Search results for: back surface field layer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16844

Search results for: back surface field layer

16124 Medicinal Plants and Arbuscular mycorrhizal Colonization

Authors: Ammani K., Glory M.

Abstract:

Demands of traditional herbal medicines are increasing day by day over the world. Considering the growing demand of medicinal plants in curative treatments and the role of VAM fungi in augmentation of the production of active secondary metabolites by the medicinal plants, the present work has been undertaken to survey the mycorrhizal status in 30 different medicinal plants belonging to various families from Krishna district, Andhra Pradesh. The roots were collected carefully and stained by the Phillips & Hayman technique. Basing on the occurrence of vesicles and arbuscules, categorized into four grades; Excellent: mycelia, vesicles or arbuscules present more than 75% of root bits, Good: mycelia, vesicles or arbuscules present 50-75% in surface of root bits, moderate: mycelia, vesicles or arbuscules present 25-50% in surface of root bits, and poor: mycelia, vesicles or arbuscules present 1-25% in surface of root bits. The study reveals that the roots of all plants were colonized by AM fungi. Percentage of root colonization by AM fungi was more in Aloe vera, Phylanthus emblica, Azadiracta indica and least in plants such as Aerva lanata, Vinca rosea, Crotalaria verrucosa among the 30 medicinal plants in present study. The enhancement of growth and vigour and increased production of bioactive compounds of the medicinal plants is desirable which may be achieved by inoculation of the roots with Arbuscular mycorrhizal fungi. There is a steady increase in the cultivation of medicinal plants to maintain a steady supply to support the increasing demand but corresponding researches of VAM fungi and their association in medicinal plants have received very little attention as compared to the studies on forest species and field crops. So a vast research on this field is necessary for a better tomorrow.

Keywords: Arbuscular mycorrhizae, colonization, categories, medicinal plants

Procedia PDF Downloads 402
16123 Microfluidic Impedimetric Biochip and Related Methods for Measurement Chip Manufacture and Counting Cells

Authors: Amina Farooq, Nauman Zafar Butt

Abstract:

This paper is about methods and tools for counting particles of interest, such as cells. A microfluidic system with interconnected electronics on a flexible substrate, inlet-outlet ports and interface schemes, sensitive and selective detection of cells specificity, and processing of cell counting at polymer interfaces in a microscale biosensor for use in the detection of target biological and non-biological cells. The development of fluidic channels, planar fluidic contact ports, integrated metal electrodes on a flexible substrate for impedance measurements, and a surface modification plasma treatment as an intermediate bonding layer are all part of the fabrication process. Magnetron DC sputtering is used to deposit a double metal layer (Ti/Pt) over the polypropylene film. Using a photoresist layer, specified and etched zones are established. Small fluid volumes, a reduced detection region, and electrical impedance measurements over a range of frequencies for cell counts improve detection sensitivity and specificity. The procedure involves continuous flow of fluid samples that contain particles of interest through the microfluidic channels, counting all types of particles in a portion of the sample using the electrical differential counter to generate a bipolar pulse for each passing cell—calculating the total number of particles of interest originally in the fluid sample by using MATLAB program and signal processing. It's indeed potential to develop a robust and economical kit for cell counting in whole-blood samples using these methods and similar devices.

Keywords: impedance, biochip, cell counting, microfluidics

Procedia PDF Downloads 162
16122 Design and Study of a Parabolic Trough Solar Collector for Generating Electricity

Authors: A. A. A. Aboalnour, Ahmed M. Amasaib, Mohammed-Almujtaba A. Mohammed-Farah, Abdelhakam, A. Noreldien

Abstract:

This paper presents a design and study of Parabolic Trough Solar Collector (PTC). Mathematical models were used in this work to find the direct and reflected solar radiation from the air layer on the surface of the earth per hour based on the total daily solar radiation on a horizontal surface. Also mathematical models had been used to calculate the radiation of the tilted surfaces. Most of the ingredients used in this project as previews data required on several solar energy applications, thermal simulation, and solar power systems. In addition, mathematical models had been used to study the flow of the fluid inside the tube (receiver), and study the effect of direct and reflected solar radiation on the pressure, temperature, speed, kinetic energy and forces of fluid inside the tube. Finally, the mathematical models had been used to study the (PTC) performances and estimate its thermal efficiency.

Keywords: CFD, experimental, mathematical models, parabolic trough, radiation

Procedia PDF Downloads 423
16121 Call-Back Laterality and Bilaterality: Possible Screening Mammography Quality Metrics

Authors: Samson Munn, Virginia H. Kim, Huija Chen, Sean Maldonado, Michelle Kim, Paul Koscheski, Babak N. Kalantari, Gregory Eckel, Albert Lee

Abstract:

In terms of screening mammography quality, neither the portion of reports that advise call-back imaging that should be bilateral versus unilateral nor how much the unilateral call-backs may appropriately diverge from 50–50 (left versus right) is known. Many factors may affect detection laterality: display arrangement, reflections preferentially striking one display location, hanging protocols, seating positions with respect to others and displays, visual field cuts, health, etc. The call-back bilateral fraction may reflect radiologist experience (not in our data) or confidence level. Thus, laterality and bilaterality of call-backs advised in screening mammography reports could be worthy quality metrics. Here, laterality data did not reveal a concern until drilling down to individuals. Bilateral screening mammogram report recommendations by five breast imaging, attending radiologists at Harbor-UCLA Medical Center (Torrance, California) 9/1/15--8/31/16 and 9/1/16--8/31/17 were retrospectively reviewed. Recommended call-backs for bilateral versus unilateral, and for left versus right, findings were counted. Chi-square (χ²) statistic was applied. Year 1: of 2,665 bilateral screening mammograms, reports of 556 (20.9%) recommended call-back, of which 99 (17.8% of the 556) were for bilateral findings. Of the 457 unilateral recommendations, 222 (48.6%) regarded the left breast. Year 2: of 2,106 bilateral screening mammograms, reports of 439 (20.8%) recommended call-back, of which 65 (14.8% of the 439) were for bilateral findings. Of the 374 unilateral recommendations, 182 (48.7%) regarded the left breast. Individual ranges of call-backs that were bilateral were 13.2–23.3%, 10.2–22.5%, and 13.6–17.9%, by year(s) 1, 2, and 1+2, respectively; these ranges were unrelated to experience level; the two-year mean was 15.8% (SD=1.9%). The lowest χ² p value of the group's sidedness disparities years 1, 2, and 1+2 was > 0.4. Regarding four individual radiologists, the lowest p value was 0.42. However, the fifth radiologist disfavored the left, with p values of 0.21, 0.19, and 0.07, respectively; that radiologist had the greatest number of years of experience. There was a concerning, 93% likelihood that bias against left breast findings evidenced by one of our radiologists was not random. Notably, very soon after the period under review, he retired, presented with leukemia, and died. We call for research to be done, particularly by large departments with many radiologists, of two possible, new, quality metrics in screening mammography: laterality and bilaterality. (Images, patient outcomes, report validity, and radiologist psychological confidence levels were not assessed. No intervention nor subsequent data collection was conducted. This uncomplicated collection of data and simple appraisal were not designed, nor had there been any intention to develop or contribute, to generalizable knowledge (per U.S. DHHS 45 CFR, part 46)).

Keywords: mammography, screening mammography, quality, quality metrics, laterality

Procedia PDF Downloads 162
16120 Surface Modification of TiO2 Layer with Phosphonic Acid Monolayer in Perovskite Solar Cells: Effect of Chain Length and Terminal Functional Group

Authors: Seid Yimer Abate, Ding-Chi Huang, Yu-Tai Tao

Abstract:

In this study, charge extraction characteristics at the perovskite/TiO2 interface in the conventional perovskite solar cell is studied by interface engineering. Self-assembled monolayers of phosphonic acids with different chain length and terminal functional group were used to modify mesoporous TiO2 surface to modulate the surface property and interfacial energy barrier to investigate their effect on charge extraction and transport from the perovskite to the mp-TiO2 and then the electrode. The chain length introduces a tunnelling distance and the end group modulate the energy level alignment at the mp-TiO2 and perovskite interface. The work function of these SAM-modified mp-TiO2 varied from −3.89 eV to −4.61 eV, with that of the pristine mp-TiO2 at −4.19 eV. A correlation of charge extraction and transport with respect to the modification was attempted. The study serves as a guide to engineer ETL interfaces with simple SAMs to improve the charge extraction, carrier balance and device long term stability. In this study, a maximum PCE of ~16.09% with insignificant hysteresis was obtained, which is 17% higher than the standard device.

Keywords: Energy level alignment, Interface engineering, Perovskite solar cells, Phosphonic acid monolayer, Tunnelling distance

Procedia PDF Downloads 137
16119 Effects of Prescribed Surface Perturbation on NACA 0012 at Low Reynolds Number

Authors: Diego F. Camacho, Cristian J. Mejia, Carlos Duque-Daza

Abstract:

The recent widespread use of Unmanned Aerial Vehicles (UAVs) has fueled a renewed interest in efficiency and performance of airfoils, particularly for applications at low and moderate Reynolds numbers, typical of this kind of vehicles. Most of previous efforts in the aeronautical industry, regarding aerodynamic efficiency, had been focused on high Reynolds numbers applications, typical of commercial airliners and large size aircrafts. However, in order to increase the levels of efficiency and to boost the performance of these UAV, it is necessary to explore new alternatives in terms of airfoil design and application of drag reduction techniques. The objective of the present work is to carry out the analysis and comparison of performance levels between a standard NACA0012 profile against another one featuring a wall protuberance or surface perturbation. A computational model, based on the finite volume method, is employed to evaluate the effect of the presence of geometrical distortions on the wall. The performance evaluation is achieved in terms of variations of drag and lift coefficients for the given profile. In particular, the aerodynamic performance of the new design, i.e. the airfoil with a surface perturbation, is examined under conditions of incompressible and subsonic flow in transient state. The perturbation considered is a shaped protrusion prescribed as a small surface deformation on the top wall of the aerodynamic profile. The ultimate goal by including such a controlled smooth artificial roughness was to alter the turbulent boundary layer. It is shown in the present work that such a modification has a dramatic impact on the aerodynamic characteristics of the airfoil, and if properly adjusted, in a positive way. The computational model was implemented using the unstructured, FVM-based open source C++ platform OpenFOAM. A number of numerical experiments were carried out at Reynolds number 5x104, based on the length of the chord and the free-stream velocity, and angles of attack 6° and 12°. A Large Eddy Simulation (LES) approach was used, together with the dynamic Smagorinsky approach as subgrid scale (SGS) model, in order to account for the effect of the small turbulent scales. The impact of the surface perturbation on the performance of the airfoil is judged in terms of changes in the drag and lift coefficients, as well as in terms of alterations of the main characteristics of the turbulent boundary layer on the upper wall. A dramatic change in the whole performance can be appreciated, including an arguably large level of lift-to-drag coefficient ratio increase for all angles and a size reduction of laminar separation bubble (LSB) for a twelve-angle-of-attack.

Keywords: CFD, LES, Lift-to-drag ratio, LSB, NACA 0012 airfoil

Procedia PDF Downloads 386
16118 Excitation and Active Control of Charge Density Waves at Degenerately Doped PN++ Junctions

Authors: R. K. Vinnakota, D. A. Genov, Z. Dong, A. F. Briggs, L. Nordin, S. R. Bank, D. Wasserman

Abstract:

We present a semiconductor-based plasmonic electro-optic modulator based on excitation and active control of surface plasmon polaritons (SPPs) at the interface of degenerately doped In₀.₅₃Ga₀.₄₇As pn++ junctions. Set of devices, which we refer to as a surface plasmon polariton diode (SPPD), are fabricated and characterized electrically and optically. Optical characterization predicts far-field voltage-aided reflectivity modulation for mid-IR wavelengths. Numerical device characterizations using a self-consistent electro-optic multiphysics model have been performed to confirm the experimental findings were predicting data rates up to 1Gbits/s and 3dB bandwidth as high as 2GHz. Our findings also show that decreasing the device dimensions can potentially lead to data rates of more than 50Gbits/s, thus potentially providing a pathway toward fast all-semiconductor-based plasmotronic devices.

Keywords: plasmonics, optoelectronics, PN junctions, surface plasmon polaritons

Procedia PDF Downloads 111
16117 Multi-Sensor Concept in Optical Surface Metrology

Authors: Özgür Tan

Abstract:

In different fields of industry, there is a huge demand to acquire surface information in the dimension of micrometer up to centimeter in order to characterize functional behavior of products. Thanks to the latest developments, there are now different methods in surface metrology, but it is not possible to find a unique measurement technique which fulfils all the requirements. Depending on the interaction with the surface, regardless of optical or tactile, every method has its own advantages and disadvantages which are given by nature. However new concepts like ‘multi-sensor’, tools in surface metrology can be improved to solve most of the requirements simultaneously. In this paper, after having presented different optical techniques like confocal microscopy, focus variation and white light interferometry, a new approach is presented which combines white-light interferometry with chromatic confocal probing in a single product. Advantages of different techniques can be used for challenging applications.

Keywords: flatness, chromatic confocal, optical surface metrology, roughness, white-light interferometry

Procedia PDF Downloads 260
16116 Study of Fork Marks on Sapphire Wafers in Plasma Enhanced Chemical Vapor Deposition Tool

Authors: Qiao Pei Wen, Ng Seng Lee, Sae Tae Veera, Chiu Ah Fong, Loke Weng Onn

Abstract:

Thin film thickness uniformity is crucial to get consistent film etch rate and device yield across the wafer. In the capacitive-coupled parallel plate PECVD system; the film thickness uniformity can be affected by many factors such as the heater temperature uniformity, the spacing between top and bottom electrode, RF power, pressure, gas flows and etc. In this paper, we studied how the PECVD SiN film thickness uniformity is affected by the substrate electrical conductivity and the RF power coupling efficiency. PECVD SiN film was deposited on 150-mm sapphire wafers in 200-mm Lam Sequel tool, fork marks were observed on the wafers. On the fork marks area SiN film thickness is thinner than that on the non-fork area. The forks are the wafer handler inside the process chamber to move the wafers from one station to another. The sapphire wafers and the ceramic forks both are insulator. The high resistivity of the sapphire wafers and the forks inhibits the RF power coupling efficiency during PECVD deposition, thereby reducing the deposition rate. Comparing between the high frequency and low frequency RF power (HFRF and LFRF respectively), the LFRF power coupling effect on the sapphire wafers is more dominant than the HFRF power on the film thickness. This paper demonstrated that the SiN thickness uniformity on sapphire wafers can be improved by depositing a thin TiW layer on the wafer before the SiN deposition. The TiW layer can be on the wafer surface, bottom or any layer before SiN deposition.

Keywords: PECVD SiN deposition, sapphire wafer, substrate electrical conductivity, RF power coupling, high frequency RF power, low frequency RF power, film deposition rate, thickness uniformity

Procedia PDF Downloads 376
16115 Controlling the Degradation Rate of Biodegradable Mg Implant Using Magnetron-Sputtered (Zr-Nb) Thin Films

Authors: Somayeh Azizi, Mohammad Hossein Ehsani, Amir Zareidoost

Abstract:

In this research, a technique has been developed to reduce the corrosion rate of magnesium (Mg) metal by creating Zr-Nb thin film coatings. In this regard, thin-film coatings of niobium (Nb) zirconium (Zr) double alloy are applied on pure Mg specimens under different processes conditions, such as the change of the substrate temperature, substrate bias, and coating thickness using the magnetron sputtering method. Then, deposited coatings are analyzed in terms of surface features via field-emission scanning electron microscopy (FE-SEM), thin-layer X-ray diffraction (GI-XRD), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), and corrosion tests. Also, nano-scratch tests were carried out to investigate the adhesion of the thin film. The results showed that the (Zr-Nb) thin films could control the degradation rate of Mg in the simulated body fluid (SBF). The nano-scratch studies depicted that the (Zr-Nb) thin films have a proper adhesion with the Mg substrate. Therefore, this technique could be used to enhance the corrosion resistance of bare Mg and could result in improving the performance of the biodegradable Mg implant for orthopedic applications.

Keywords: (Zr-Nb) thin film, magnetron sputtering, biodegradable Mg, degradation rate

Procedia PDF Downloads 120
16114 Controlled Doping of Graphene Monolayer

Authors: Vedanki Khandenwal, Pawan Srivastava, Kartick Tarafder, Subhasis Ghosh

Abstract:

We present here the experimental realization of controlled doping of graphene monolayers through charge transfer by trapping selected organic molecules between the graphene layer and underlying substrates. This charge transfer between graphene and trapped molecule leads to controlled n-type or p-type doping in monolayer graphene (MLG), depending on whether the trapped molecule acts as an electron donor or an electron acceptor. Doping controllability has been validated by a shift in corresponding Raman peak positions and a shift in Dirac points. In the transfer characteristics of field effect transistors, a significant shift of Dirac point towards positive or negative gate voltage region provides the signature of p-type or n-type doping of graphene, respectively, as a result of the charge transfer between graphene and the organic molecules trapped within it. In order to facilitate the charge transfer interaction, it is crucial for the trapped molecules to be situated in close proximity to the graphene surface, as demonstrated by findings in Raman and infrared spectroscopies. However, the mechanism responsible for this charge transfer interaction has remained unclear at the microscopic level. Generally, it is accepted that the dipole moment of adsorbed molecules plays a crucial role in determining the charge-transfer interaction between molecules and graphene. However, our findings clearly illustrate that the doping effect primarily depends on the reactivity of the constituent atoms in the adsorbed molecules rather than just their dipole moment. This has been illustrated by trapping various molecules at the graphene−substrate interface. Dopant molecules such as acetone (containing highly reactive oxygen atoms) promote adsorption across the entire graphene surface. In contrast, molecules with less reactive atoms, such as acetonitrile, tend to adsorb at the edges due to the presence of reactive dangling bonds. In the case of low-dipole moment molecules like toluene, there is a lack of substantial adsorption anywhere on the graphene surface. Observation of (i) the emergence of the Raman D peak exclusively at the edges for trapped molecules without reactive atoms and throughout the entire basal plane for those with reactive atoms, and (ii) variations in the density of attached molecules (with and without reactive atoms) to graphene with their respective dipole moments provides compelling evidence to support our claim. Additionally, these observations were supported by first principle density functional calculations.

Keywords: graphene, doping, charge transfer, liquid phase exfoliation

Procedia PDF Downloads 65
16113 Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging

Authors: Jinan Fiaidhi, Sabah Mohammed

Abstract:

Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning.

Keywords: Siamese neural network, few-shot learning, meta-learning, metric-based learning, thick data transformation and analytics

Procedia PDF Downloads 56
16112 Copper Phthalocyanine Nanostructures: A Potential Material for Field Emission Display

Authors: Uttam Kumar Ghorai, Madhupriya Samanta, Subhajit Saha, Swati Das, Nilesh Mazumder, Kalyan Kumar Chattopadhyay

Abstract:

Organic semiconductors have gained potential interest in the last few decades for their significant contributions in the various fields such as solar cell, non-volatile memory devices, field effect transistors and light emitting diodes etc. The most important advantages of using organic materials are mechanically flexible, light weight and low temperature depositing techniques. Recently with the advancement of nanoscience and technology, one dimensional organic and inorganic nanostructures such as nanowires, nanorods, nanotubes have gained tremendous interests due to their very high aspect ratio and large surface area for electron transport etc. Among them, self-assembled organic nanostructures like Copper, Zinc Phthalocyanine have shown good transport property and thermal stability due to their π conjugated bonds and π-π stacking respectively. Field emission properties of inorganic and carbon based nanostructures are reported in literatures mostly. But there are few reports in case of cold cathode emission characteristics of organic semiconductor nanostructures. In this work, the authors report the field emission characteristics of chemically and physically synthesized Copper Phthalocyanine (CuPc) nanostructures such as nanowires, nanotubes and nanotips. The as prepared samples were characterized by X-Ray diffraction (XRD), Ultra Violet Visible Spectrometer (UV-Vis), Fourier Transform Infra-red Spectroscopy (FTIR), and Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM). The field emission characteristics were measured in our home designed field emission set up. The registered turn-on field and local field enhancement factor are found to be less than 5 V/μm and greater than 1000 respectively. The field emission behaviour is also stable for 200 minute. The experimental results are further verified by theoretically using by a finite displacement method as implemented in ANSYS Maxwell simulation package. The obtained results strongly indicate CuPc nanostructures to be the potential candidate as an electron emitter for field emission based display device applications.

Keywords: organic semiconductor, phthalocyanine, nanowires, nanotubes, field emission

Procedia PDF Downloads 501
16111 Comparison of Feedforward Back Propagation and Self-Organizing Map for Prediction of Crop Water Stress Index of Rice

Authors: Aschalew Cherie Workneh, K. S. Hari Prasad, Chandra Shekhar Prasad Ojha

Abstract:

Due to the increase in water scarcity, the crop water stress index (CWSI) is receiving significant attention these days, especially in arid and semiarid regions, for quantifying water stress and effective irrigation scheduling. Nowadays, machine learning techniques such as neural networks are being widely used to determine CWSI. In the present study, the performance of two artificial neural networks, namely, Self-Organizing Maps (SOM) and Feed Forward-Back Propagation Artificial Neural Networks (FF-BP-ANN), are compared while determining the CWSI of rice crop. Irrigation field experiments with varying degrees of irrigation were conducted at the irrigation field laboratory of the Indian Institute of Technology, Roorkee, during the growing season of the rice crop. The CWSI of rice was computed empirically by measuring key meteorological variables (relative humidity, air temperature, wind speed, and canopy temperature) and crop parameters (crop height and root depth). The empirically computed CWSI was compared with SOM and FF-BP-ANN predicted CWSI. The upper and lower CWSI baselines are computed using multiple regression analysis. The regression analysis showed that the lower CWSI baseline for rice is a function of crop height (h), air vapor pressure deficit (AVPD), and wind speed (u), whereas the upper CWSI baseline is a function of crop height (h) and wind speed (u). The performance of SOM and FF-BP-ANN were compared by computing Nash-Sutcliffe efficiency (NSE), index of agreement (d), root mean squared error (RMSE), and coefficient of correlation (R²). It is found that FF-BP-ANN performs better than SOM while predicting the CWSI of rice crops.

Keywords: artificial neural networks; crop water stress index; canopy temperature, prediction capability

Procedia PDF Downloads 117
16110 Double Encrypted Data Communication Using Cryptography and Steganography

Authors: Adine Barett, Jermel Watson, Anteneh Girma, Kacem Thabet

Abstract:

In information security, secure communication of data across networks has always been a problem at the forefront. Transfer of information across networks is susceptible to being exploited by attackers engaging in malicious activity. In this paper, we leverage steganography and cryptography to create a layered security solution to protect the information being transmitted. The first layer of security leverages crypto- graphic techniques to scramble the information so that it cannot be deciphered even if the steganography-based layer is compromised. The second layer of security relies on steganography to disguise the encrypted in- formation so that it cannot be seen. We consider three cryptographic cipher methods in the cryptography layer, namely, Playfair cipher, Blowfish cipher, and Hills cipher. Then, the encrypted message is passed through the least significant bit (LSB) to the steganography algorithm for further encryption. Both encryption approaches are combined efficiently to help secure information in transit over a network. This multi-layered encryption is a solution that will benefit cloud platforms, social media platforms and networks that regularly transfer private information such as banks and insurance companies.

Keywords: cryptography, steganography, layered security, Cipher, encryption

Procedia PDF Downloads 85
16109 Tank Barrel Surface Damage Detection Algorithm

Authors: Tomáš Dyk, Stanislav Procházka, Martin Drahanský

Abstract:

The article proposes a new algorithm for detecting damaged areas of the tank barrel based on the image of the inner surface of the tank barrel. Damage position is calculated using image processing techniques such as edge detection, discrete wavelet transformation and image segmentation for accurate contour detection. The algorithm can detect surface damage in smoothbore and even in rifled tank barrels. The algorithm also calculates the volume of the detected damage from the depth map generated, for example, from the distance measurement unit. The proposed method was tested on data obtained by a tank barrel scanning device, which generates both surface image data and depth map. The article also discusses tank barrel scanning devices and how damaged surface impacts material resistance.

Keywords: barrel, barrel diagnostic, image processing, surface damage detection, tank

Procedia PDF Downloads 137
16108 Stent Surface Functionalisation via Plasma Treatment to Promote Fast Endothelialisation

Authors: Irene Carmagnola, Valeria Chiono, Sandra Pacharra, Jochen Salber, Sean McMahon, Chris Lovell, Pooja Basnett, Barbara Lukasiewicz, Ipsita Roy, Xiang Zhang, Gianluca Ciardelli

Abstract:

Thrombosis and restenosis after stenting procedure can be prevented by promoting fast stent wall endothelialisation. It is well known that surface functionalisation with antifouling molecules combining with extracellular matrix proteins is a promising strategy to design biomimetic surfaces able to promote fast endothelialization. In particular, REDV has gained much attention for the ability to enhance rapid endothelialization due to its specific affinity with endothelial cells (ECs). In this work, a two-step plasma treatment was performed to polymerize a thin layer of acrylic acid, used to subsequently graft PEGylated-REDV and polyethylene glycol (PEG) at different molar ratio with the aim to selectively promote endothelial cell adhesion avoiding platelet activation. PEGylate-REDV was provided by Biomatik and it is formed by 6 PEG monomer repetitions (Chempep Inc.), with an NH2 terminal group. PEG polymers were purchased from Chempep Inc. with two different chain lengths: m-PEG6-NH2 (295.4 Da) with 6 monomer repetitions and m-PEG12-NH2 (559.7 Da) with 12 monomer repetitions. Plasma activation was obtained by operating at 50W power, 5 min of treatment and at an Ar flow rate of 20 sccm. Pure acrylic acid (99%, AAc) vapors were diluted in Ar (flow = 20 sccm) and polymerized by a pulsed plasma discharge applying a discharge RF power of 200 W, a duty cycle of 10% (on time = 10 ms, off time = 90 ms) for 10 min. After plasma treatment, samples were dipped into an 1-(3-dimethylaminopropyl)-3- ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS) solution (ratio 4:1, pH 5.5) for 1 h at 4°C and subsequently dipped in PEGylate-REDV and PEGylate-REDV:PEG solutions at different molar ratio (100 μg/mL in PBS) for 20 h at room temperature. Surface modification was characterized through physico-chemical analyses and in vitro cell tests. PEGylated-REDV peptide and PEG were successfully bound to the carboxylic groups that are formed on the polymer surface after plasma reaction. FTIR-ATR spectroscopy, X -ray Photoelectron Spectroscopy (XPS) and contact angle measurement gave a clear indication of the presence of the grafted molecules. The use of PEG as a spacer allowed for an increase in wettability of the surface, and the effect was more evident by increasing the amount of PEG. Endothelial cells adhered and spread well on the surfaces functionalized with the REDV sequence. In conclusion, a selective coating able to promote a new endothelial cell layer on polymeric stent surface was developed. In particular, a thin AAc film was polymerised on the polymeric surface in order to expose –COOH groups, and PEGylate-REDV and PEG were successful grafted on the polymeric substrates. The REDV peptide demonstrated to encourage cell adhesion with a consequent, expected improvement of the hemocompatibility of these polymeric surfaces in vivo. Acknowledgements— This work was funded by the European Commission 7th Framework Programme under grant agreement number 604251- ReBioStent (Reinforced Bioresorbable Biomaterials for Therapeutic Drug Eluting Stents). The authors thank all the ReBioStent partners for their support in this work.

Keywords: endothelialisation, plasma treatment, stent, surface functionalisation

Procedia PDF Downloads 312
16107 Study on Meristem Culture of Purwoceng (Pimpinella pruatjan Molk.) and Its Stigmasterol Detected by Thin Layer Chromatography

Authors: Totik Sri Mariani, Sukrasno Isna, Tet Fatt Chia

Abstract:

Purwoceng (Pimpinella pruatjan Molk) is a legend plant used for increasing stamina by Kings in Java Island, Indonesia. Purpose of this study was to perform meristem culture and detected its stigmasterol by thin layer chromatography (TLC). Our result show that meristem culture could be propagated and grew into plantlet. After extracting intact acclimatized plant derived from meristem culture by hexane, we could detected stigmasterol by TLC. For suggestion, our extraction and TLC method could be used for detecting stigmasterol in others plant.

Keywords: purwoceng (pimpinella pruatjan), meristem culture, extraction, thin layer chromatography

Procedia PDF Downloads 430
16106 Bulk Modification of Poly(Dimethylsiloxane) for Biomedical Applications

Authors: A. Aslihan Gokaltun, Martin L. Yarmush, Ayse Asatekin, O. Berk Usta

Abstract:

In the last decade microfabrication processes including rapid prototyping techniques have advanced rapidly and achieved a fairly matured stage. These advances encouraged and enabled the use of microfluidic devices by a wider range of users with applications in biological separations, and cell and organoid cultures. Accordingly, a significant current challenge in the field is controlling biomolecular interactions at interfaces and the development of novel biomaterials to satisfy the unique needs of the biomedical applications. Poly(dimethylsiloxane) (PDMS) is by far the most preferred material in the fabrication of microfluidic devices. This can be attributed its favorable properties, including: (1) simple fabrication by replica molding, (2) good mechanical properties, (3) excellent optical transparency from 240 to 1100 nm, (4) biocompatibility and non-toxicity, and (5) high gas permeability. However, high hydrophobicity (water contact angle ~108°±7°) of PDMS often limits its applications where solutions containing biological samples are concerned. In our study, we created a simple, easy method for modifying the surface chemistry of PDMS microfluidic devices through the addition of surface-segregating additives during manufacture. In this method, a surface segregating copolymer is added to precursors for silicone and the desired device is manufactured following the usual methods. When the device surface is in contact with an aqueous solution, the copolymer self-organizes to expose its hydrophilic segments to the surface, making the surface of the silicone device more hydrophilic. This can lead to several improved performance criteria including lower fouling, lower non-specific adsorption, and better wettability. Specifically, this approach is expected to be useful for the manufacture of microfluidic devices. It is also likely to be useful for manufacturing silicone tubing and other materials, biomaterial applications, and surface coatings.

Keywords: microfluidics, non-specific protein adsorption, PDMS, PEG, copolymer

Procedia PDF Downloads 267
16105 The Role of Graphene Oxide on Titanium Dioxide Performance for Photovoltaic Applications

Authors: Abdelmajid Timoumi, Salah Alamri, Hatem Alamri

Abstract:

TiO₂ Graphene Oxide (TiO₂-GO) nanocomposite was prepared using the spin coating technique of suspension of Graphene Oxide (GO) nanosheets and Titanium Tetra Isopropoxide (TIP). The prepared nanocomposites samples were characterized by X-ray diffractometer, Scanning Electron Microscope and Atomic Force Microscope to examine their structures and morphologies. UV-vis transmittance and reflectance spectroscopy was employed to estimate band gap energies. From the TiO₂-GO samples, a 0.25 μm thin layer on a piece of glass 2x2 cm was created. The X-ray diffraction analysis revealed that the as-deposited layers are amorphous in nature. The surface morphology images demonstrate that the layers grew in distributed with some spherical/rod-like and partially agglomerated TiGO on the surface of the composite. The Atomic Force Microscopy indicated that the films are smooth with slightly larger surface roughness. The analysis of optical absorption data of the layers showed that the values of band gap energy decreased from 3.46 eV to 1.40 eV, depending on the grams of GO doping. This reduction might be attributed to electron and/or hole trapping at the donor and acceptor levels in the TiO₂ band structure. Observed results have shown that the inclusion of GO in the TiO₂ matrix have exhibited significant and excellent properties, which would be promising for application in the photovoltaic application.

Keywords: titanium dioxide, graphene oxide, thin films, solar cells

Procedia PDF Downloads 161
16104 Cross Cultural Adaptation and Content Validation of the Assessment Instrument Preschooler Awareness of Stuttering Survey

Authors: Catarina Belchior, Catarina Martins, Sara Mendes, Ana Rita S. Valente, Elsa Marta Soares

Abstract:

Introduction: The negative feelings and attitudes that a person who stutters can develop are extremely relevant when considering assessment and intervention in Speech and Language Therapy. This relates to the fact that the person who stutters can experience feelings such as shame, fear and negative beliefs when communicating. Considering the complexity and importance of integrating diverse aspects in stuttering intervention, it is central to identify those emotions as early as possible. Therefore, this research aimed to achieve the translation, adaptation to European Portuguese and to analyze the content validation of the Preschooler Awareness Stuttering Survey (Abbiati, Guitar & Hutchins, 2015), an instrument that allows the assessment of the impact of stuttering on preschool children who stutter considering feelings and attitudes. Methodology: Cross-sectional descriptive qualitative research. The following methodological procedures were followed: translation, back-translation, panel of experts and pilot study. This abstract describes the results of the first three phases of this process. The translation was accomplished by two Speech Language Therapists (SLT). Both professionals have more than five years of experience and are users of English language. One of them has a broad experience in the field of stuttering. Back-translation was conducted by two bilingual individuals without experience in health or any knowledge about the instrument. The panel of experts was composed by 3 different SLT, experts in the field of stuttering. Results and Discussion: In the translation and back-translation process it was possible to verify differences in semantic and idiomatic equivalences of several concepts and expressions, as well as the need to include new information to enhance the understanding of the application of the instrument. The meeting between the two translators and the researchers allowed the achievement of a consensus version that was used in back-translation. Considering adaptation and content validation, the main change made by the experts was the conceptual equivalence of the questions and answers of the instrument's sheets. Considering that in the translated consensus version the questions began with various nouns such as 'is' or 'the cow' and that the answers did not contain the adverb 'much' as in the original instrument, the panel agreed that it would be more appropriate if the questions all started with 'how' and that all the answers should present the adverb 'much'. This decision was made to ensure that the translate instrument would be similar to the original and so that the results obtained could be comparable between the original and the translated instrument. There was also elaborated one semantic equivalence between concepts. The panel of experts found that all other items and specificities of the instrument were adequate, concluding the adequacy of the instrument considering its objectives and its intended target population. Conclusion: This research aspires to diversify the existing validated resources in this scope, adding a new instrument that allows the assessment of preschool children who stutter. Consequently, it is hoped that this instrument will provide a real and reliable assessment that can lead to an appropriate therapeutic intervention according to the characteristics and needs of each child.

Keywords: stuttering, assessment, feelings and attitudes, speech language therapy

Procedia PDF Downloads 149
16103 Prototype Development of Knitted Buoyant Swimming Vest for Children

Authors: Nga-Wun Li, Chu-Po Ho, Kit-Lun Yick, Jin-Yun Zhou

Abstract:

The use of buoyant vests incorporated with swimsuits can develop children’s confidence in the water, particularly for novice swimmers. Consequently, parents intend to purchase buoyant swimming vests for the children to reduce their anxiety to water. Although the conventional buoyant swimming vests can provide the buoyant function to the wearer, their bulkiness and hardness make children feel uncomfortable and not willing to wear. This study aimed to apply inlay knitting technology to design new functional buoyant swimming vests for children. This prototype involved a shell and a buoyant knitted layer, which is the main media to provide buoyancy. Polypropylene yarn and 6.4 mm of Expandable Polyethylene (EPE) foam were fabricated in Full needle stitch with inlay knitting technology and were then linked by sewing to form the buoyant layer. The shell of the knitted buoyant vest was made of Polypropylene circular knitted fabric. The structure of knitted fabrics of the buoyant swimsuit makes them inherently stretchable, and the arrangement of the inlaid material was designed based on the body movement that can improve the ease with which the swimmer moves. Further, the shoulder seam is designed at the back to minimize the irritation of the wearer. Apart from maintaining the buoyant function to them, this prototype shows its contribution in reducing bulkiness and improving softness to the conventional buoyant swimming vest by taking the advantages of a knitted garment. The results in this study are significant to the development of the buoyant swimming vest for both the textile and the fast-growing sportswear industry.

Keywords: knitting technology, buoyancy, inlay, swimming vest, functional garment

Procedia PDF Downloads 112
16102 Surface Induced Alteration of Nanosized Amorphous Alumina

Authors: A. Katsman, L. Bloch, Y. Etinger, Y. Kauffmann, B. Pokroy

Abstract:

Various nanosized amorphous alumina thin films in the range of (2.4 - 63.1) nm were deposited onto amorphous carbon and amorphous Si3N4 membrane grids. Transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), X-ray photoelectron spectroscopy (XPS) and differential scanning calorimetry (DSC) techniques were used to probe the size effect on the short range order and the amorphous to crystalline phase transition temperature. It was found that the short-range order changes as a function of size: the fraction of tetrahedral Al sites is greater in thinner amorphous films. This result correlates with the change of amorphous alumina density with the film thickness demonstrated by the reflectivity experiments: the thinner amorphous films have the less density. These effects are discussed in terms of surface reconstruction of the amorphous alumina films. The average atomic binding energy in the thin film layer decreases with decease of the thickness, while the average O-Al interatomic distance increases. The reconstruction of amorphous alumina is induced by the surface reconstruction, and the short range order changes being dependent on the density. Decrease of the surface energy during reconstruction is the driving force of the alumina reconstruction (density change) followed by relaxation process (short range order change). The amorphous to crystalline phase transition temperature measured by DSC rises with the decrease in thickness from 997.6°C for 13.9 nm to 1020.4 °C for 2.7 nm thick. This effect was attributed to the different film densities: formation of nanovoids preceding and accompanying crystallization process influences the crystallization rate, and by these means, the temperature of crystallization peak.

Keywords: amorphous alumina, density, short range order, size effect

Procedia PDF Downloads 466
16101 Study of the Hysteretic I-V Characteristics in a Polystyrene/ZnO-Nanorods Stack Layer

Authors: You-Lin Wu, Yi-Hsing Sung, Shih-Hung Lin, Jing-Jenn Lin

Abstract:

Performance improvement in optoelectronic devices such as solar cells and photodetectors has been reported when a polymer/ZnO nanorods stack is used. Resistance switching of polymer/ZnO nanocrystals (or nanorods) hybrid has also gained a lot of research interests recently. It has been reported that high- and low-resistance states of a metal/insulator/metal (MIM) structure diode with a polystyrene (PS) and ZnO hybrid as the insulator layer can be switched by applied bias after a high-voltage forming process, while the same device structure merely with a PS layer does not show any forming behavior. In this work, we investigated the current-voltage (I-V) characteristics of an MIM device with a PS/ZnO nanorods stack deposited on fluorine-doped tin oxide (FTO) glass substrate. The ZnO nanorods were grown by a hydrothermal method using a mixture of zinc nitrate, hexamethylenetetramine, and DI water. Following that, a PS layer was deposited by spin coating. Finally, the device with a structure of Ti/ PS/ZnO nanorods/FTO was completed by e-gun evaporated Ti layer on top of the PS layer. Semiconductor parameters analyzer Agilent 4156C was then used to measure the I-V characteristics of the device by applying linear ramp sweep voltage with sweep sequence of 0V → 4V → 0V → 3V → 0V → 2V → 0V → 1V → 0V in both positive and negative directions. It is interesting to find that the I-V characteristics are bias dependent and hysteretic, indicating that the device Ti/PS/ZnO nanorods/FTO structure has ferroelectricity. Our results also show that the maximum hysteresis loop height of the I-V characteristics as well as the voltage at which the maximum hysteresis loop height of each scan occurs increase with increasing maximum sweep voltage. It should be noticed that, although ferroelectricity has been found in ZnO at its melting temperature (1975℃) and in Li- or Co-doped ZnO, neither PS nor ZnO has ferroelectricity at room temperature. Using the same structure but with a PS or ZnO layer only as the insulator does not give and hysteretic I-V characteristics. It is believed that a charge polarization layer is induced near the PS/ZnO nanorods stack interface and thus causes the ferroelectricity in the device with Ti/PS/ZnO nanorods/FTO structure. Our results show that the PS/ZnO stack can find a potential application in a resistive switching memory device with MIM structure.

Keywords: ferroelectricity, hysteresis, polystyrene, resistance switching, ZnO nanorods

Procedia PDF Downloads 312
16100 Influences of Separation of the Boundary Layer in the Reservoir Pressure in the Shock Tube

Authors: Bruno Coelho Lima, Joao F.A. Martos, Paulo G. P. Toro, Israel S. Rego

Abstract:

The shock tube is a ground-facility widely used in aerospace and aeronautics science and technology for studies on gas dynamic and chemical-physical processes in gases at high-temperature, explosions and dynamic calibration of pressure sensors. A shock tube in its simplest form is comprised of two separate tubes of equal cross-section by a diaphragm. The diaphragm function is to separate the two reservoirs at different pressures. The reservoir containing high pressure is called the Driver, the low pressure reservoir is called Driven. When the diaphragm is broken by pressure difference, a normal shock wave and non-stationary (named Incident Shock Wave) will be formed in the same place of diaphragm and will get around toward the closed end of Driven. When this shock wave reaches the closer end of the Driven section will be completely reflected. Now, the shock wave will interact with the boundary layer that was created by the induced flow by incident shock wave passage. The interaction between boundary layer and shock wave force the separation of the boundary layer. The aim of this paper is to make an analysis of influences of separation of the boundary layer in the reservoir pressure in the shock tube. A comparison among CDF (Computational Fluids Dynamics), experiments test and analytical analysis were performed. For the analytical analysis, some routines in Python was created, in the numerical simulations (Computational Fluids Dynamics) was used the Ansys Fluent, and the experimental tests were used T1 shock tube located in IEAv (Institute of Advanced Studies).

Keywords: boundary layer separation, moving shock wave, shock tube, transient simulation

Procedia PDF Downloads 315
16099 Numerical Analysis of Core-Annular Blood Flow in Microvessels at Low Reynolds Numbers

Authors: L. Achab, F. Iachachene

Abstract:

In microvessels, red blood cells (RBCs) exhibit a tendency to migrate towards the vessel center, establishing a core-annular flow pattern. The core region, marked by a high concentration of RBCs, is governed by significantly non-Newtonian viscosity. Conversely, the annular layer, composed of cell-free plasma, is characterized by Newtonian low viscosity. This property enables the plasma layer to act as a lubricant for the vessel walls, efficiently reducing resistance to the movement of blood cells. In this study, we investigate the factors influencing blood flow in microvessels and the thickness of the annular plasma layer using a non-miscible fluids approach in a 2D axisymmetric geometry. The governing equations of an incompressible unsteady flow are solved numerically through the Volume of Fluid (VOF) method to track the interface between the two immiscible fluids. To model blood viscosity in the core region, we adopt the Quemada constitutive law which is accurately captures the shear-thinning blood rheology over a wide range of shear rates. Our results are then compared to an established theoretical approach under identical flow conditions, particularly concerning the radial velocity profile and the thickness of the annular plasma layer. The simulation findings for low Reynolds numbers, demonstrate a notable agreement with the theoretical solution, emphasizing the pivotal role of blood’s rheological properties in the core region in determining the thickness of the annular plasma layer.

Keywords: core-annular flows, microvessels, Quemada model, plasma layer thickness, volume of fluid method

Procedia PDF Downloads 56
16098 Magnetohydrodynamics (MHD) Boundary Layer Flow Past A Stretching Plate with Heat Transfer and Viscous Dissipation

Authors: Jiya Mohammed, Tsadu Shuaib, Yusuf Abdulhakeem

Abstract:

The research work focuses on the cases of MHD boundary layer flow past a stretching plate with heat transfer and viscous dissipation. The non-linear of momentum and energy equation are transform into ordinary differential equation by using similarity transformation, the resulting equation are solved using Adomian Decomposition Method (ADM). An attempt has been made to show the potentials and wide range application of the Adomian decomposition method in the comparison with the previous one in solving heat transfer problems. The Pade approximates value (η= 11[11, 11]) is use on the difficulty at infinity. The results are compared by numerical technique method. A vivid conclusion can be drawn from the results that ADM provides highly precise numerical solution for non-linear differential equations. The result where accurate especially for η ≤ 4, a general equating terms of Eckert number (Ec), Prandtl number (Pr) and magnetic parameter ( ) is derived which was used to investigate velocity and temperature profiles in boundary layer.

Keywords: MHD, Adomian decomposition, boundary layer, viscous dissipation

Procedia PDF Downloads 551
16097 Centrifuge Testing to Determine the Effect of Temperature on the Adhesion Strength of Ice

Authors: Zaid A. Janjua, Barbara Turnbull, Kwing-So Choi

Abstract:

The adhesion of glaze ice on power infrastructure, ships and aerofoils cause monetary and structural damage. Here we investigate the influence of temperature as an important parameter affecting adhesion strength of ice. Two terms are defined to investigate this: 'freezing temperature', the temperature at which glaze ice forms; and 'ambient temperature', the temperature of the surrounding during the test. Using three metal surfaces, the adhesion strength of ice has been calculated as a value of shear stress at the point of detachment on a spinning centrifuge. Findings show that the ambient temperature has a greater influence than the freezing temperature on the adhesion strength of ice. This is because there exists an amorphous liquid-like layer at the ice-surface interface, whose bond with the surface increases in strength at lower ambient temperatures when the substrate conducts heat much faster than the ice and acts as a heat sink. The results will help us to measure the actual adhesion strength of ice to metal surfaces based on data from weather monitoring devices. Future tests envisaged focus on thermally non-conducting substrates and their influence on adhesion strength.

Keywords: ice adhesion, centrifuge, glaze ice, freezing temperature, ambient temperature

Procedia PDF Downloads 343
16096 Formation of Nanostructured Surface Layers of a Material with TiNi-Based Shape Memory by Diffusion Metallization

Authors: Zh. M. Blednova, P. O. Rusinov

Abstract:

Results of research on the formation of the surface layers of a material with shape memory effect (SME) based on TiNi diffusion metallization in molten Pb-Bi under isothermal conditions in an argon atmosphere are presented. It is shown that this method allows obtaining of uniform surface layers in nanostructured state of internal surfaces on the articles of complex shapes with stress concentrators. Structure, chemical and phase composition of the surface layers provide a manifestation of TiNi shape memory. The average grain size of TiNi coatings ranges between 60 ÷ 160 nm.

Keywords: diffusion metallization, nikelid titanium surface layers, shape memory effect, nanostructures

Procedia PDF Downloads 324
16095 Investigation of the Jupiter’s Galilean Moons

Authors: Revaz Chigladze

Abstract:

The purpose of the research is to investigate the surfaces of Jupiter's Galilean moons, namely which moon has the most uniform surface among them, what is the difference between the front (in the direction of motion) and the back sides of each moon's surface, as well as the temporal variations of the moons. Since 1981, the E. Kharadze National Astrophysical Observatory of Georgia has been conducting polarimetric (P) and photometric (M) observations of Jupiter's Galilean moons with telescopes of different diameters (40 cm and 125 cm) and the polarimeter ASEP-78 in combination with them and the latest generation photometer with a polarimeter and modern light receiver SBIG. As it turns out from the analysis of the observed material, the parameters P and M depend on α-the phase angle of the moon (satellite), L- the orbital latitude of the moon (satellite), λ- the wavelength, and t - the period of observation, i.e., P = P (α, L, λ , t), and similarly M = M (α, L, λ. , t). Based on the analysis of the observed material, the following was studied: Jupiter's Galilean moons: dependence of the magnitude and phase angle of the degree of linear polarization for different wavelengths; Dependence of the degree of polarization and the orbital longitude; dependence between the magnitude of the degree of polarization and the wavelength; time dependence of the degree of polarization and the dependence between photometric and polarimetric characteristics (including establishing correlation). From the analysis of the obtained results, we get: The magnitude of the degree of polarization of Jupiter's Galilean moons near the opposition significantly differs from zero. Europa appears to have the most uniform surface, and Callisto the least uniform. Time variations are most characteristic of Io, which confirms the presence of volcanic activity on its surface. Based on the observed material, it can be seen that the intensity of light reflected from the front hemisphere of the first three moons: Io, Europa, and Ganymede, is less than the intensity of light reflected from the rear hemisphere, and in the case of the Callisto it is the opposite. The paper provides a convincing (natural, real) explanation of this fact.

Keywords: Galilean moons, polarization, degree of polarization, photometry, front and rear hemispheres

Procedia PDF Downloads 101