditions, such as pH, treatment time and adsorbent dose were also investigated. The optimum adsorption condition was found at pH 6, 120 minutes of equilibrium time and 0.1 gram of resin dose. The orders of distribution coefficient values were determined.

Keywords: distribution coefficient, industrial wastewater, polysaccharides, tamarind hydroxypropane sulphonic acid resin, thermogravimetric analysis, THPSA

Procedia PDF Downloads 261
10950 Biochemical Changes in the Liver of Mice after Exposure to Different Doses of Diclofenac Sodium

Authors: Deepak Mohan, Sushma Sharma

Abstract:

Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are a group of widely used drugs for the treatment of rheumatoid diseases and to relieve pain and inflammation due to their analgesic anti-pyretic and anti-inflammatory properties. The therapeutic and many of the toxic effects of NSAIDs result from reversible inhibition of enzymes in the cyclooxygenase (COX) group. In the present investigation the effect of the drug on the concentration of lipids, and on the activity of the enzymes i.e. acid and alkaline phosphatase, GOT, GPT and lipid peroxidase were studied. There was a significant enhancement in the activities of both acid and alkaline phosphatase after 21 days of treatment. Proportionate increase in the MDA contents was observed after different days of diclofenac treatment. Cellular damage in the liver resulted in decrease in the activity of both GOT (Glutamate oxaloacetate transaminase) and GPT (Glutamate pyruvate transaminase) in both low and high dose groups. Significant decrease in the liver contents was also observed in both dose groups.

Keywords: anti-inflammatory, cyclooxygenase, glutamate oxaloacetate transaminase, malondialdehyde

Procedia PDF Downloads 302
10949 Comparative Study of Fenton and Activated Carbon Treatment for Dyeing Waste Water

Authors: Prem Mohan, Namrata Jariwala

Abstract:

In recent years 10000 dyes are approximately used by dying industry which makes dyeing wastewater more complex in nature. It is very difficult to treat dyeing wastewater by conventional methods. Here an attempt has been made to treat dyeing wastewater by the conventional and advanced method for removal of COD. Fenton process is the advanced method and activated carbon treatment is the conventional method. Experiments have been done on synthetic wastewater prepared from three different dyes; acidic, disperse and reactive. Experiments have also been conducted on real effluent obtained from industry. The optimum dose of catalyst and hydrogen peroxide in Fenton process and optimum activated carbon dose for each of these wastewaters were obtained. In Fenton treatment, COD removal was obtained up to 95% whereas 70% removal was obtained with activated carbon treatment.

Keywords: activated carbon, advanced oxidation process, dyeing waste water, fenton oxidation process

Procedia PDF Downloads 211
10948 Evaluation of Wound Healing Activity of Curcuma purpurascens BI. Rhizomes in Rats

Authors: Elham Rouhollahi, Soheil Zorofchian Moghadamtousi, Salma Baig, Mahmood Ameen Abdulla, Zahurin Mohamed

Abstract:

This study was designed to assess cutaneous wound healing potential of hexane extract of Curcuma purpurascens rhizomes (HECP). Twenty-four rats were divided into 4 groups: 1. Negative, 2. Low dose, 3. High dose and 4. Treatment, with 6 rats in each group. Full-thickness incisions with a diameter of 2 cm were made on the back of each rat. Rats were topically treated two times a day for 15 days. Group 1-4 were treated with sterile distilled water, 5% and 10% of extract and intrasite gel, respectively. Masson's trichrome and hematoxylin staining techniques are employed for histological analysis revealed strong wound healing potential closer to that of conventional drug intrasite gel. HECP significantly decreased wound area and an increase in hydroxyproline, cellular proliferation, the number of blood vessels and the level of collagen synthesis was observed. Thus, it could be concluded that HECP possesses strong wound healing potential.

Keywords: Curcuma purpurascens, wound healing, histopathology, hematoxylin staining

Procedia PDF Downloads 438
10947 Electronic Properties Study of Ni/MgO Nanoparticles by X-Ray Photoemission Spectroscopy (XPS)

Authors: Ouafek Nora, Keghouche Nassira, Dehdouh Heider, Untidt Carlos

Abstract:

A lot of knowledge has been accumulated on the metal clusters supported on oxide surfaces because of their multiple applications in microelectronics, heterogeneous catalysis, and magnetic devices. In this work, the surface state of Ni / MgO has been studied by XPS (X-ray Photoemission Spectroscopy). The samples were prepared by impregnation with ion exchange Ni²⁺ / MgO, followed by either a thermal treatment in air (T = 100 -350 ° C) or a gamma irradiation (dose 100 kGy, 25 kGy dose rate h -1). The obtained samples are named after impregnation NMI, NMR after irradiation, and finally NMC(T) after calcination at the temperature T (T = 100-600 °C). A structural study by XRD and HRTEM reveals the presence of nanoscaled Ni-Mg intermetallic phases (Mg₂Ni, MgNi₂, and Mg₆Ni) and magnesium hydroxide. Mg(OH)₂ in nanometric range (2- 4 nm). Mg-Ni compounds are of great interest in energy fields (hydrogen storage…). XPS spectra show two Ni2p peaks at energies of about 856.1 and 861.9 eV, indicating that the nickel is primarily in an oxidized state on the surface. The shift of the main peak relative to the pure NiO (856.1 instead of 854.0 eV) suggests that in addition to oxygen, nickel is engaged in another link with magnesium. This is in agreement with the O1s spectra which present an overlap of peaks corresponds to NiO and MgO, at a calcination temperature T ≤ 300 °C.

Keywords: XPS, XRD, nanoparticules, Ni-MgO

Procedia PDF Downloads 210
10946 How Hormesis Impacts Practice of Ecological Risk Assessment and Food Safety Assessment

Authors: Xiaoxian Zhang

Abstract:

Guidelines of ecological risk assessment (ERA) and food safety assessment (FSA) used nowadays, based on an S-shaped threshold dose-response curve (SDR), fail to consider hormesis, a reproducible biphasic dose-response model represented as a J-shaped or an inverted U-shaped curve, that occurs in the real-life environment across multitudinous compounds on cells, organisms, populations, and even the ecosystem. Specifically, in SDR-based ERA and FSA practice, predicted no effect concentration (PNEC) is calculated separately for individual substances from no observed effect concentration (NOEC, usually equivalent to 10% effect concentration (EC10) of a contaminant or food condiment) over an assessment coefficient that is bigger than 1. Experienced researchers doubted that hormesis in the real-life environment might lead to a waste of limited human and material resources in ERA and FSA practice, but related data are scarce. In this study, hormetic effects on bioluminescence of Aliivibrio fischeri (A. f) induced by sulfachloropyridazine (SCP) under 40 conditions to simulate the real-life scenario were investigated, and hormetic effects on growth of human MCF-7 cells caused by brown sugar and mascavado sugar were found likewise. After comparison of related parameters, it has for the first time been proved that there is a 50% probability for safe concentration (SC) of contaminants and food condiments to fall within the hormetic-stimulatory range (HSR) or left to HSR, revealing the unreliability of traditional parameters in standardized (eco)toxicological studies, and supporting qualitatively and quantitatively the over-strictness of ERA and FSA resulted from misuse of SDR. This study provides a novel perspective for ERA and FSA practitioners that hormesis should dominate and conditions where SDR works should only be singled out on a specific basis.

Keywords: dose-response relationship, food safety, ecological risk assessment, hormesis

Procedia PDF Downloads 146
10945 The Effect of Withania Somnifera in Alloxan Induced Diabetic Rabbits

Authors: Farah Ali, Tehreem Fayyaz, Musadiq Idris

Abstract:

The present work was undertaken to investigate effects of various extracts of withania somnifera for anti-diabetic activity in alloxan induced diabetic rabbits. Rabbits were acclimatized for a week to standard laboratory temperature. Animals were fed according to a strict schedule (8 am, 3 pm and 10 pm) with green fodder (Medicago sativa) and tap water ad libitum. Animals were divided into nine groups of six rabbits each in a random manner. Body weights and physical activities of all rabbits were recorded before start of experiments. The animals of group 1 and 2 were given lactose (250 mg/kg, p.o) and Withania somniferaroot powder (100 mg/kg, p.o) respectively daily from day 1-20. Animals of group 3 were given alloxan (100 mg/kg, i.v) as a single dose on day 1. Powdered root of Withania somnifera in the doses of 100, 150, 200 mg/kg and its aqueous and ethanol extracts (equivalent to 200 mg/kg of crude drug) were given to the treated animals (groups 4-8), respectively by oral route for three weeks (day 1-20o.d), along with alloxan (100 mg/kg, i.v) as a single dose on day 1. Group 9 was treated with metformin (200 mg/kg, p.o) daily from day 1-20, along with a single dose of alloxan (100 mg/ kg, i.v) on day 1. Fasting serum glucose concentration in groups 3-9 was increased significantly (p<0.05) on day 3, with a maximum increase (215.3 mg/dl) in animals of toxic control (TC) group (3) on day 21 of the experiment as compared to normal control (NC) group (1). Effects of different doses (100, 150, 200 mg/kg, p.o) of W. somnifera root powder (WS) decreased the fasting serum glucose concentration as compared to toxic control group, with a maximum decrease (88.3 mg/dl) in group 2 (treated control) on day 21 of the experiment. Metformin (200 mg/kg, p.o) (reference control), aqueous extract (AWS) and ethanol extract (EWS) of W. somnifera (equivalent to 100 mg/kg W.somnifera root, p.o) antagonized the effects of alloxan as compared to toxic control group. These results indicate that the W. somnifera possess significant anti–diabetic activity.

Keywords: diabetes, serum, glucose, blood, sugar, rabbits

Procedia PDF Downloads 522
10944 Development of Advanced Virtual Radiation Detection and Measurement Laboratory (AVR-DML) for Nuclear Science and Engineering Students

Authors: Lily Ranjbar, Haori Yang

Abstract:

Online education has been around for several decades, but the importance of online education became evident after the COVID-19 pandemic. Eventhough the online delivery approach works well for knowledge building through delivering content and oversight processes, it has limitations in developing hands-on laboratory skills, especially in the STEM field. During the pandemic, many education institutions faced numerous challenges in delivering lab-based courses, especially in the STEM field. Also, many students worldwide were unable to practice working with lab equipment due to social distancing or the significant cost of highly specialized equipment. The laboratory plays a crucial role in nuclear science and engineering education. It can engage students and improve their learning outcomes. In addition, online education and virtual labs have gained substantial popularity in engineering and science education. Therefore, developing virtual labs is vital for institutions to deliver high-class education to their students, including their online students. The School of Nuclear Science and Engineering (NSE) at Oregon State University, in partnership with SpectralLabs company, has developed an Advanced Virtual Radiation Detection and Measurement Lab (AVR-DML) to offer a fully online Master of Health Physics program. It was essential for us to use a system that could simulate nuclear modules that accurately replicate the underlying physics, the nature of radiation and radiation transport, and the mechanics of the instrumentations used in the real radiation detection lab. It was all accomplished using a Realistic, Adaptive, Interactive Learning System (RAILS). RAILS is a comprehensive software simulation-based learning system for use in training. It is comprised of a web-based learning management system that is located on a central server, as well as a 3D-simulation package that is downloaded locally to user machines. Users will find that the graphics, animations, and sounds in RAILS create a realistic, immersive environment to practice detecting different radiation sources. These features allow students to coexist, interact and engage with a real STEM lab in all its dimensions. It enables them to feel like they are in a real lab environment and to see the same system they would in a lab. Unique interactive interfaces were designed and developed by integrating all the tools and equipment needed to run each lab. These interfaces provide students full functionality for data collection, changing the experimental setup, and live data collection with real-time updates for each experiment. Students can manually do all experimental setups and parameter changes in this lab. Experimental results can then be tracked and analyzed in an oscilloscope, a multi-channel analyzer, or a single-channel analyzer (SCA). The advanced virtual radiation detection and measurement laboratory developed in this study enabled the NSE school to offer a fully online MHP program. This flexibility of course modality helped us to attract more non-traditional students, including international students. It is a valuable educational tool as students can walk around the virtual lab, make mistakes, and learn from them. They have an unlimited amount of time to repeat and engage in experiments. This lab will also help us speed up training in nuclear science and engineering.

Keywords: advanced radiation detection and measurement, virtual laboratory, realistic adaptive interactive learning system (rails), online education in stem fields, student engagement, stem online education, stem laboratory, online engineering education

Procedia PDF Downloads 90
10943 Acute Antihyperglycemic Activity of a Selected Medicinal Plant Extract Mixture in Streptozotocin Induced Diabetic Rats

Authors: D. S. N. K. Liyanagamage, V. Karunaratne, A. P. Attanayake, S. Jayasinghe

Abstract:

Diabetes mellitus is an ever increasing global health problem which causes disability and untimely death. Current treatments using synthetic drugs have caused numerous adverse effects as well as complications, leading research efforts in search of safe and effective alternative treatments for diabetes mellitus. Even though there are traditional Ayurvedic remedies which are effective, due to a lack of scientific exploration, they have not been proven to be beneficial for common use. Hence the aim of this study is to evaluate the traditional remedy made of mixture of plant components, namely leaves of Murraya koenigii L. Spreng (Rutaceae), cloves of Allium sativum L. (Amaryllidaceae), fruits of Garcinia queasita Pierre (Clusiaceae) and seeds of Piper nigrum L. (Piperaceae) used for the treatment of diabetes. We report herein the preliminary results for the in vivo study of the anti-hyperglycaemic activity of the extracts of the above plant mixture in Wistar rats. A mixture made out of equal weights (100 g) of the above mentioned medicinal plant parts were extracted into cold water, hot water (3 h reflux) and water: acetone mixture (1:1) separately. Male wistar rats were divided into six groups that received different treatments. Diabetes mellitus was induced by intraperitoneal administration of streptozotocin at a dose of 70 mg/ kg in male Wistar rats in group two, three, four, five and six. Group one (N=6) served as the healthy untreated and group two (N=6) served as diabetic untreated control and both groups received distilled water. Cold water, hot water, and water: acetone plant extracts were orally administered in diabetic rats in groups three, four and five, respectively at different doses of 0.5 g/kg (n=6), 1.0 g/kg(n=6) and 1.5 g/kg(n=6) for each group. Glibenclamide (0.5 mg/kg) was administered to diabetic rats in group six (N=6) served as the positive control. The acute anti-hyperglycemic effect was evaluated over a four hour period using the total area under the curve (TAUC) method. The results of the test group of rats were compared with the diabetic untreated control. The TAUC of healthy and diabetic rats were 23.16 ±2.5 mmol/L.h and 58.31±3.0 mmol/L.h, respectively. A significant dose dependent improvement in acute anti-hyperglycaemic activity was observed in water: acetone extract (25%), hot water extract ( 20 %), and cold water extract (15 %) compared to the diabetic untreated control rats in terms of glucose tolerance (P < 0.05). Therefore, the results suggest that the plant mixture has a potent antihyperglycemic effect and thus validating their used in Ayurvedic medicine for the management of diabetes mellitus. Future studies will be focused on the determination of the long term in vivo anti-diabetic mechanisms and isolation of bioactive compounds responsible for the anti-diabetic activity.

Keywords: acute antihyperglycemic activity, herbal mixture, oral glucose tolerance test, Sri Lankan medicinal plant extracts

Procedia PDF Downloads 179
10942 Photocapacitor Integrating Solar Energy Conversion and Energy Storage

Authors: Jihuai Wu, Zeyu Song, Zhang Lan, Liuxue Sun

Abstract:

Solar energy is clean, open, and infinite, but solar radiation on the earth is fluctuating, intermittent, and unstable. So, the sustainable utilization of solar energy requires a combination of high-efficient energy conversion and low-loss energy storage technologies. Hence, a photo capacitor integrated with photo-electrical conversion and electric-chemical storage functions in single device is a cost-effective, volume-effective and functional-effective optimal choice. However, owing to the multiple components, multi-dimensional structure and multiple functions in one device, especially the mismatch of the functional modules, the overall conversion and storage efficiency of the photocapacitors is less than 13%, which seriously limits the development of the integrated system of solar conversion and energy storage. To this end, two typical photocapacitors were studied. A three-terminal photocapacitor was integrated by using perovskite solar cell as solar conversion module and symmetrical supercapacitor as energy storage module. A function portfolio management concept was proposed the relationship among various efficiencies during photovoltaic conversion and energy storage process were clarified. By harmonizing the energy matching between conversion and storage modules and seeking the maximum power points coincide and the maximum efficiency points synchronize, the overall efficiency of the photocapacitor surpassed 18 %, and Joule efficiency was closed to 90%. A voltage adjustable hybrid supercapacitor (VAHSC) was designed as energy storage module, and two Si wafers in series as solar conversion module, a three-terminal photocapacitor was fabricated. The VAHSC effectively harmonizes the energy harvest and storage modules, resulting in the current, voltage, power, and energy match between both modules. The optimal photocapacitor achieved an overall efficiency of 15.49% and Joule efficiency of 86.01%, along with excellent charge/discharge cycle stability. In addition, the Joule efficiency (ηJoule) was defined as the energy ratio of discharge/charge of the devices for the first time.

Keywords: joule efficiency, perovskite solar cell, photocapacitor, silicon solar cell, supercapacitor

Procedia PDF Downloads 86
10941 Biosynthesis of a Nanoparticle-Antibody Phthalocyanine Photosensitizer for Use in Targeted Photodynamic Therapy of Cervical Cancer

Authors: Elvin P. Chizenga, Heidi Abrahamse

Abstract:

Cancer cell resistance to therapy is the main cause of treatment failures and the poor prognosis of cancer convalescence. The progression of cervical cancer to other parts of the genitourinary system and the reported recurrence rates are overwhelming. Current treatments, including surgery, chemo and radiation have been inefficient in eradicating the tumor cells. These treatments are also associated with poor prognosis and reduced quality of life, including fertility loss. This has inspired the need for the development of new treatment modalities to eradicate cervical cancer successfully. Photodynamic Therapy (PDT) is a modern treatment modality that induces cell death by photochemical interactions of light and a photosensitizer, which in the presence of molecular oxygen, yields a set of chemical reactions that generate Reactive Oxygen Species (ROS) and other free radical species causing cell damage. Enhancing PDT using modified drug delivery can increase the concentration of the photosensitizer in the tumor cells, and this has the potential to maximize its therapeutic efficacy. In cervical cancer, all infected cells constitutively express genes of the E6 and E7 HPV viral oncoproteins, resulting in high concentrations of E6 and E7 in the cytoplasm. This provides an opportunity for active targeting of cervical cancer cells using immune-mediated drug delivery to maximize therapeutic efficacy. The use of nanoparticles in PDT has also proven effective in enhancing therapeutic efficacy. Gold nanoparticles (AuNps) in particular, are explored for their use in biomedicine due to their biocompatibility, low toxicity, and enhancement of drug uptake by tumor cells. In this present study, a biomolecule comprising of AuNPs, anti-E6 monoclonal antibodies, and Aluminium Phthalocyanine photosensitizer was synthesized for use in targeted PDT of cervical cancer. The AuNp-Anti-E6-Sulfonated Aluminium Phthalocyanine mix (AlPcSmix) photosensitizing biomolecule was synthesized by coupling AuNps and anti-E6 monoclonal antibodies to the AlPcSmix via Polyethylene Glycol (PEG) chemical links. The final product was characterized using Transmission Electron Microscope (TEM), Zeta Potential, Uv-Vis Spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), and X-ray diffraction (XRD), to confirm its chemical structure and functionality. To observe its therapeutic role in treating cervical cancer, cervical cancer cells, HeLa cells were seeded in 3.4 cm² diameter culture dishes at a concentration of 5x10⁵ cells/ml, in vitro. The cells were treated with varying concentrations of the photosensitizing biomolecule and irradiated using a 673.2 nm wavelength of laser light. Post irradiation cellular responses were performed to observe changes in morphology, viability, proliferation, cytotoxicity, and cell death pathways induced. Dose-Dependent response of the cells to treatment was demonstrated as significant morphologic changes, increased cytotoxicity, and decreased cell viability and proliferation This study presented a synthetic biomolecule for targeted PDT of cervical cancer. The study suggested that PDT using this AuNp- Anti-E6- AlPcSmix photosensitizing biomolecule is a very effective treatment method for the eradication of cervical cancer cells, in vitro. Further studies in vivo need to be conducted to support the use of this biomolecule in treating cervical cancer in clinical settings.

Keywords: anti-E6 monoclonal antibody, cervical cancer, gold nanoparticles, photodynamic therapy

Procedia PDF Downloads 125
10940 Nephroprotective Effect of Aqueous Extract of Plectranthus amboinicus (Roxb.) Leaves in Adriamycin Induced Acute Renal Failure in Wistar Rats: A Biochemical and Histopathological Assessment

Authors: Ampe Mohottige Sachinthi Sandaruwani Amarasiri, Anoja Priyadarshani Attanayake, Kamani Ayoma Perera Wijewardana Jayatilaka, Lakmini Kumari Boralugoda Mudduwa

Abstract:

The search for alternative pharmacological therapies based on natural extracts for renal failure has become an urgent need, due to paucity of effective pharmacotherapy. The current study was undertaken to evaluate the acute nephroprotective effect of aqueous leaf extract of Plectranthus amboinicus (Roxb.) (Family: Lamiaceae), a medicinal plant used in traditional Ayurvedic medicine for the management of renal diseases in Sri Lanka. The study was performed in adriamycin (ADR) induced nephrotoxic in Wistar rats. Wistar rats were randomly divided into four groups each with six rats. A single dose of ADR (20 mg/kg body wt., ip) was used for the induction of nephrotoxicity in all groups of rats except group one. The treatments were started 24 hours after induction of nephrotoxicity and continued for three days. Group one and two served as healthy and nephrotoxic control rats and were administered equivalent volumes of normal saline (0.9% NaCl) orally. Group three and four nephrotoxic rats were administered the lyophilized powder of the aqueous extract of P. amboinicus (400 mg/ kg body wt.; equivalent human therapeutic dose) and the standard drug, fosinopril sodium (0.09 mg/ kg body wt.) respectively. Urine and blood samples were collected from rats in each group at the end of the period of intervention for the estimation of selected renal parameters. H and E stained sections of the kidney tissues were examined for histopathological changes. Rats treated with the plant extract showed significant improvement in biochemical parameters and histopathological changes compared to ADR induced nephrotoxic group. The elevation of serum concentrations of creatinine and β2-microglobulin were decreased by 38%, and 66% in plant extract treated nephrotoxic rats respectively (p < 0.05). In addition, serum concentrations of total protein and albumin were significantly increased by 25% and 14% in rats treated with P. amboinicus respectively (p < 0.05). The results of β2 –microglobulin and serum total protein demonstrated a significant reduction in the elevated values in rats administered with the plant extract (400 mg/kg) compared to that of fosinopril (0.09 mg/kg). Urinary protein loss in 24hr urine samples was significantly decreased in rats treated with both fosinopril (86%) and P. ambonicus (56%) at the end of the intervention (p < 0.01). Accordingly, an attenuation of morphological destruction was observed in the H and E stained sections of the kidney with the treatments of plant extract and fosinopril. The results of the present study revealed that the aqueous leaf extract of P. amboinicus possesses significant nephroprotective activity at the equivalent therapeutic dose of 400 mg/ kg against adriamycin induced acute nephrotoxicity.

Keywords: biochemical assessment, histopathological assessment, nephroprotective activity, Plectranthus amboinicus

Procedia PDF Downloads 146
10939 Photocatalytic Degradation of Acid Dye Over Ag, Loaded ZnO Under UV/Solar Light

Authors: Farida Kaouah, Wassila Hachi, Lamia Brahmi, Chahida Ousselah, Salim Boumaza, Mohamed Trari

Abstract:

The feasibility of using solar irradiation instead of UV light in photocatalysis is a promising approach for water treatment. In this study, photocatalytic degradation of a widely used textile dye, Acid Blue 25 (AB25), with noble metal loaded ZnO photocatalyst (Ag/ZnO), was investigated in aqueous suspension under solar light. The results showed that the deposition of Ag as a noble metal onto the ZnO surface, improved the photodegradation of AB25. . The effect of different parameters such as catalyst dose, initial dye concentration, and contact time was optimized and the optimal degradation of AB25 (97%) was achieved for initial AB25 concentration of 24 mg L−1 an catalyst dose of 1 g L−1 at natural pH (5.42) after 180 min. The kinetic studies were achieved and revealed that the photocatalytic degradation process obeyed to Langmuir–Hinshelwood model and followed a pseudo-first order rate expression. This work envisages the great potential that sunlight photocatalysis has in the degradation of dyes from wastewater

Keywords: acid dye, photocatalytic degradation, sunlight, zinc oxide, noble metal, Langmuir–Hinshelwood model

Procedia PDF Downloads 111
10938 Eco-Ways to Reduce Environmental Impacts of Flame Retardant Textiles at the End of Life

Authors: Sohail Yasin, Massimo Curti, Nemeshwaree Behary, Giorgio Rovero

Abstract:

It is well-known that the presence of discarded textile products in municipal landfills poses environmental problems due to leaching of chemical products from the textile to the environment. Incineration of such textiles is considered to be an efficient way to produce energy and reduce environmental impacts of textile materials at their end-of life stage. However, the presence of flame retardant products on textiles would decrease the energy yield and emit toxic gases during incineration stage. While some non-durable flame retardants can be removed by wet treatments (e.g. washing), these substances pollute water and pose concerns towards environmental health. Our study shows that infrared radiation can be used efficiently to degrade flame retardant products on the textiles. This method is finalized to minimize the decrease in energy yield during the incineration or gasification processes of flame retardant cotton fabrics.

Keywords: degradation, flame retardant, infrared radiation, cotton, incineration

Procedia PDF Downloads 366
10937 Disintegration of Deuterons by Photons Reaction Model for GEANT4 with Dibaryon Formalism

Authors: Jae Won Shin, Chang Ho Hyun

Abstract:

A disintegration of deuterons by photons (dγ → np) reaction model for GEANT4 is developed in this work. An effective field theory with dibaryon fields Introducing a dibaryon field, we can take into account the effective range contribution to the propagator up to infinite order, and it consequently makes the convergence of the theory better than the pionless effective field theory without dibaryon fields. We develop a hadronic model for GEANT4 which is specialized for the disintegration of the deuteron by photons, dγ → np. For the description of two-nucleon interactions, we employ an effective field theory so called pionless theory with dibaryon fields (dEFT). In spite of its simplicity, the theory has proven very effective and useful in the applications to various two-nucleon systems and processes at low energies. We apply the new model of GEANT4 (G4dEFT) to the calculation of total and differential cross sections in dγ → np, and obtain good agreements to experimental data for a wide range of incoming photon energies.

Keywords: dγ → np, dibaryon fields, effective field theory, GEANT4

Procedia PDF Downloads 378
10936 Efects of Data Corelation in a Sparse-View Compresive Sensing Based Image Reconstruction

Authors: Sajid Abas, Jon Pyo Hong, Jung-Ryun Le, Seungryong Cho

Abstract:

Computed tomography and laminography are heavily investigated in a compressive sensing based image reconstruction framework to reduce the dose to the patients as well as to the radiosensitive devices such as multilayer microelectronic circuit boards. Nowadays researchers are actively working on optimizing the compressive sensing based iterative image reconstruction algorithm to obtain better quality images. However, the effects of the sampled data’s properties on reconstructed the image’s quality, particularly in an insufficient sampled data conditions have not been explored in computed laminography. In this paper, we investigated the effects of two data properties i.e. sampling density and data incoherence on the reconstructed image obtained by conventional computed laminography and a recently proposed method called spherical sinusoidal scanning scheme. We have found that in a compressive sensing based image reconstruction framework, the image quality mainly depends upon the data incoherence when the data is uniformly sampled.

Keywords: computed tomography, computed laminography, compressive sending, low-dose

Procedia PDF Downloads 464
10935 Effect of Mutagenic Compounds on the Yield of Cultivated Pleurotus Pulmonarius

Authors: Simbiat O. Ayilara-Akande, Soji Fakoya

Abstract:

Quality and yield are always the target of farmers, including mushroom farmers. This study investigated how better Pleurotus pulmonarius can be obtained with the induction of mutagens into the process of spawn production in order to improve both the quality and the yield. Mushroom spawns were treated with ultraviolet radiation (UV) and hydroxylamine hydrochloride (HA) at different exposure times (2, 6, and 10 minutes) and different concentrations (10, 30, and 50Mm), respectively. The treated spawns were used to cultivate mushrooms on five substrates in the family of Gramineae viz: sorghum, rice, bamboo, sugarcane, and corn straws. Matured fruit bodies were harvested after a few weeks, and their parameters were taken and recorded. This study reveals a significant yield increase in mushroom grown on all the substrates when treated with ultraviolet radiation (UV) for 10 minutes and 6 minutes, respectively. Mushroom spawns treated with hydroxylamine hydrochloride showed a negative correlation in the yield with an increased in mutagen concentration. Hence, Ultraviolet light could be employed to enhance the quality and yield of mushroom production.

Keywords: mushroom, protein, mutagens, yield

Procedia PDF Downloads 148
10934 Triangular Libration Points in the R3bp under Combined Effects of Oblateness, Radiation and Power-Law Profile

Authors: Babatunde James Falaye, Shi Hai Dong, Kayode John Oyewumi

Abstract:

We study the e ffects of oblateness up to J4 of the primaries and power-law density pro file (PDP) on the linear stability of libration location of an in nitesimal mass within the framework of restricted three body problem (R3BP), by using a more realistic model in which a disc with PDP is rotating around the common center of the system mass with perturbed mean motion. The existence and stability of triangular equilibrium points have been explored. It has been shown that triangular equilibrium points are stable for 0 < μ < μc and unstable for μc ≤ μ ≤ 1/2, where c denotes the critical mass parameter. We find that, the oblateness up to J2 of the primaries and the radiation reduces the stability range while the oblateness up to J4 of the primaries increases the size of stability both in the context where PDP is considered and ignored. The PDP has an e ect of about ≈0:01 reduction on the application of c to Earth-Moon and Jupiter-Moons systems. We find that the comprehensive eff ects of the perturbations have a stabilizing proclivity. However, the oblateness up to J2 of the primaries and the radiation of the primaries have tendency for instability, while coecients up to J4 of the primaries have stability predisposition. In the limiting case c = 0, and also by setting appropriate parameter(s) to zero, our results are in excellent agreement with the ones obtained previously. Libration points play a very important role in space mission and as a consequence, our results have a practical application in space dynamics and related areas. The model may be applied to study the navigation and station-keeping operations of spacecraft (in nitesimal mass) around the Jupiter (more massive) -Callisto (less massive) system, where PDP accounts for the circumsolar ring of asteroidal dust, which has a cloud of dust permanently in its wake.

Keywords: libration points, oblateness, power-law density profile, restricted three-body problem

Procedia PDF Downloads 326
10933 High Efficacy of Combined Therapy with Microbicide BASANT and Triple Combination of Selected Probiotics for Treatment of Vaginosis and Restoration of Vaginal Health

Authors: Nishu Atrey, Priyanka Singh, G. P. Talwar, Jagdish Gupta, Alka Kriplani, Rohini Sehgal, Indrani Ganguli, Soni Sinha

Abstract:

Background: Vaginosis is a widely prevalent syndrome in India and elsewhere. Recurrence is frequent in women treated with antibiotics, whose vagina pH remains above 5.0 indicative of the loss of resident lactobacilli. The objective of the present trial was to determine whether a Polyherbal microbicide BASANT can regress Vaginosis. Another objective was to determine whether the three selected strains of Probiotics endowed with making high amounts of lactic acid can colonise and restore the pH of the vagina to the acidic healthy range. Materials and Procedure: BASANT, was employed in powder form in veg (cellulose) capsules. TRF#36 strain of Lactobacillus fermentum, TRF#8 strain of L.gasseri, and TRF#30 strain of L.salivarius (combination termed as Pro-vag-Health) were employed at 3x109 bacilli lyophilized, packaged in capsules. The trials were conducted in women suffering from vaginosis with vaginal pH above 5.0. Women were given intravaginally either BASANT, Pro-vag-Health or a combination of the two intravaginally for seven days and thereafter once weekly as a maintenance dose. Results: BASANT cleared vaginosis in 14/20 women and Pro-vag-Health in 13/20 women. Interestingly, the combination of BASANT plus Pro-vag-Health was effective in 19/20 women, in contrast to Placebo capsules effective only in 1/20 women. Interpretation and Conclusion: The combination of BASANT and Pro-veg-Health Probiotics taken together intravaginally for seven days relieves 19 out of 20 women from vaginosis to restore acidic pH and healthy vagina. Extension of trial with this combination in larger number is indicated.

Keywords: microbicide, probiotics, vaginal pH, vaginosis

Procedia PDF Downloads 308
10932 Toxicity, Analgesic, and Anti-Pyretic Activities of Methanolic Extract from Hyoscyamus albus’ Leaves in Albinos Rats

Authors: Yahia Massinissa, Afaf Benhouda, Mouloud Yahia

Abstract:

Objective: The aim of this study was to investigate the toxicity; analgesic and anti-pyretic properties of standardized HA methanolic extract (HAMeOH) in vivo. Methods: The acute toxicity study was performed on rats while adopting the OECD-420 Guidelines (fixed dose procedure). Assessment of analgesic activity was performed in rats with two analgesic models. One was acetic acid induced writhing response and the other formalin-induced paw licking. The anti-pyretic effect was tested by Brewer’s yeast induced fever in rats. Results: For the acute toxicity test, the higher dose administration of 2000 mg/kg bw. of H.albus did not produce any toxic signs or deaths in rats. There were no significant differences (p>0.05) in the body and organ weights between control and treated groups. The (LD50) of 'H. albus' was higher than 2000 g/kg bw. In subacute toxicity study, no mortality and toxic signs were observed with the doses of 100 and 200 mg/kg bw. of extracts of for 28 consecutive days. These analgesic experimental results indicated that HAMeOH (100 mg/kg and 200 mg/kg) decreased the acetic acid-induced writhing responses and HAMeOH (100 mg/kg and 200 mg/kg) decreased the licking time in the second phase of the formalin test. Moreover, in the model of yeast-induced elevation of the body temperature HAMeOH showed dose-dependent lowering of the body temperature up to 3h at both the doses these results obtained, were comparable to that of paracetamol. Conclusion: The present findings indicate that the leaves of Hyoscyamus albus L. possess potent analgesic and antipyretic activity.

Keywords: Hyoscyamus albus, Umbilicus rupestris, secondary metabolites, NMR with protons, pharmacobiologic activities, methanolic extract

Procedia PDF Downloads 423