Search results for: bilinear thickness
854 Effect of Manganese Doping Percentage on Optical Band Gap and Conductivity of Copper Sulphide Nano-Films Prepared by Electrodeposition Method
Authors: P. C. Okafor, A. J. Ekpunobi
Abstract:
Mn doped copper sulphide (CuS:Mn) nano-films were deposited on indiums coated tin oxide (ITO) glass substrates using electrodeposition method. Electrodeposition was carried out using bath of PH = 3 at room temperature. Other depositions parameters such as deposition time (DT) are kept constant while Mn doping was varied from 3% to 23%. Absorption spectra of CuS:Mn films was obtained by using JENWAY 6405 UV-VIS -spectrophotometer. Optical band gap (E_g ), optical conductivity (σo) and electrical conductivity (σe) of CuS:Mn films were determined using absorption spectra and appropriate formula. The effect of Mn doping % on these properties were investigated. Results show that film thickness (t) for the 13.27 nm to 18.49 nm; absorption coefficient (α) from 0.90 x 1011 to 1.50 x 1011 optical band gap from 2.29eV to 2.35 eV; optical conductivity from 1.70 x 1013 and electrical conductivity from 160 millions to 154 millions. Possible applications of such films for solar cells fabrication and optoelectronic devices applications were also discussed.Keywords: copper sulphide (CuS), Manganese (Mn) doping, electrodeposition, optical band gap, optical conductivity, electrical conductivity
Procedia PDF Downloads 723853 The High Temperature Damage of DV–2 Turbine Blade Made from Ni–Base Superalloy
Authors: Juraj Belan, Lenka Hurtalová, Eva Tillová, Alan Vaško, Milan Uhríčik
Abstract:
High-pressure turbine (HPT) blades of DV–2 jet engines are made from Ni–base superalloy, a former Soviet Union production, specified as ŽS6K. For improving its high-temperature resistance are blades covered with Al–Si diffusion layer. A regular operation temperature of HPT blades vary from 705°C to 750°C depending on jet engine regime. An over-crossing working temperature range causes degradation of protective alitize layer as well as base material–gamma matrix and gamma prime particles what decreases turbine blade lifetime. High-temperature degradation has mainly diffusion mechanism and causes coarsening of strengthening phase gamma prime and protective alitize layer thickness growing. All changes have a significant influence on high-temperature properties of base material.Keywords: alitize layer, gamma prime phase, high-temperature degradation, Ni–base superalloy ŽS6K, turbine blade
Procedia PDF Downloads 535852 Wicking and Evaporation of Liquids in Knitted Fabrics: Analytic Solution of Capillary Rise Restrained by Gravity and Evaporation
Authors: N. S. Achour, M. Hamdaoui, S. Ben Nasrallah
Abstract:
Wicking and evaporation of water in porous knitted fabrics is investigated by combining experimental and analytical approaches: The standard wicking model from Lucas and Washburn is enhanced to account for evaporation and gravity effects. The goal is to model the effect of gravity and evaporation on wicking using simple analytical expressions and investigate the influence of fabrics geometrical parameters, such as porosity and thickness on evaporation impact on maximum reachable height values. The results show that fabric properties have a significant influence on evaporation effect. In this paper, an experimental study of determining water kinetics from different knitted fabrics were gravimetrically investigated permitting the measure of the mass and the height of liquid rising in fabrics in various atmospheric conditions. From these measurements, characteristic pore parameters (capillary radius and permeability) can be determined.Keywords: evaporation, experimental study, geometrical parameters, model, porous knitted fabrics, wicking
Procedia PDF Downloads 582851 Iron(III)-Tosylate Doped PEDOT and PEG: A Nanoscale Conductivity Study of an Electrochemical System with Biosensing Applications
Authors: Giulio Rosati, Luciano Sappia, Rossana Madrid, Noemi Rozlòsnik
Abstract:
The addition of PEG of different molecular weights has important effects on the physical, electrical and electrochemical properties of iron(III)-tosylate doped PEDOT. This particular polymer can be easily spin coated over plastic discs, optimizing thickness and uniformity of the PEDOT-PEG films. The conductivity and morphological analysis of the hybrid PEDOT-PEG polymer by 4-point probe (4PP), 12-point probe (12PP), and conductive AFM (C-AFM) show strong effects of the PEG doping. Moreover, the conductive films kinetics at the nanoscale, in response to different bias voltages, change radically depending on the PEG molecular weight. The hybrid conductive films show also interesting electrochemical properties, making the PEDOT PEG doping appealing for biosensing applications both for EIS-based and amperometric affinity/catalytic biosensors.Keywords: atomic force microscopy, biosensors, four-point probe, nano-films, PEDOT
Procedia PDF Downloads 345850 Experimental Investigation and Hardness Analysis of Chromoly Steel Multipass Welds Using GMAW
Authors: S. Ramesh, A. S. Sasiraaju, K. Sidhaarth, N. Sudhan Rajkumar, V. Manivel Muralidaran
Abstract:
This work presents the result of investigations aimed at determining the hardness of the welded Chromoly (A 4130) steel plate of 2” thickness. Multi pass welding for the thick sections was carried out and analyzed for the Chromoly alloy steel plates. The study of hardness at the weld metal reveals that there is the presence of different micro structure products which yields diverse properties. The welding carried out using GMAW with ER70s-2 electrode. Single V groove design was selected for the butt joint configuration. The presence of hydrogen has been suppressed by selecting low hydrogen electrode. Preheating of the plate prior to welding reduces the cooling rate which also affects the weld metal microstructure. The shielding gas composition used in this analysis is 80% Ar-20% CO2. The experimental analysis gives the detailed study of the hardness of the material.Keywords: chromoly, gas metal arc weld (GMAW), hardness, multi pass weld, shielding gas composition
Procedia PDF Downloads 217849 A Finite Element Method Simulation for Rocket Motor Material Selection
Authors: T. Kritsana, P. Sawitri, P. Teeratas
Abstract:
This article aims to study the effect of pressure on rocket motor case by Finite Element Method simulation to select optimal material in rocket motor manufacturing process. In this study, cylindrical tubes with outside diameter of 122 mm and thickness of 3 mm are used for simulation. Defined rocket motor case materials are AISI4130, AISI1026, AISI1045, AL2024 and AL7075. Internal pressure used for the simulation is 22 MPa. The result from Finite Element Method shows that at a pressure of 22 MPa rocket motor case produced by AISI4130, AISI1045 and AL7075 can be used. A comparison of the result between AISI4130, AISI1045 and AL7075 shows that AISI4130 has minimum principal stress and confirm the results of Finite Element Method by the used of calculation method found that, the results from Finite Element Method has good reliability.Keywords: rocket motor case, finite element method, principal stress, simulation
Procedia PDF Downloads 450848 Design and Analysis of Shielding Magnetic Field for Active Space Radiation Protection
Authors: Chaoyan Huang, Hongxia Zheng
Abstract:
For deep space exploration and long duration interplanetary manned missions, protection of astronauts from cosmic radiation is an unavoidable problem. However, passive shielding can be little effective for protecting particles which energies are greater than 1GeV/nucleon. In this study, active magnetic protection method is adopted. Taking into account the structure and size of the end-cap, eight shielding magnetic field configurations are designed based on the Hoffman configuration. The shielding effect of shielding magnetic field structure, intensity B and thickness L on H particles with 2GeV energy is compared by test particle simulation. The result shows that the shielding effect is better with the linear type magnetic field structure in the end-cap region. Furthermore, two magnetic field configurations with better shielding effect are investigated through H and He galactic cosmic spectra. And the shielding effect of the linear type configuration adopted in the barrel and end-cap regions is best.Keywords: galactic cosmic rays, active protection, shielding magnetic field configuration, shielding effect
Procedia PDF Downloads 145847 Structural, Optical and Electrical Properties of Gd Doped ZnO Thin Films Prepared by a Sol-Gel Method
Authors: S. M. AL-Shomar, N. B. Ibrahim, Sahrim Hj. Ahmad
Abstract:
ZnO thin films with various Gd doping concentration (0, 0.01, 0.03 and 0.05 mol/L) have been synthesized by sol–gel method on quartz substrates at annealing temperature of 600 ºC. X-ray analysis reveals that ZnO(Gd) films have hexagonal wurtzite structure. No peaks that correspond to Gd metal clusters or gadolinium acetylacetonate are detected in the patterns. The position of the main peak (101) shifts to higher angles after doping. The surface morphologies studied using a field emission scanning electron microscope (FESEM) showed that the grain size and the films thickness reduced gradually with the increment of Gd concentration. The roughness of ZnO film investigated by an atomic force microscopy (AFM) showed that the films are smooth and high dense grain. The roughness of doped films decreased from 6.05 to 4.84 rms with the increment of dopant concentration.The optical measurements using a UV-Vis-NIR spectroscopy showed that the Gd doped ZnO thin films have high transmittance (above 80%) in the visible range and the optical band gap increase with doping concentration from 3.13 to 3.39 eV. The doped films show low electrical resistivity 2.6 × 10-3Ω.cm.at high doping concentration.Keywords: Gd doped ZnO, electric, optics, microstructure
Procedia PDF Downloads 474846 Quantitative Changes in Biofilms of a Seawater Tubular Heat Exchanger Subjected to Electromagnetic Fields Treatment
Authors: Sergio Garcia, Alfredo Trueba, Luis M. Vega, Ernesto Madariaga
Abstract:
Biofilms adhesion is one of the more important cost of industries plants on wide world, which use to water for cooling heat exchangers or are in contact with water. This study evaluated the effect of Electromagnetic Fields on biofilms in tubular heat exchangers using seawater cooling. The results showed an up to 40% reduction of the biofilm thickness compared to the untreated control tubes. The presence of organic matter was reduced by 75%, the inorganic mater was reduced by 87%, and 53% of the dissolved solids were eliminated. The biofilm thermal conductivity in the treated tube was reduced by 53% as compared to the control tube. The hardness in the effluent during the experimental period was decreased by 18% in the treated tubes compared with control tubes. Our results show that the electromagnetic fields treatment has a great potential in the process of removing biofilms in heat exchanger.Keywords: biofilm, heat exchanger, electromagnetic fields, seawater
Procedia PDF Downloads 191845 Fabrication and Properties of Al2O3/Si Quantum Well-Structured Silicon Solar Cells
Authors: Kwang-Ho Kim, Kwan-Hong Min, Pyungwoo Jang, Chisup Jung, Kyu Seomoon
Abstract:
By restricting the dimensions of silicon to less than Bohr radius of bulk crystalline silicon (∼5 nm), quantum confinement causes its effective bandgap to increase. Therefore, silicon quantum wells (QWs) using these quantum phenomena could be a good candidate to achieve high performance silicon solar cells. The Al2O3/Si QW structures were fabricated by using the successive deposition technique, as a quantum confinement device to increase the effective energy bandgap and passivation effect in Si surface for the 3rd generation solar cell applications. In Si/Al2O3 QWs, the thicknesses of Si layers and Al2O3 layers were varied between 1 to 5 nm, respectively. The roughness of deposited Si on Al2O3 was less than 4 Å in the thickness of 2 nm. By using the Al2O3/Si QW structures on Si surfaces, the lifetime measured by u-PCD technique increased as a result of passivated surface effects. The discussion about the other properties such as electrical and optical properties of the QWs structures as well as the fabricated solar cells will be presented in this paper.Keywords: Al2O3/Si quantum well, quantum confinement, solar cells, third generation, successive deposition technique
Procedia PDF Downloads 340844 Effect of Laser Input Energy on the Laser Joining of Polyethylene Terephthalate to Titanium
Authors: Y. J. Chen, T. M. Yue, Z. N. Guo
Abstract:
This paper reports the effects of laser energy on the characteristics of bubbles generated in the weld zone and the formation of new chemical bonds at the Polyethylene Terephthalate (PET)/Ti joint interface in laser joining of PET to Ti. The samples were produced by using different laser energies ranging from 1.5 J – 6 J in steps of 1.5 J, while all other joining parameters remained unchanged. The types of chemical bonding at the joint interface were analysed by the x-ray photoelectron spectroscopy (XPS) depth-profiling method. The results show that the characteristics of the bubbles and the thickness of the chemically bonded interface, which contains the laser generated bonds of Ti–C and Ti–O, increase markedly with increasing laser energy input. The tensile failure load of the joint depends on the combined effect of the amount and distribution of the bubbles formed and the chemical bonding intensity of the joint interface.Keywords: laser direct joining, Ti/PET interface, laser energy, XPS depth profiling, chemical bond, tensile failure load
Procedia PDF Downloads 212843 Behavior Study of Concrete-Filled Thin-Walled Square Hollow Steel Stub Columns
Authors: Mostefa Mimoune
Abstract:
Test results on concrete-filled steel tubular stub columns under axial compression are presented. The study was mainly focused on square hollow section SHS columns; 27 columns were tested. The main experimental parameters considered were the thickness of the tube, columns length and cross section sizes. Existing design codes and theoretical model were used to predict load-carrying capacities of composite section to compare the accuracy of the predictions by using the recommendations of DTR-BC (Algerian code), CSA (Canadian standard), AIJ, EC4, DBJ, AISC, BS and EC4. Experimental results indicate that the studied parameters have significant influence on both the compressive load capacity and the column failure mode. All codes used in the comparison, provide higher resistance compared to those of tests. Equation method has been suggested to evaluate the axial capacity of the composite section seem to be in agreement with tests.Keywords: axial loading, composite section, concrete-filled steel tubes, square hollow section
Procedia PDF Downloads 379842 Physical Characteristics of Cookies Enriched with Microencapsulated Cherry Pomace Extract
Authors: Jovana Petrović, Ivana Lončarević, Vesna Tumbas Šaponjac, Biljana Pajin, Danica Zarić
Abstract:
Pomace, a by-product from fruit processing industry is the potential source of valuable bioactive. Cookies are popular, ready to eat and low price foods; therefore, enrichment of these products is of great importance. In this work, bioactive compounds extracted from cherry pomace, encapsulated in soy and whey proteins, have been incorporated in cookies, replacing 10 (SP10 and WP10) and 15% of wheat flour (SP15 and WP15). Cookie geometry (diameter (D), thickness (T) and spread ratio (D/T)), cookie weight, cookie hardness and cookie surface colour were measured. Sensory characteristics are also examined. The results show that encapsulated cherry pomace bioactives have positively influenced the cookie mass. Diameter, redness (a* value) and cookie hardness increased. Sensory evaluation of cookies, revealed that up to 15% substitution of wheat flour with WP encapsulate produced acceptable cookies similar to the control (100% wheat flour) cookies.Keywords: cherry pomace, polyphenols, microencapsulation, cookies, physical characteristics
Procedia PDF Downloads 470841 Design and Fabrication of Micro-Bubble Oxygenator
Authors: Chiang-Ho Cheng, An-Shik Yang, Hong-Yih Cheng
Abstract:
This paper applies the MEMS technology to design and fabricate a micro-bubble generator by a piezoelectric actuator. Coupled with a nickel nozzle plate, an annular piezoelectric ceramic was utilized as the primary structure of the generator. In operations, the piezoelectric element deforms transversely under an electric field applied across the thickness of the generator. The surface of the nozzle plate can expand or contract because of the induction of radial strain, resulting in the whole structure to bend, and successively transport oxygen micro-bubbles into the blood flow for enhancing the oxygen content in blood. In the tests, a high magnification microscope and a high speed CCD camera were employed to photograph the time evolution of meniscus shape of gaseous bubbles dispensed from the micro-bubble generator for flow visualization. This investigation thus explored the bubble formation process including the influences of inlet gas pressure along with driving voltage and resonance frequency on the formed bubble extent.Keywords: micro-bubble, oxygenator, nozzle, piezoelectric
Procedia PDF Downloads 320840 Digital Image Correlation Based Mechanical Response Characterization of Thin-Walled Composite Cylindrical Shells
Authors: Sthanu Mahadev, Wen Chan, Melanie Lim
Abstract:
Anisotropy dominated continuous-fiber composite materials have garnered attention in numerous mechanical and aerospace structural applications. Tailored mechanical properties in advanced composites can exhibit superiority in terms of stiffness-to-weight ratio, strength-to-weight ratio, low-density characteristics, coupled with significant improvements in fatigue resistance as opposed to metal structure counterparts. Extensive research has demonstrated their core potential as more than just mere lightweight substitutes to conventional materials. Prior work done by Mahadev and Chan focused on formulating a modified composite shell theory based prognosis methodology for investigating the structural response of thin-walled circular cylindrical shell type composite configurations under in-plane mechanical loads respectively. The prime motivation to develop this theory stemmed from its capability to generate simple yet accurate closed-form analytical results that can efficiently characterize circular composite shell construction. It showcased the development of a novel mathematical framework to analytically identify the location of the centroid for thin-walled, open cross-section, curved composite shells that were characterized by circumferential arc angle, thickness-to-mean radius ratio, and total laminate thickness. Ply stress variations for curved cylindrical shells were analytically examined under the application of centric tensile and bending loading. This work presents a cost-effective, small-platform experimental methodology by taking advantage of the full-field measurement capability of digital image correlation (DIC) for an accurate assessment of key mechanical parameters such as in-plane mechanical stresses and strains, centroid location etc. Mechanical property measurement of advanced composite materials can become challenging due to their anisotropy and complex failure mechanisms. Full-field displacement measurements are well suited for characterizing the mechanical properties of composite materials because of the complexity of their deformation. This work encompasses the fabrication of a set of curved cylindrical shell coupons, the design and development of a novel test-fixture design and an innovative experimental methodology that demonstrates the capability to very accurately predict the location of centroid in such curved composite cylindrical strips via employing a DIC based strain measurement technique. Error percentage difference between experimental centroid measurements and previously estimated analytical centroid results are observed to be in good agreement. The developed analytical modified-shell theory provides the capability to understand the fundamental behavior of thin-walled cylindrical shells and offers the potential to generate novel avenues to understand the physics of such structures at a laminate level.Keywords: anisotropy, composites, curved cylindrical shells, digital image correlation
Procedia PDF Downloads 318839 Evaluation of Iron Oxide-Functionalized Multiwall Carbon Nanotube Self-Standing Electrode for Symmetric Supercapacitor Application
Authors: B. V. Bhaskara Rao, Rodrigo Espinoza
Abstract:
The rapid development of renewable energy sources has drawn great attention to energy storage devices, especially supercapacitors, because of their high power density and rate performance. This work focus on Fe₃O₄ nanoparticles synthesized by reverse co-precipitation and MWCNTs functionalized by –COOH acid functionalization. The results show that Optimized 25wt% Fe₃O₄@FMWCNT show high specific capacitance 100 mF/cm² at one mA/cm² whereas 15wt% Fe₃O₄@FMWCNT showed high stability (80% retention capacity) over 5000 cycles. The electrolyte used in the coin cell is LiPF6 and the thickness of the electrode is 30 microns. The optimized Fe₃O₄@FMWCNT bucky papers coin cell electrochemical studies suggest that 25wt% Fe₃O₄@FMWCNT could be a good candidate for high-capacity supercapacitor devices. This could be further tested for flexible and planar supercapacitor device application with gel electrolytes.Keywords: self-standing electrode, Fe₃O4@FMWCNT, supercapacitor, symmetric coin-cell
Procedia PDF Downloads 157838 Effect of the Alloying Elements on Mechanical Properties of TWIP Steel
Authors: Yuksel Akinay, Fatih Hayat
Abstract:
The influence of the alloying element on mechanical properties and micro structures of the Fe-22Mn-0.6C-0,6Si twinning induced plasticity (TWIP) steel were investigated at different temperatures. This composition was fabricated by a vacuum induction melting method. This steel was homogenized at 1200◦C for 8h. After heat treatment it was hot-rolled at 1100◦C to 6 mm thickness. The hot rolled plates were cold rolled to 3 mm and annealed at 700 800 and 900 °C for 60 and 150 minute and then air-cooled. X-ray diffractometry (XRD), optic microscope and field emission scanning electron microscope (FESEM), hardness and tensile tests were used to analyse the relationship between mechanical properties and micro structure after annealing process. The results show that, the excellent mechanical properties were obtained after heat treatment process. The tensile strength of material was decreased and the ductility of material was improved with increasing annealing temperature. Ni element were increased the mechanical resistance of specimens and because of carbide precipitation the hardness of specimen annealed at 700 C is higher than others.Keywords: high manganese, heat treatment, SEM, XRD, cold-rolling
Procedia PDF Downloads 504837 Evaluation for Punching Shear Strength of Slab-Column Connections with Ultra High Performance Fiber-Reinforced Concrete Overlay
Authors: H. S. Youm, S. G. Hong
Abstract:
This paper presents the test results on 5 slab-column connection specimens with Ultra High Performance Fiber-Reinforced Concrete (UHPFRC) overlay including 1 control specimen to investigate retrofitting effect of UHPFRC overlay on the punching shear capacity. The test parameters were the thickness of the UHPFRC overlay and the amount of steel re-bars in it. All specimens failed in punching shear mode with abrupt failure aspect. The test results showed that by adding a thin layer of UHPFRC over the Reinforced Concrete (RC) substrates, considerable increases in global punching shear resistance up to 82% and structural rigidity were achieved. Furthermore, based on the cracking patterns the composite systems appeared to be governed by two failure modes: 1) diagonal shear failure in RC section and 2) debonding failure at the interface.Keywords: punching shear strength, retrofit, slab-column connection, UHPFRC, UHPFRC overlay
Procedia PDF Downloads 259836 Excellent Combination of Tensile Strength and Elongation of Novel Reverse Rolled TaNbHfZrTi Refractory High Entropy Alloy
Authors: Mokali Veeresham
Abstract:
In this work, the high-entropy alloy TaNbHfZrTi was processed at room temperature by each step novel reverse rolling up to a 90% reduction in thickness. The reverse rolled 90% samples subsequently used for annealing at 800°C and 1000°C temperatures for 1h to understand phase stability, microstructure, texture, and mechanical properties. The reverse rolled 90% condition contains BCC single-phase; upon annealing at 800°C temperature, the formation of secondary phase BCC-2 prevailed. The partial recrystallization and complete recrystallization microstructures were developed for annealed at 800°C and 1000°C temperatures, respectively. The reverse rolled condition, and 1000°C annealed temperature exhibit extraordinary room temperature tensile properties with high tensile strength (UTS) 1430MPa and 1556 MPa without compromising loss of ductility consists of an appreciable amount of 21% and 20% elongation, respectively.Keywords: refractory high entropy alloys, reverse rolling, recrystallization, microstructure, tensile properties
Procedia PDF Downloads 144835 Magnetoviscous Effects on Axi-Symmetric Ferrofluid Flow over a Porous Rotating Disk with Suction/Injection
Authors: Vikas Kumar
Abstract:
The present study is carried out to investigate the magneto-viscous effects on incompressible ferrofluid flow over a porous rotating disc with suction or injection on the surface of the disc subjected to a magnetic field. The flow under consideration is axi-symmetric steady ferrofluid flow of electrically non-conducting fluid. Karman’s transformation is used to convert the governing boundary layer equations involved in the problem to a system of non linear coupled differential equations. The solution of this system is obtained by using power series approximation. The flow characteristics i.e. radial, tangential, axial velocities and boundary layer displacement thickness are calculated for various values of MFD (magnetic field dependent) viscosity and for different values of suction injection parameter. Besides this, skin friction coefficients are also calculated on the surface of the disk. Thus, the obtained results are presented numerically and graphically in the paper.Keywords: axi-symmetric, ferrofluid, magnetic field, porous rotating disk
Procedia PDF Downloads 397834 Improving Inelastic Capacity of Cold-Formed Steel Beams Using Slotted Blotted Connection
Authors: Marzie Shahini, Alireza Bagheri Sabbagh, Rasoul Mirghaderi, Paul C. Davidson
Abstract:
The focus of this paper is to incorporating the slotted bolted connection into the cold-formed steel (CFS) beams with aim of increasing inelastic bending capacity through bolt slip. An extensive finite element analysis was conducted on the through plate CFS bolted connections which are equipped with the slotted hole. The studied parameters in this paper included the following: CFS beam section geometry, the value of slip force, CFS beam thickness. The numerical results indicate that CFS slotted bolted connection exhibit higher inelastic capacity in terms of ductility compare to connection with standards holes. Moreover, the effect of slip force was analysed by comparing the moment-rotation curves of different models with different slip force value. As a result, as the slip force became lower, there was a tendency for the plastic strain to extend from the CFS member to the connection region.Keywords: slip-critical bolted connection, inelastic capacity, slotted holes, cold-formed steel, bolt slippage, slip force
Procedia PDF Downloads 431833 Role of Ionic Solutions Affect Water Treeing Propagation in XLPE Insulation for High Voltage Cable
Authors: T. Boonraksa, B. Marungsri
Abstract:
This paper presents the experimental results on role of ionic solutions affect water treeing propagation in cross-linked polyethylene insulation for high voltage cable. To study the water treeing expansion due to the ionic solutions, discs of 4mm thickness and 4cm diameter were taken from 115 kV XLPE insulation cable and were used as test specimen in this study. Ionic solutions composed of CuSO4, FeSO4, Na2SO4 and K2SO4 were used. Each specimen was immersed in 0.1 mole ionic solutions and was tested for 120 hrs. under a voltage stress at 7 kV AC rms, 1000 Hz. The results show that Na2SO4 and CuSO4solutions play an important role in the expansion of water treeing and cause degradation of the cross-linked polyethylene (XLPE) in the presence of the applied electric field.Keywords: ionic solutions, water treeing, water treeing expansion, cross-linked polyethylene (XLPE)
Procedia PDF Downloads 385832 Fully Instrumented Small-Scale Fire Resistance Benches for Aeronautical Composites Assessment
Authors: Fabienne Samyn, Pauline Tranchard, Sophie Duquesne, Emilie Goncalves, Bruno Estebe, Serge Boubigot
Abstract:
Stringent fire safety regulations are enforced in the aeronautical industry due to the consequences that potential fire event on an aircraft might imply. This is so much true that the fire issue is considered right from the design of the aircraft structure. Due to the incorporation of an increasing amount of polymer matrix composites in replacement of more conventional materials like metals, the nature of the fire risks is changing. The choice of materials used is consequently of prime importance as well as the evaluation of its resistance to fire. The fire testing is mostly done using the so-called certification tests according to standards such as the ISO2685:1998(E). The latter describes a protocol to evaluate the fire resistance of structures located in fire zone (ability to withstand fire for 5min). The test consists in exposing an at least 300x300mm² sample to an 1100°C propane flame with a calibrated heat flux of 116kW/m². This type of test is time-consuming, expensive and gives access to limited information in terms of fire behavior of the materials (pass or fail test). Consequently, it can barely be used for material development purposes. In this context, the laboratory UMET in collaboration with industrial partners has developed a horizontal and a vertical small-scale instrumented fire benches for the characterization of the fire behavior of composites. The benches using smaller samples (no more than 150x150mm²) enables to cut downs costs and hence to increase sampling throughput. However, the main added value of our benches is the instrumentation used to collect useful information to understand the behavior of the materials. Indeed, measurements of the sample backside temperature are performed using IR camera in both configurations. In addition, for the vertical set up, a complete characterization of the degradation process, can be achieved via mass loss measurements and quantification of the gasses released during the tests. These benches have been used to characterize and study the fire behavior of aeronautical carbon/epoxy composites. The horizontal set up has been used in particular to study the performances and durability of protective intumescent coating on 2mm thick 2D laminates. The efficiency of this approach has been validated, and the optimized coating thickness has been determined as well as the performances after aging. Reductions of the performances after aging were attributed to the migration of some of the coating additives. The vertical set up has enabled to investigate the degradation process of composites under fire. An isotropic and a unidirectional 4mm thick laminates have been characterized using the bench and post-fire analyses. The mass loss measurements and the gas phase analyses of both composites do not present significant differences unlike the temperature profiles in the thickness of the samples. The differences have been attributed to differences of thermal conductivity as well as delamination that is much more pronounced for the isotropic composite (observed on the IR-images). This has been confirmed by X-ray microtomography. The developed benches have proven to be valuable tools to develop fire safe composites.Keywords: aeronautical carbon/epoxy composite, durability, intumescent coating, small-scale ‘ISO 2685 like’ fire resistance test, X-ray microtomography
Procedia PDF Downloads 271831 Behavior of Fibre Reinforced Polymer Composite with Nano-Ceramic Particle under Ballistic Impact and Quasi-Static Punch-Shear Loading
Authors: K. Rajalakshmi, A. Vasudevan
Abstract:
The performance of Fibre Reinforced Polymer composite with the nano-ceramic particle as function of time and thickness of laminate which is subjected to ballistic impact and quasi-static punch-shear loading is investigated. The material investigated is made up of several layers of Kevlar fibres which are fabricated with nano-ceramic particles and epoxy resin by compression moulding. The ballistic impact and quasi-static punch-shear loading are studied experimentally and numerically. The failure mechanism is observed using scanning electron microscope (SEM). The result obtained in the experiment and numerical studies are compared. Due to nano size of the ceramic particle, the strength to weight ratio and penetrating resistance will improve in Fibre Reinforced Polymer composite which will have better impact property compared to ceramic plates.Keywords: ballistic impact, Kevlar, nano ceramic, penetration, polymer composite, shear plug
Procedia PDF Downloads 290830 Dynamic Response of Nano Spherical Shell Subjected to Termo-Mechanical Shock Using Nonlocal Elasticity Theory
Authors: J. Ranjbarn, A. Alibeigloo
Abstract:
In this paper, we present an analytical method for analysis of nano-scale spherical shell subjected to thermo-mechanical shocks based on nonlocal elasticity theory. Thermo-mechanical properties of nano shpere is assumed to be temperature dependent. Governing partial differential equation of motion is solved analytically by using Laplace transform for time domain and power series for spacial domain. The results in Laplace domain is transferred to time domain by employing the fast inverse Laplace transform (FLIT) method. Accuracy of present approach is assessed by comparing the the numerical results with the results of published work in literature. Furtheremore, the effects of non-local parameter and wall thickness on the dynamic characteristics of the nano-sphere are studied.Keywords: nano-scale spherical shell, nonlocal elasticity theory, thermomechanical shock, dynamic response
Procedia PDF Downloads 374829 Computational Approaches for Ballistic Impact Response of Stainless Steel 304
Authors: A. Mostafa
Abstract:
This paper presents a numerical study on determination of ballistic limit velocity (V50) of stainless steel 304 (SS 304) used in manufacturing security screens. The simulated ballistic impact tests were conducted on clamped sheets with different thicknesses using ABAQUS/Explicit nonlinear finite element (FE) package. The ballistic limit velocity was determined using three approaches, namely: numerical tests based on material properties, FE calculated residual velocities and FE calculated residual energies. Johnson-Cook plasticity and failure criterion were utilized to simulate the dynamic behaviour of the SS 304 under various strain rates, while the well-known Lambert-Jonas equation was used for the data regression for the residual velocity and energy model. Good agreement between the investigated numerical methods was achieved. Additionally, the dependence of the ballistic limit velocity on the sheet thickness was observed. The proposed approaches present viable and cost-effective assessment methods of the ballistic performance of SS 304, which will support the development of robust security screen systems.Keywords: ballistic velocity, stainless steel, numerical approaches, security screen
Procedia PDF Downloads 165828 Strip Size Optimization for Spiral Type Actuator Coil Used in Electromagnetic Flat Sheet Forming Experiment
Authors: M. A. Aleem, M. S. Awan
Abstract:
Flat spiral coil for electromagnetic forming system has been modelled in FEMM 4.2 software. Copper strip was chosen as the material for designing the actuator coil. Relationship between height to width ratio (S-factor) of the copper strip and coil’s performance has been studied. Magnetic field intensities, eddy currents, and Lorentz force were calculated for the coils that were designed using six different 'S-factor' values (0.65, 0.75, 1.05, 1.25, 1.54 and 1.75), keeping the cross-sectional area of strip the same. Results obtained through simulation suggest that actuator coil with S-factor ~ 1 shows optimum forming performance as it exerts maximum Lorentz force (84 kN) on work piece. The same coils were fabricated and used for electromagnetic sheet forming experiments. Aluminum 6061 sheets of thickness 1.5 mm have been formed using different voltage levels of capacitor bank. Smooth forming profiles were obtained with dome heights 28, 35 and 40 mm in work piece at 800, 1150 and 1250 V respectively.Keywords: FEM modelling, electromagnetic forming, spiral coil, Lorentz force
Procedia PDF Downloads 286827 Temperature-Dependent Structural Characterization of Type-II Dirac Semi-Metal nite₂ From Bulk to Exfoliated Thin Flakes Using Raman Spectroscopy
Authors: Minna Theres James, Nirmal K Sebastian, Shoubhik Mandal, Pramita Mishra, R Ganesan, P S Anil Kumar
Abstract:
We report the temperature-dependent evolution of Raman spectra of type-II Dirac semimetal (DSM) NiTe2 (001) in the form of bulk single crystal and a nanoflake (200 nm thick) for the first time. A physical model that can quantitatively explain the evolution of out of plane A1g and in-plane E1g Raman modes is used. The non-linear variation of peak positions of the Raman modes with temperature is explained by anharmonic three-phonon and four-phonon processes along with thermal expansion of the lattice. We also observe prominent effect of electron-phonon coupling from the variation of FWHM of the peaks with temperature, indicating the metallicity of the samples. Raman mode E1 1g corresponding to an in plane vibration disappears on decreasing the thickness from bulk to nanoflake.Keywords: raman spectroscopy, type 2 dirac semimetal, nickel telluride, phonon-phonon coupling, electron phonon coupling, transition metal dichalcogonide
Procedia PDF Downloads 115826 A New Family of Flying Wing Low Reynolds Number Airfoils
Authors: Ciro Sobrinho Campolina Martins, Halison da Silva Pereira, Vitor Mainenti Leal Lopes
Abstract:
Unmanned Aerial vehicles (UAVs) has been used in a wide range of applications, from precise agriculture monitoring for irrigation and fertilization to military attack missions. Long range performance is required for many of these applications. Tailless aircrafts are commonly used as long-range configurations and, due to its small amount of stability, the airfoil shape design of its wings plays a central role on the performance of the airplane. In this work, a new family of flying wing airfoils is designed for low Reynolds number flows, typical of small-middle UAVs. Camber, thickness and their maximum positions in the chord are variables used for the airfoil geometry optimization. Aerodynamic non-dimensional coefficients were obtained by the well-established Panel Method. High efficient airfoils with small pitch moment coefficient are obtained from the analysis described and its aerodynamic polars are plotted.Keywords: airfoil design, flying wing, low Reynolds number, tailless aircraft, UAV
Procedia PDF Downloads 629825 Optimal Design of Concrete Shells by Modified Particle Community Algorithm Using Spinless Curves
Authors: Reza Abbasi, Ahmad Hamidi Benam
Abstract:
Shell structures have many geometrical variables that modify some of these parameters to improve the mechanical behavior of the shell. On the other hand, the behavior of such structures depends on their geometry rather than on mass. Optimization techniques are useful in finding the geometrical shape of shell structures to improve mechanical behavior, especially to prevent or reduce bending anchors. The overall objective of this research is to optimize the shape of concrete shells using the thickness and height parameters along the reference curve and the overall shape of this curve. To implement the proposed scheme, the geometry of the structure was formulated using nonlinear curves. Shell optimization was performed under equivalent static loading conditions using the modified bird community algorithm. The results of this optimization show that without disrupting the initial design and with slight changes in the shell geometry, the structural behavior is significantly improved.Keywords: concrete shells, shape optimization, spinless curves, modified particle community algorithm
Procedia PDF Downloads 234