Search results for: animal artificial insemination
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3221

Search results for: animal artificial insemination

2501 Study of Electro Magnetic Acoustic Transducer to Detect Flaw in Pipeline

Authors: Yu-Lin Shen, Ming-Kuen Chang

Abstract:

In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electro Magnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.

Keywords: EMAT, NDT, artificial defect, ultrasonic testing

Procedia PDF Downloads 473
2500 Ending Wars Over Water: Evaluating the Extent to Which Artificial Intelligence Can Be Used to Predict and Prevent Transboundary Water Conflicts

Authors: Akhila Potluru

Abstract:

Worldwide, more than 250 bodies of water are transboundary, meaning they cross the political boundaries of multiple countries. This creates a system of hydrological, economic, and social interdependence between communities reliant on these water sources. Transboundary water conflicts can occur as a result of this intense interdependence. Many factors contribute to the sparking of transboundary water conflicts, ranging from natural hydrological factors to hydro-political interactions. Previous attempts to predict transboundary water conflicts by analysing changes or trends in the contributing factors have typically failed because patterns in the data are hard to identify. However, there is potential for artificial intelligence and machine learning to fill this gap and identify future ‘hotspots’ up to a year in advance by identifying patterns in data where humans can’t. This research determines the extent to which AI can be used to predict and prevent transboundary water conflicts. This is done via a critical literature review of previous case studies and datasets where AI was deployed to predict water conflict. This research not only delivered a more nuanced understanding of previously undervalued factors that contribute toward transboundary water conflicts (in particular, culture and disinformation) but also by detecting conflict early, governance bodies can engage in processes to de-escalate conflict by providing pre-emptive solutions. Looking forward, this gives rise to significant policy implications and water-sharing agreements, which may be able to prevent water conflicts from developing into wide-scale disasters. Additionally, AI can be used to gain a fuller picture of water-based conflicts in areas where security concerns mean it is not possible to have staff on the ground. Therefore, AI enhances not only the depth of our knowledge about transboundary water conflicts but also the breadth of our knowledge. With demand for water constantly growing, competition between countries over shared water will increasingly lead to water conflict. There has never been a more significant time for us to be able to accurately predict and take precautions to prevent global water conflicts.

Keywords: artificial intelligence, machine learning, transboundary water conflict, water management

Procedia PDF Downloads 105
2499 A Guide to User-Friendly Bash Prompt: Adding Natural Language Processing Plus Bash Explanation to the Command Interface

Authors: Teh Kean Kheng, Low Soon Yee, Burra Venkata Durga Kumar

Abstract:

In 2022, as the future world becomes increasingly computer-related, more individuals are attempting to study coding for themselves or in school. This is because they have discovered the value of learning code and the benefits it will provide them. But learning coding is difficult for most people. Even senior programmers that have experience for a decade year still need help from the online source while coding. The reason causing this is that coding is not like talking to other people; it has the specific syntax to make the computer understand what we want it to do, so coding will be hard for normal people if they don’t have contact in this field before. Coding is hard. If a user wants to learn bash code with bash prompt, it will be harder because if we look at the bash prompt, we will find that it is just an empty box and waiting for a user to tell the computer what we want to do, if we don’t refer to the internet, we will not know what we can do with the prompt. From here, we can conclude that the bash prompt is not user-friendly for new users who are learning bash code. Our goal in writing this paper is to give an idea to implement a user-friendly Bash prompt in Ubuntu OS using Artificial Intelligent (AI) to lower the threshold of learning in Bash code, to make the user use their own words and concept to write and learn Bash code.

Keywords: user-friendly, bash code, artificial intelligence, threshold, semantic similarity, lexical similarity

Procedia PDF Downloads 141
2498 Improvement of Direct Torque and Flux Control of Dual Stator Induction Motor Drive Using Intelligent Techniques

Authors: Kouzi Katia

Abstract:

This paper proposes a Direct Torque Control (DTC) algorithm of dual Stator Induction Motor (DSIM) drive using two approach intelligent techniques: Artificial Neural Network (ANN) approach replaces the switching table selector block of conventional DTC and Mamdani Fuzzy Logic controller (FLC) is used for stator resistance estimation. The fuzzy estimation method is based on an online stator resistance correction through the variations of stator current estimation error and its variation. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of suggested algorithm control is to reduce the hardware complexity of conventional selectors, to avoid the drive instability that may occur in certain situation and ensure the tracking of the actual of the stator resistance. The effectiveness of the technique and the improvement of the whole system performance are proved by results.

Keywords: artificial neural network, direct torque control, dual stator induction motor, fuzzy logic estimator, switching table

Procedia PDF Downloads 340
2497 Protection and Immune Responses of DNA Vaccines Targeting Virulence Factors of Streptococcus iniae in Nile Tilapia (Oreochromis niloticus)

Authors: Pattanapon Kayansamruaj, Ha Thanh Dong, Nopadon Pirarat, Channarong Rodkhum

Abstract:

Streptococcus iniae (SI) is a devastating pathogenic bacteria causing heavy mortality in farmed fish. The application of commercialized bacterin vaccine has been reported failures as the outbreaks of the new serotype of SI were emerged in farms after vaccination and subsequently caused severe losses. In the present study, we attempted to develop effective DNA vaccines against SI infection using Nile tilapia (Oreochromis niloticus) as an animal model. Two monovalent DNA vaccines were constructed by the insertion of coding sequences of cell wall-associated virulence factors-encoding genes, comprised of eno (α-enolase) and mtsB (hydrophobic membrane protein), into cytomegalovirus expression vector (pCI-neo). In the animal trial, 30-g Nile tilapia were injected intramuscularly with 15 µg of each vaccine (mock vaccine group was injected by naked pCI-neo) and maintained for 35 days prior challenging with pathogenic SI at the dosage of 107 CFU/fish. At 13 days post-challenge, the relative percent survival of pEno, pMtsB and mock vaccine were 57%, 45% and 27%, respectively. The expression levels of immune responses-associated genes, namely, IL1β, TNF-α, TGF-β, COX2, IL-6, IL-12 and IL-13, were investigated from the spleen of experimental animal at 7 days post-vaccination (PV) and 7 days post-challenge (PC) using quantitative RT-PCR technique. Generally, at 7 days PV, the pEno vaccinated group exhibited highest level of up-regulation (1.7 to 2.9 folds) of every gene, but TGF-β, comparing to pMtsB and mock vaccine groups. However, at 7 days PC, pEno group showed significant up-regulation (1.4 to 8.5 folds) of immune-related genes as similar as mock vaccine group, while pMtsB group had lowest level of up-regulation (0.7 to 3.3 folds). Summarily, this study indicated that the pEno and pMtsB vaccines could elicit the immune responses of the fish and the magnitude of gene expression at 7 days PV was also consistent with the protection level conferred by the vaccine.

Keywords: gene expression, DNA vaccine, Nile tilapia, Streptococcus iniae

Procedia PDF Downloads 327
2496 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting

Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas

Abstract:

The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.

Keywords: artificial neural network, low series manufacturing, polymer cutting, setup period estimation

Procedia PDF Downloads 243
2495 The Mediating Role of Artificial Intelligence (AI) Driven Customer Experience in the Relationship Between AI Voice Assistants and Brand Usage Continuance

Authors: George Cudjoe Agbemabiese, John Paul Kosiba, Michael Boadi Nyamekye, Vanessa Narkie Tetteh, Caleb Nunoo, Mohammed Muniru Husseini

Abstract:

The smartphone industry continues to experience massive growth, evidenced by expanding markets and an increasing number of brands, models and manufacturers. As technology advances rapidly, manufacturers of smartphones are consistently introducing new innovations to keep up with the latest evolving industry trends and customer demand for more modern devices. This study aimed to assess the influence of artificial intelligence (AI) voice assistant (VA) on improving customer experience, resulting in the continuous use of mobile brands. Specifically, this article assesses the role of hedonic, utilitarian, and social benefits provided by AIVA on customer experience and the continuance intention to use mobile phone brands. Using a primary data collection instrument, the quantitative approach was adopted to examine the study's variables. Data from 348 valid responses were used for the analysis based on structural equation modeling (SEM) with AMOS version 23. Three main factors were identified to influence customer experience, which results in continuous usage of mobile phone brands. These factors are social benefits, hedonic benefits, and utilitarian benefits. In conclusion, a significant and positive relationship exists between the factors influencing customer experience for continuous usage of mobile phone brands. The study concludes that mobile brands that invest in delivering positive user experiences are in a better position to improve usage and increase preference for their brands. The study recommends that mobile brands consider and research their prospects' and customers' social, hedonic, and utilitarian needs to provide them with desired products and experiences.

Keywords: artificial intelligence, continuance usage, customer experience, smartphone industry

Procedia PDF Downloads 79
2494 Integrating AI into Breast Cancer Diagnosis: Aligning Perspectives for Effective Clinical Practice

Authors: Mehrnaz Mostafavi, Mahtab Shabani, Alireza Azani, Fatemeh Ghafari

Abstract:

Artificial intelligence (AI) can transform breast cancer diagnosis and therapy by providing sophisticated solutions for screening, imaging interpretation, histopathological analysis, and treatment planning. This literature review digs into the many uses of AI in breast cancer treatment, highlighting the need for collaboration between AI scientists and healthcare practitioners. It emphasizes advances in AI-driven breast imaging interpretation, such as computer-aided detection and diagnosis (CADe/CADx) systems and deep learning algorithms. These have shown significant potential for improving diagnostic accuracy and lowering radiologists' workloads. Furthermore, AI approaches such as deep learning have been used in histopathological research to accurately predict hormone receptor status and categorize tumor-associated stroma from regular H&E stains. These AI-powered approaches simplify diagnostic procedures while providing insights into tumor biology and prognosis. As AI becomes more embedded in breast cancer care, it is crucial to ensure its ethical, efficient, and patient-focused implementation to improve outcomes for breast cancer patients ultimately.

Keywords: breast cancer, artificial intelligence, cancer diagnosis, clinical practice

Procedia PDF Downloads 66
2493 Investigation of the Level of Physical and Mental Health of Patients Undergoing in Chronic or Transient Hemodialysis at Artificial Kidney Unit

Authors: Styliani Kotrotsiou, Evagelia Kotrotsiou, Fani Mokia, Theodosis Paralikas, Konstantinos Tsaras

Abstract:

Objective: The objective of this study was the investigation of the mental health of patients undergoing chronic or transient hemodialysis at Artificial Kidney Unit, as well as its relationship to the demographic characteristic of patients. Material and Method: The study took place in Larisa during the month of December in 2016 and the sample was composed of 60 patients undergoing in chronic or transient hemodialysis at Artificial Kidney Unit of the University General Hospital of Larisa. For the investigation of the physical and mental health of patients who participated in the study, the tool measurement << General Health Questionnaire- 28 >> (GHQ-28) was used. The questionnaires were administered with the interview method during the hemodialysis. This survey is designed for the existence or not of a mental disorder. It examines four factors (physical symptoms, anxiety, social dysfunction and depression). Results: The hemodialysis patients gave the following scores: -to the physical symptoms, women showed a higher average value than men (1,16 ± 1,26 against 0,49 ± 0,93), -at the anxiety scale, it seems that women are superior to men (1,68 ± 1,20 against 0,90 ± 1,22), -at the social dysfunction scale, the elderly patients ( > 65 years old) were presented a with higher average (2,59), and -at the depression scale, patients with a higher average value were those who lived in non-urban areas. The appearance of mental disorder, in relation to patient characteristics, did not show significant statistical correlation. The sex, the age and the place of residence affect more the assessment of mental health, while education did not seem to have any significant effect on the other. Conclusions: The hemodialysis process can significantly affect the patient’s Quality of Life and it can bring adverse changes in lifestyle, affecting the physical, social and psychological state of the individual. For that reason, hemodialysis should be aimed not only at extending life but in upgrading the Quality of Life.

Keywords: hemodialysis, chronic kidney disease, depression, social dysfunction, physical condition

Procedia PDF Downloads 162
2492 A Platform for Managing Residents' Carbon Trajectories Based on the City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Liu Xuebing, Lao Xuerui, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng

Abstract:

Climate change is a global problem facing humanity and this is now the consensus of the mainstream scientific community. In accordance with the carbon peak and carbon neutral targets and visions set out in the United Nations Framework Convention on Climate Change, the Kyoto Protocol and the Paris Agreement, this project uses the City Intelligent Model (CIM) and Artificial Intelligence Machine Vision (ICR) as the core technologies to accurately quantify low carbon behaviour into green corn, which is a means of guiding ecologically sustainable living patterns. Using individual communities as management units and blockchain as a guarantee of fairness in the whole cycle of green currency circulation, the project will form a modern resident carbon track management system based on the principle of enhancing the ecological resilience of communities and the cohesiveness of community residents, ultimately forming an ecologically sustainable smart village that can be self-organised and managed.

Keywords: urban planning, urban governance, CIM, artificial Intelligence, sustainable development

Procedia PDF Downloads 83
2491 The Actuation of Semicrystalline Poly(Vinylidene Fluoride) Tie Molecules: A Computational and Experimental Study

Authors: Abas Mohsenzadeh, Tariq Bashir, Waseen Tahir, Ulf Stigh, Mikael Skrifvars, Kim Bolton

Abstract:

The area of artificial muscles has received significant attention from many research domains including soft robotics, biomechanics and smart textiles in recent years. Poly(vinylidene fluoride) (PVDF) has been used to form artificial muscles since it contracts upon heating when under load. In this study, PVDF fibers were produced by melt spinning technique at different solid state draw ratios and then actuation mechanism for PVDF tie molecules within the semicrystalline region of PVDF polymer has been investigated using molecular dynamics simulations. Tie molecules are polymer chains that link two (or more) crystalline regions in semicrystalline polymers. The changes in fiber length upon heating have been investigated using a novel simulation technique. The results show that conformational changes of the tie molecules from the longer all-trans conformation at low temperature (β structure) to the shorter conformation (α structure) at higher temperature accrue by increasing the temperature. These results may be applied to understand the actuation observed for PVDF upon heating.

Keywords: poly(vinylidene fluoride), molecular dynamics, simulation, actuators, tie molecules, semicrystalline

Procedia PDF Downloads 307
2490 Prevalence of Enterocytozoon hepatopenaei in Shrimp Cultured in Inland Saline Water

Authors: Naveen Kumar B. T., Anuj Tyagi, Prabjeet Singh, Shanthanagouda A. H., Sumeet Rai

Abstract:

Inland saline water resources are gaining the importance in expanding the aquaculture activities to mitigate the nutritional and food security issues of the world. For profitable and sustainable aquaculture practices, scientific farming, biosecurity measure, and best fish health management should be the integral part of developmental activities. Keeping in line with global awareness and trends, the Indian government has taken an innovative step to conduct disease surveillance and awareness programme for aquatic disease through network project. This ‘National Surveillance Programme for Aquatic Animal Diseases (NSPAAD)’ is being implemented in collaboration of national institutes and state agriculture universities with funding support from National Fisheries Development Board (NFDB), Govt. of India. Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, an NSPAAD collaborator, has been actively engaged in disease surveillance in the Indian state of Punjab. Shrimp farming in inland saline areas of Punjab is expanding at a tremendous pace under the guidance of GADVASU along with the support of State Fisheries Department. Under this national disease surveillance programme, we reported Enterocytozoon hepatopenaei (EHP) infection in the Litopenaeus vannamei cultured in the inland saline waters. Polymerase chain reaction (PCR) based diagnosis was carried out using the OIE (World Organisation for Animal Health) protocol. It was observed that out of 20 shrimp farms, two farms were 1st step PCR positive and two more farms were nested PCR positive. All the EHP positive ponds had shown the white faeces along with mortalities at very low rate. Therefore, implementation of biosecurity and continuous surveillance and monitoring program for finfish and shellfish aquaculture are in need of the hour to prevent and control the large-scale disease outbreaks and subsequent economic losses.

Keywords: disease, EHP, inland saline water, shrimp culture

Procedia PDF Downloads 260
2489 Revolutionizing Accounting: Unleashing the Power of Artificial Intelligence

Authors: Sogand Barghi

Abstract:

The integration of artificial intelligence (AI) in accounting practices is reshaping the landscape of financial management. This paper explores the innovative applications of AI in the realm of accounting, emphasizing its transformative impact on efficiency, accuracy, decision-making, and financial insights. By harnessing AI's capabilities in data analysis, pattern recognition, and automation, accounting professionals can redefine their roles, elevate strategic decision-making, and unlock unparalleled value for businesses. This paper delves into AI-driven solutions such as automated data entry, fraud detection, predictive analytics, and intelligent financial reporting, highlighting their potential to revolutionize the accounting profession. Artificial intelligence has swiftly emerged as a game-changer across industries, and accounting is no exception. This paper seeks to illuminate the profound ways in which AI is reshaping accounting practices, transcending conventional boundaries, and propelling the profession toward a new era of efficiency and insight-driven decision-making. One of the most impactful applications of AI in accounting is automation. Tasks that were once labor-intensive and time-consuming, such as data entry and reconciliation, can now be streamlined through AI-driven algorithms. This not only reduces the risk of errors but also allows accountants to allocate their valuable time to more strategic and analytical tasks. AI's ability to analyze vast amounts of data in real time enables it to detect irregularities and anomalies that might go unnoticed by traditional methods. Fraud detection algorithms can continuously monitor financial transactions, flagging any suspicious patterns and thereby bolstering financial security. AI-driven predictive analytics can forecast future financial trends based on historical data and market variables. This empowers organizations to make informed decisions, optimize resource allocation, and develop proactive strategies that enhance profitability and sustainability. Traditional financial reporting often involves extensive manual effort and data manipulation. With AI, reporting becomes more intelligent and intuitive. Automated report generation not only saves time but also ensures accuracy and consistency in financial statements. While the potential benefits of AI in accounting are undeniable, there are challenges to address. Data privacy and security concerns, the need for continuous learning to keep up with evolving AI technologies, and potential biases within algorithms demand careful attention. The convergence of AI and accounting marks a pivotal juncture in the evolution of financial management. By harnessing the capabilities of AI, accounting professionals can transcend routine tasks, becoming strategic advisors and data-driven decision-makers. The applications discussed in this paper underline the transformative power of AI, setting the stage for an accounting landscape that is smarter, more efficient, and more insightful than ever before. The future of accounting is here, and it's driven by artificial intelligence.

Keywords: artificial intelligence, accounting, automation, predictive analytics, financial reporting

Procedia PDF Downloads 69
2488 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study

Authors: Si Mon Kueh, Tom J. Kazmierski

Abstract:

There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.

Keywords: Artificial Neural Networks (ANN), bit-serial neural processor, FPGA, Neural Processing Element (NPE)

Procedia PDF Downloads 319
2487 Genesis and Survival Chance of Autotriploid in Natural Diploid Population of Lilium lancifolium Thunb

Authors: Ji-Won Park, Jong-Wha Kim

Abstract:

Triploid L. lancifolium have a wide geographic distribution. By contrast, diploid L. lancifolium have limited distributions in the islands and coastal regions of the South and West Korean Peninsula and northern Tsushima Island, Japan. L. lancifolium diploids and triploids are not sympatrically distributed with other lily species or ploidy lines in West Sea and South Sea Islands of the Korean Peninsula. This observation raises the following questions: 'Why have autotriploid L. lancifolium never been observed in those isolated islands?', 'What mechanism excludes the occurrence of autotriploids, if they arise?'. To determine the occurrence and survival of triploid plants in natural diploid populations of tiger lily (Lilium lancifolium), ploidy analysis was conducted on natural open-pollinated seeds produced from plants grown on isolated islands, and on hybrid seeds produced by artificial crossing between plant populations originating on different Korean islands. Normal seeds were classified into five grades depending on the ratio of embryo/endosperm lengths, including 5/5, 4/5, 3/5, 2/5, and 1/5. Triploids were not observed among seedlings produced from natural open pollinations on isolated islands. Triploids were detected only in seedlings of underdeveloped seed grades(3/5 and 2/5) from artificial crosses between populations from different isolated islands. The triploid occurrence frequency was calculated as 0.0 for natural open-pollinated seedlings and 0.000582 for artificial crosses(6 triploids from 10,303 seedlings). Triploids were produced from crosses between isolated populations located at least 70 km apart; no triploids were detected in inter-population crosses of plants originating on the same islands. Triploid seedlings have very low viability in soil. We analyzed factors affecting triploid occurrence and survival in natural diploid populations of L. lancifolium. The results suggest that triploids originate from fertilization between plants that are genetically isolated due to geographical isolation and/or genotypic differences.

Keywords: Lilium lancifolium, autotriploid, natural population, genetic distance, 2n female gamete

Procedia PDF Downloads 519
2486 Multiscale Model of Blast Explosion Human Injury Biomechanics

Authors: Raj K. Gupta, X. Gary Tan, Andrzej Przekwas

Abstract:

Bomb blasts from Improvised Explosive Devices (IEDs) account for vast majority of terrorist attacks worldwide. Injuries caused by IEDs result from a combination of the primary blast wave, penetrating fragments, and human body accelerations and impacts. This paper presents a multiscale computational model of coupled blast physics, whole human body biodynamics and injury biomechanics of sensitive organs. The disparity of the involved space- and time-scales is used to conduct sequential modeling of an IED explosion event, CFD simulation of blast loads on the human body and FEM modeling of body biodynamics and injury biomechanics. The paper presents simulation results for blast-induced brain injury coupling macro-scale brain biomechanics and micro-scale response of sensitive neuro-axonal structures. Validation results on animal models and physical surrogates are discussed. Results of our model can be used to 'replicate' filed blast loadings in laboratory controlled experiments using animal models and in vitro neuro-cultures.

Keywords: blast waves, improvised explosive devices, injury biomechanics, mathematical models, traumatic brain injury

Procedia PDF Downloads 247
2485 Prevalence of Bovine Mastitis and Associated Risk Factors in Selected Dairy Farms in Zoba Anseba, Eritrea

Authors: Redie Kidane Ghebrehawariat, Betiel Habte Hadgu, Filmon Berhane Kahsay, Rim Berhane Fisehaye, Samuel Haile Kahsay, Saron Yemane Yosief, Selemawit Mosazghi Gilazghi

Abstract:

A cross-sectional study was conducted from 22 February to 9 April 2022 on small, medium, and large holder dairy farms to determine the bovine mastitis prevalence and associated risk factors in the Anseba region, Eritrea. A total of 34 dairy farms and 193 dairy cows were randomly selected. Dairy cows were physically examined for any change on the udder and milk; a California mastitis test was performed to check sub-clinical mastitis; a closed-ended semi-structured questionnaire composed of 28 variables/risk factors (21 management risk factors and 7 animal-level risk factors) was used to determine the risk factors responsible for clinical and sub-clinical mastitis in the dairy cows. The overall cow-level prevalence of mastitis was 147 (76.2%). The animal level prevalence rate of clinical and sub-clinical mastitis was found to be 22 (11.4%) and 125 (64.8%), respectively, while herd level prevalence both for clinical and subclinical mastitis was found to be 14 (41.2%) and 26 (76.5%) respectively. Based on the already set P-value, which is <0.05, a number of risk factors were found to have a significant relationship with the occurrence of clinical and sub-clinical mastitis. Generally, animal risk factors such as animal age, parity, injury on the udder or teat, and previous history of mastitis presence of injury on the udder and lactation stage were risk factors with a significant relationship with the occurrence of clinical and sub-clinical mastitis. On the other hand, management risk factors with a significant relationship to the occurrence of clinical and sub-clinical mastitis were herd size, failure to milk mastitic cow, at last, educational level, floor type, failure to use a towel, using one towel for more than one cow and failure to practice mastitis test. From a total of 772 quarters, 280 (36.3%) were found positive for sub-clinical mastitis using the California mastitis test; of these, 70 (9%) were weakly positive, 90 (11.7%) were distinct positive, and 120 (15.5%) were strongly positive. Furthermore, 13 (1.7%) quarters were blocked. Quarter level prevalence was right front 80 (41.5%), left front 64 (33.3%), right hind 69 (35.8%) and left hind 67 (34.7%). The study has shown that mastitis is a major problem for dairy farms and the findings suggested that mastitis is one of the limiting factors in increasing milk production. Subclinical mastitis was found to be a devastating problem, and it occurred in all three breeds of lactating dairy cattle. Therefore, farmers should work hard to avoid the above-mentioned risk factors to minimize the infection of their dairy cattle by mastitis and thereby increase their profit. On the other hand, the Ministry of Agriculture, through the extension unit, should work in close contact with the farmers to increase awareness of the economic importance of the disease and associated risk factors.

Keywords: mastitis, prevalence, dairy cattle, Anseba, Eritrea

Procedia PDF Downloads 124
2484 The Role of QX-314 and Capsaicin in Producing Long-Lasting Local Anesthesia in the Animal Model of Trigeminal Neuralgia

Authors: Ezzati Givi M., Ezzatigivi N., Eimani H.

Abstract:

Trigeminal Neuralgia (TN) consists of painful attacks often triggered with general activities, which cause impairment and disability. The first line of treatment consists of pharmacotherapy. However, the occurrence of many side-effects limits its application. Acute pain relief is crucial for titrating oral drugs and making time for neurosurgical intervention. This study aimed to examine the long-term anesthetic effect of QX-314 and capsaicin in trigeminal neuralgia using an animal model. TN was stimulated by surgical constriction of the infraorbital nerve in rats. After seven days, anesthesia infiltration was done, and the duration of mechanical allodynia was compared. Thirty-five male Wistar rats were randomly divided into seven groups as follows: control (normal saline); lidocaine (2%); QX314 (30 mM); lidocaine (2%)+QX314 (15 mM); lidocaine (2%)+QX314 (22 mM); lidocaine (2%)+QX314 (30 mM); and lidocaine (2%)+QX314 (30 mM) +capsaicin (1μg). QX314 in combination with lidocaine significantly increased the duration of anesthesia, which was dose-dependent. The combination of lidocaine+QX314+capsaicin could significantly increase the duration of anesthesia in trigeminal neuralgia. In the present study, we demonstrated that the combination of QX-314 with lidocaine and capsaicin produced a long-lasting, reversible local anesthesia and was superior to lidocaine alone in the fields of the duration of trigeminal neuropathic pain blockage.

Keywords: trigeminal neuralgia, capsaicin, lidocaine, long-lasting

Procedia PDF Downloads 112
2483 A Neural Network System for Predicting the Hardness of Titanium Aluminum Nitrite (TiAlN) Coatings

Authors: Omar M. Elmabrouk

Abstract:

The cutting tool, in the high-speed machining process, is consistently dealing with high localized stress at the tool tip, tip temperature exceeds 800°C and the chip slides along the rake face. These conditions are affecting the tool wear, the cutting tool performances, the quality of the produced parts and the tool life. Therefore, a thin film coating on the cutting tool should be considered to improve the tool surface properties while maintaining its bulks properties. One of the general coating processes in applying thin film for hard coating purpose is PVD magnetron sputtering. In this paper, the prediction of the effects of PVD magnetron sputtering coating process parameters, sputter power in the range of (4.81-7.19 kW), bias voltage in the range of (50.00-300.00 Volts) and substrate temperature in the range of (281.08-600.00 °C), were studied using artificial neural network (ANN). The results were compared with previously published results using RSM model. It was found that the ANN is more accurate in prediction of tool hardness, and hence, it will not only improve the tool life of the tool but also significantly enhances the efficiency of the machining processes.

Keywords: artificial neural network, hardness, prediction, titanium aluminium nitrate coating

Procedia PDF Downloads 553
2482 Revolutionizing Project Management: A Comprehensive Review of Artificial Intelligence and Machine Learning Applications for Smarter Project Execution

Authors: Wenzheng Fu, Yue Fu, Zhijiang Dong, Yujian Fu

Abstract:

The integration of artificial intelligence (AI) and machine learning (ML) into project management is transforming how engineering projects are executed, monitored, and controlled. This paper provides a comprehensive survey of AI and ML applications in project management, systematically categorizing their use in key areas such as project data analytics, monitoring, tracking, scheduling, and reporting. As project management becomes increasingly data-driven, AI and ML offer powerful tools for improving decision-making, optimizing resource allocation, and predicting risks, leading to enhanced project outcomes. The review highlights recent research that demonstrates the ability of AI and ML to automate routine tasks, provide predictive insights, and support dynamic decision-making, which in turn increases project efficiency and reduces the likelihood of costly delays. This paper also examines the emerging trends and future opportunities in AI-driven project management, such as the growing emphasis on transparency, ethical governance, and data privacy concerns. The research suggests that AI and ML will continue to shape the future of project management by driving further automation and offering intelligent solutions for real-time project control. Additionally, the review underscores the need for ongoing innovation and the development of governance frameworks to ensure responsible AI deployment in project management. The significance of this review lies in its comprehensive analysis of AI and ML’s current contributions to project management, providing valuable insights for both researchers and practitioners. By offering a structured overview of AI applications across various project phases, this paper serves as a guide for the adoption of intelligent systems, helping organizations achieve greater efficiency, adaptability, and resilience in an increasingly complex project management landscape.

Keywords: artificial intelligence, decision support systems, machine learning, project management, resource optimization, risk prediction

Procedia PDF Downloads 19
2481 Phenotypical and Molecular Characterization of Burkholderia mallei from Horses with Glanders: Preliminary Data

Authors: A. F. C. Nassar, D. K. Tessler, L. Okuda, C. Del Fava, D. P. Chiebao, A. H. C. N. Romaldini, A. P. Alvim, M. J. Sanchez-Vazquez, M. S. Rosa, J. C. Pompei, R. Harakava, M. C. S. Araujo, G. H. F. Marques, E. M. Pituco

Abstract:

Glanders is a zoonotic disease of Equidae caused by the bacterium Burkholderia mallei presented in acute or chronic clinical forms with inflammatory nodules in the respiratory tract, lymphangitis and caseous lymph nodes. There is not a treatment with veterinary drugs to this life-threatening disease; thus, its occurrence must be notified to official animal health services and any infected animal must be eliminated. This study aims to detect B. mallei from horses euthanized in outbreaks of glanders in Brazil, providing a better understanding of the bacterial characteristics and determine a proper protocol for isolation. The work was carried out with the collaboration of the Ministry of Agriculture and the Sao Paulo State Animal Health Department, while its procedures were approved by the Committee of Ethics in Animal Experimentation from the Instituto Biologico (CETEA n°156/2017). To the present time, 16 horses from farms with outbreaks of glanders detected by complement fixation test (CFT) serology method were analyzed. During the necropsy, samples of possibly affected organs (lymph nodes, lungs, heart, liver, spleen, kidneys and trachea) were collected for bacterial isolation, molecular tests and pathology. Isolation was performed using two enriched mediums, a potato infusion agar with 5% sheep blood, 4% glycerol and antibiotics (penicilin100U/ mL), and another with the same ingredients except the antibiotic. A PCR protocol was modified for this study using primers design to identify a region of the Flip gen of B. mallei. Thru isolation, 12.5% (2/16) animals were confirmed positive using only the enriched medium with antibiotic and confirmed by PCR: from mediastinal and submandibular lymph nodes and lungs in one animal and from mediastinal lymph node in the other. The detection of the bacterium using PCR showed positivity of 100% (16/16) horses from 144 samples of organs. Pathology macroscopic lesions observed were catarrhal nasal discharge, fetlock ulcers, emaciation, lymphangitis in limbs, suppurative lymphangitis, lymph node enlargement, star shaped liver, and spleen scars, adherence of the renal capsule, pulmonary hemorrhage, and miliary nodules. Microscopic lesions were suppurative bronchopneumonia with microabscesses and Langhans giant cells in lungs; lymph nodes with abscesses and intense lymphoid reaction; hemosiderosis and abscesses in spleen. Positive samples on PCR will be sequenced later and analyzed comparing with previous records in the literature. A throughout description of the recent acute cases of glanders occurring in Brazil and characterization of the bacterium related will contribute to advances in the knowledge of the pathogenicity, clinical symptoms, and epidemiology of this zoonotic disease. Acknowledgment: This project is sponsored by FAPESP.

Keywords: equines, bacterial isolation, zoonosis, PCR, pathology

Procedia PDF Downloads 137
2480 Two Coordination Polymers Synthesized from Various N-Donor Clusters Spaced by Terephtalic Acid for Efficient Photocatalytic Degradation of Ibuprofen in Water under Solar and Artificial Irradiation

Authors: Amina Adala, Nadra Debbache, Tahar Sehili

Abstract:

Coordination polymers and uniformly {[Zn(II)(BIPY)(Pht)]n} (1), {[Zn (HYD)(Pht)]n} (2) (BIPY = 4,4’ bipyridine, Pht = terephtalic acid, HYD = 8-hydroxyquinoline) have been successfully synthesized by a hydrothermal process using aqueous zinc solution. The as-prepared compounds phases were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy, UV-visible spectroscopy, thermogravimetric analysis (TGA), and the electrochemistry study by the voltammetry cyclic. The results showed a crystalline phase for CP1 however, CP2 requires recrystallization; the FTIR showed the presence of characteristic bands of all ligands; besides that, TGA shows thermal stability up to 300°C. The electrochemistry study showed a good charge transfer between the ligands and Zn metal for the two components. UV-Vis measurement showed strong absorption in a wide range from UV to visible light with a band gap of 2.69 eV for CP1 and 2.56 eV for CP2, smaller than that of ZnO. This represents an alternative to using ZnO. The Ibuprofen IBP decomposition kinetics of 5.10⁻⁵ mol.L⁻¹ under solar and artificial light were studied for different irradiation conditions. Good photocatalytic properties were observed due to their high surface area.

Keywords: metal-organic frameworks, photocatalysis, photodegradation, organic pollutant, ibuprofen

Procedia PDF Downloads 81
2479 Effect of Low Level Laser on Healing of Congenital Septal Defects on Dogs

Authors: Hady Atef, Zinab Helmy, Heba Abdeen, Mostafa Fadel

Abstract:

Background and purpose: After the success of the first trials of this experiment which were done on rabbits, a new study were conducted on dogs to ensure the past results; in a step forward to use low-level LASER therapy in the treatment of congenital septal defects in infants. The aim of this study was to investigate the effect of low-level LASER irradiation on congenital septal defects in dogs. Subjects and Methodology: six male dogs who have congenital septal defects in their hearts -with age ranged 6-10 months- enrolled in this study for one and half months. They were assigned into two groups: Group (A): The study group consisted of 3 canine hearts who received routine animal care associated with LASER irradiation. Group (B): The control group consisted of 3 canine hearts who received only routine animal care. Sizes of the septal defects were measured for both groups at the beginning and after the end of the study. Results: There was a significant decrease in the size of the diameter of the congenital septal defect with the study group (percentage of improvement was 42.19%) when compared with control group. Conclusion: It was concluded that low-level LASER therapy can be considered as a promising therapy for congenital heart defects in animals and to be examined on children with similar congenital lesions after then.

Keywords: laser, congenital septal defects, dogs, infants

Procedia PDF Downloads 278
2478 Effects of Artificial Intelligence and Machine Learning on Social Media for Health Organizations

Authors: Ricky Leung

Abstract:

Artificial intelligence (AI) and machine learning (ML) have revolutionized the way health organizations approach social media. The sheer volume of data generated through social media can be overwhelming, but AI and ML can help organizations effectively manage this information to improve the health and well-being of individuals and communities. One way AI can be used to enhance social media in health organizations is through sentiment analysis. This involves analyzing the emotions expressed in social media posts to better understand public opinion and respond accordingly. This can help organizations gauge the impact of their campaigns, track the spread of misinformation, and improve communication with the public. While social media is a useful tool, researchers and practitioners have expressed fear that it will be used for the spread of misinformation, which can have serious consequences for public health. Health organizations must work to ensure that AI systems are transparent, trustworthy, and unbiased so they can help minimize the spread of misinformation. In conclusion, AI and ML have the potential to greatly enhance the use of social media in health organizations. These technologies can help organizations effectively manage large amounts of data and understand stakeholders' sentiments. However, it is important to carefully consider the potential consequences and ensure that these systems are carefully designed to minimize the spread of misinformation.

Keywords: AI, ML, social media, health organizations

Procedia PDF Downloads 87
2477 Brief Guide to Cloud-Based AI Prototyping: Key Insights from Selected Case Studies Using Google Cloud Platform

Authors: Kamellia Reshadi, Pranav Ragji, Theodoros Soldatos

Abstract:

Recent advancements in cloud computing and storage, along with rapid progress in artificial intelligence (AI), have transformed approaches to developing efficient, scalable applications. However, integrating AI with cloud computing poses challenges as these fields are often disjointed, and many advancements remain difficult to access, obscured in complex documentation or scattered across research reports. For this reason, we share experiences from prototype projects combining these technologies. Specifically, we focus on Google Cloud Platform (GCP) functionalities and describe vision and speech activities applied to labeling, subtitling, and urban traffic flow tasks. We describe challenges, pricing, architecture, and other key features, considering the goal of real-time performance. We hope our demonstrations provide not only essential guidelines for using these functionalities but also enable more similar approaches.

Keywords: artificial intelligence, cloud computing, real-time applications, case studies, knowledge management, research and development, text labeling, video annotation, urban traffic analysis, public safety, prototyping, Google Cloud Platform

Procedia PDF Downloads 7
2476 Early Detection of Breast Cancer in Digital Mammograms Based on Image Processing and Artificial Intelligence

Authors: Sehreen Moorat, Mussarat Lakho

Abstract:

A method of artificial intelligence using digital mammograms data has been proposed in this paper for detection of breast cancer. Many researchers have developed techniques for the early detection of breast cancer; the early diagnosis helps to save many lives. The detection of breast cancer through mammography is effective method which detects the cancer before it is felt and increases the survival rate. In this paper, we have purposed image processing technique for enhancing the image to detect the graphical table data and markings. Texture features based on Gray-Level Co-Occurrence Matrix and intensity based features are extracted from the selected region. For classification purpose, neural network based supervised classifier system has been used which can discriminate between benign and malignant. Hence, 68 digital mammograms have been used to train the classifier. The obtained result proved that automated detection of breast cancer is beneficial for early diagnosis and increases the survival rates of breast cancer patients. The proposed system will help radiologist in the better interpretation of breast cancer.

Keywords: medical imaging, cancer, processing, neural network

Procedia PDF Downloads 257
2475 Predicting Long-Term Meat Productivity for the Kingdom of Saudi Arabia

Authors: Ahsan Abdullah, Ahmed A. S. Bakshwain

Abstract:

Livestock is one of the fastest-growing sectors in agriculture. If carefully managed, have potential opportunities for economic growth, food sovereignty and food security. In this study we mainly analyse and compare long-term i.e. for year 2030 climate variability impact on predicted productivity of meat i.e. beef, mutton and poultry for the Kingdom of Saudi Arabia w.r.t three factors i.e. i) climatic-change vulnerability ii) CO2 fertilization and iii) water scarcity and compare the results with two countries of the region i.e. Iraq and Yemen. We do the analysis using data from diverse sources, which was extracted, transformed and integrated before usage. The collective impact of the three factors had an overall negative effect on the production of meat for all the three countries, with adverse impact on Iraq. High similarity was found between CO2 fertilization (effecting animal fodder) and water scarcity i.e. higher than that between production of beef and mutton for the three countries considered. Overall, the three factors do not seem to be favorable for the three Middle-East countries considered. This points to possibility of a vegetarian year 2030 based on dependency on indigenous live-stock population.

Keywords: prediction, animal-source foods, pastures, CO2 fertilization, climatic-change vulnerability, water scarcity

Procedia PDF Downloads 318
2474 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum

Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna

Abstract:

Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.

Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network

Procedia PDF Downloads 157
2473 Unlocking Academic Success: A Comprehensive Exploration of Shaguf Bites’s Impact on Learning and Retention

Authors: Joud Zagzoog, Amira Aldabbagh, Radiyah Hamidaddin

Abstract:

This research aims to test out and observe whether artificial intelligence (AI) software and applications could actually be effective, useful, and time-saving for those who use them. Shaguf Bites, a web application that uses AI technology, claims to help students study and memorize information more effectively in less time. The website uses smart learning, or AI-powered bite-sized repetitive learning, by transforming documents or PDFs with the help of AI into summarized interactive smart flashcards (Bites, n.d.). To properly test out the websites’ effectiveness, both qualitative and quantitative methods were used in this research. An experiment was conducted on a number of students where they were first requested to use Shaguf Bites without any prior knowledge or explanation of how to use it. Second, they were asked for feedback through a survey on how their experience was after using it and whether it was helpful, efficient, time-saving, and easy to use for studying. After reviewing the collected data, we found out that the majority of students found the website to be straightforward and easy to use. 58% of the respondents agreed that the website accurately formulated the flashcard questions. And 53% of them reported that they are most likely to use the website again in the future as well as recommend it to others. Overall, from the given results, it is clear that Shaguf Bites have proved to be very beneficial, accurate, and time saving for the majority of the students.

Keywords: artificial intelligence (AI), education, memorization, spaced repetition, flashcards.

Procedia PDF Downloads 186
2472 Computational Model for Predicting Effective siRNA Sequences Using Whole Stacking Energy (ΔG) for Gene Silencing

Authors: Reena Murali, David Peter S.

Abstract:

The small interfering RNA (siRNA) alters the regulatory role of mRNA during gene expression by translational inhibition. Recent studies shows that up regulation of mRNA cause serious diseases like Cancer. So designing effective siRNA with good knockdown effects play an important role in gene silencing. Various siRNA design tools had been developed earlier. In this work, we are trying to analyze the existing good scoring second generation siRNA predicting tools and to optimize the efficiency of siRNA prediction by designing a computational model using Artificial Neural Network and whole stacking energy (ΔG), which may help in gene silencing and drug design in cancer therapy. Our model is trained and tested against a large data set of siRNA sequences. Validation of our results is done by finding correlation coefficient of experimental versus observed inhibition efficacy of siRNA. We achieved a correlation coefficient of 0.727 in our previous computational model and we could improve the correlation coefficient up to 0.753 when the threshold of whole tacking energy is greater than or equal to -32.5 kcal/mol.

Keywords: artificial neural network, double stranded RNA, RNA interference, short interfering RNA

Procedia PDF Downloads 524